
Planning Single-arm Manipulations

with N-Arm Robots

Benjamin Cohen

bcohen@seas.upenn.edu

University of Pennsylvania

Mike Phillips

mlphilli@andrew.cmu.edu

Carnegie Mellon University

Maxim Likhachev

maxim@cs.cmu.edu

Carnegie Mellon University

Abstract—Many robotic systems are comprised of two or more
arms. Such systems range from dual-arm household manipula-
tors to factory floors populated with a multitude of industrial
robotic arms. While the use of multiple arms increases the pro-
ductivity of the system and extends dramatically its workspace,
it also introduces a number of challenges. One such challenge
is planning the motion of the arm(s) required to relocate an
object from one location to another. This problem is challenging
because it requires reasoning over which arms and in which order
should manipulate the object, finding a sequence of valid handoff
locations between the consecutive arms and finally choosing the
grasps that allow for successful handoffs. In this paper, we show
how to exploit the characteristics of this problem in order to
construct a planner that can solve it effectively. We analyze our
approach experimentally on a number of simulated examples
ranging from a 2-arm system operating at a table to a 3-arm
system working at a bar and to a 4-arm system in a factory
setting.

I. INTRODUCTION

Robotic arms often share a common workspace. Examples

range from dual-arm manipulation platforms designed for

household scenarios to factory floors equipped with dozens of

industrial manipulators performing automated assembly (Fig-

ure 1). Yet, despite sharing heavily overlapping workspaces,

these arms are frequently treated as independent entities,

each arm performs its task independently and collaboration

between the arms is minimal. On the other hand, effective

cooperation between these arms can dramatically increase their

productivity and overall cost-effectiveness. For instance, they

can share common tools by passing them to each other when

necessary, they can lift heavier object using multiple arm

support and they can pick up assembly parts from remote

locations and pass them to the arms requiring them for the

assembly. For many of these tasks, one of the key requirements

is the ability to plan arm motions that relocate an object from

one location to another in the workspace spanned by the N-

arm robotic system.

This planning problem is challenging for several reasons.

First, it requires reasoning over which arms and in which

order should manipulate the object. In the simplest scenarios

a single arm may be able to relocate the object. In other

scenarios, all N arms may potentially be involved if the object

This research was partially sponsored by ARL, under the Robotics CTA
program grant W911NF-10-2-0016. We are also thankful to Google for their
partial support of this work.

Fig. 1: Shown above are multiple arms operating on the same car
in a common factory scenario. Despite sharing heavily overlapping
workspaces, industrial arms are used quite often as purely indepen-
dent workers.

is relocated from one end of the workspace to the opposite

end. Furthermore, sometimes, the same arm may have to re-

grasp the object several times with the help of another arm in

order to grasp the object in a way that allows the arm to place

the object at the goal with the desired orientation. Second, the

planning problem also involves computing valid locations for

each of the handoffs between two consecutive arms. Figuring

out these locations is non-trivial because the environment can

be cluttered and the object itself can be a large object. Finally,

the planner also needs to consider different possible grasps

and plan these grasps in a way that allows for the successful

sequence of handoffs.

In this paper, we show how to exploit the characteristics of

this problem in order to construct a planner that addresses

these challenges within a single search. In particular, we

introduce a compact representation of the planning problem,

develop a heuristic graph search algorithm that exploits the

fact that some of the computationally challenging operations

can be postponed and show how an effective heuristic function

can be derived. We analyze our approach experimentally on a

number of simulated examples ranging from a 2-arm system

operating at a table to a 3-arm system working at a bar and

to a 4-arm system in a factory setting.

II. RELATED WORK

There has been a lots of work on motion planning for

manipulators. Sampling-based motion planners [8, 10, 2] are

among the most popular due to their efficiency at solving

high dimensional problems. Other more recent approaches for

manipulation involve optimization techniques [13] and discrete

graph searches [3]. Another work [5] presents an efficient

method for planning paths for a set of arms to reach their goals.

These types of planners make up one part of the problem we

are solving. In fact, while our method uses one such motion

planner, any of these could be used for that part.

There has also been some work on computing handoffs

between objects where the required handoffs are known a

priori. In this work [16], the authors use a sampling based

method to solve the problem of moving an object from one

place to another using multiple arms. The approach allows

for scenarios where a fast IK solver is not available whereas

our method requires IK for our representation. In [14] the

authors solve the problem of finding good grasps to use when

a handoff between two arms is known to be needed. Our

approach solves what this algorithm assumes, determining

what handoffs are needed. Some work has been done to use

optimization techniques to find handoffs between two arms [1].

While all of these approaches address the problem of moving

an object between hands, none of them solve the discrete

problem of finding the sequence of arms required to move

the object to its goal. Our approach solves this component of

the problem as well.

This early work [9], is one of the most similar to ours. The

authors have an approach to moving an object with several

manipulators. The problem is solved by decomposing the

discrete and continuous problems. First the discrete problem

is solved by finding which arms will move the object and in

what order. Then each of these steps is solved. The approach

assumes that if the high-level plan calls for an arm to move

to the object for grasping, the plan will succeed. This is

not always possible, and by combining these two levels of

planning our method overcomes this assumption.

The algorithm presented in [7] plans multi-step plans

where each step involves a continuous plan using PRMs.

While not presented in the context of our domain (the paper’s

experiments are on locomotion) it is applicable. We have

adapted this to our domain and compared our planner against

it in the experimental results section.

III. PROBLEM DEFINITION

The problem is to move an object from a start pose to a

goal pose in SE(3) without colliding with obstacles in the

environment. The object can only be moved by an arm that is

currently grasping it. We are given a set of manipulators in the

environment that can be used to move the object. Note that

the set can contain different manipulators each with a different

number of joints. We are also given the list of valid grasps for

the object. The planner has to find a joint space plan for all

the arms that results in moving the object from its start to goal

pose where neither the object nor arms collide. This plan can

include “handoffs” which allows the object to be transferred

from one arm to another. Additionally, it is desirable to find

a path that is reasonably short and smooth.

IV. ALGORITHM

The full dimensionality of this problem is immense as it

includes all the degrees of freedom for each arm as well as the

6 DoF pose of the object. When planning for large numbers of

arms as we might find in a factory this representation simply

doesn’t scale. One of key insights to our approach is that

for the vast majority of scenarios only one arm is relevant

at any given point in the movement of the object, except

during a handoff where the configurations of two arms matter.

Our novel representation plans for the 6D pose of the object

floating through space while ensuring there is a “support arm”

at each pose.

Our problem has both discrete and continuous components.

The discrete component is finding the sequence of arms and

grasps needed to support the object throughout its motion.

The continuous problem comes from the manipulators and

object moving through a continuous configuration space. Our

algorithm uses a search-based planner (a variant of A*) which

plans on a graph. Such planners excel at discrete problems [6]

as graphs are inherently discrete and can use informative

heuristics to focus the search toward the solution. In our

problem, we use the heuristic to estimate the solution to the

discrete problem of finding the sequence of arms used to trans-

port the object. Search based planners have also been shown

to perform comparably to their sampling-based counterparts

in continuous planning problems such as manipulation [3].

Graph search approaches also makes it easy to handle path

constraints (e.g. holding a pitcher upright), as well as goal

sets or regions (e.g. place the object anywhere on the table).

A search-based planner is a natural choice for this problem as

it seamlessly combines the discrete and continuous parts of the

problem. In our problem we will be planning for the object

with a heuristic that guides the path of the object through

the appropriate sequence of handoffs. Finally, in our planner,

many of the possible actions will be expensive to evaluate. The

main planner can actually call a single arm motion planner to

determine the possibility and cost of a handoff motion. To

reduce the overall planning time, a lazy variant of the popular

weighted A* algorithm is presented in order to postpone

expensive evaluations until they are absolutely necessary.

A. Notations and Assumptions

In order to reduce the dimensionality to something manage-

able and scalable, only the arm currently supporting (grasping)

the object is used in our representation. To plan safely in the

presence of the other, non-supporting arms, we assume that

when an arm is not in use it is in a known “safe configuration”.

Note that a set of safe configurations for each arm can be used

as well.

We will be using a substantial amount of graph search

notation:

• G(V,E) is a graph where V is the set of vertices (or

states) in the graph and E is the set of edges connecting

pairs of vertices in V .

• sstart is the start state.

• sgoal is the goal state.

• c(u, v) is the cost of the edge from vertex u to vertex v.

• g(s) is the cost of the cheapest path from the sstart to s

found by the algorithm so far (we will sometimes write

g-value).

• g∗(s) is the optimal (minimum) cost from sstart to s

• h(s) is a consistent heuristic. It provides an underestimate

of the distance to the goal and satisfies the triangle

inequality.

B. Representation

We represent the planning problem with a graph. Since

we are assuming that all arms not currently supporting the

object are in their safe configurations, a state only needs to

contain information about the pose of the object and the arm

supporting it. There are 6 dimensions for the position and

orientation of the object. There is also one variable repre-

senting the arm that is supporting the object and one for the

grasp it is using. These two dimensions are just indices since

we are given a finite lists of arms and grasps. Finally, while

this is enough information to know where the gripper of the

supporting manipulator is, for many manipulators this doesn’t

map to a single set of joint angles. There are often many

solutions for a particular end effector pose. These manipulators

can have this redundancy captured by a set of “free angles”,

denoted below as φ0, . . . , φm. For example, in our experiments

we use PR2 arms which have 7 degrees of freedom. An end

effector pose can be mapped to a set of joint angles given one

free angle (in this case the upper arm roll joint). Formally a

state vector is defined as:
[

xobj , yobj , zobj , rollobj , pitchobj , yawobj , armid, graspid, φ0, . . . , φm

]

Edges in a graph connect pairs of states and represent the

motions of one or more arms in the transition. We call these

edges “motion primitives”. Motion primitives are actions that

can be applied at any state in the graph to generate neighboring

states. Most of our motion primitives involve moving the

object while using the same support arm. There are motions for

modifying the object position and orientation state variables by

small amounts. There are also motion primitives for changing

the support arm free angles. All of these motions are computed

by running inverse kinematics with the new object pose or free

angle. The motions are then collision checked by interpolating

between the two states. Our representation assumes a fast

inverse kinematics method for all manipulators considered by

the planner. For most arms, a generic freely available inverse

kinematics library, such as IKFast [4] is sufficient. Note, that

the “free angle” variables do not have to correspond to specific

joint angles, but rather represent the degree of freedom of the

redundancy. While our experiments were performed on 7 DoF

arms, we believe that it can be used with higher degree of

freedom arms by adding additional dimensions.

The last kind of motion primitive is to switch supports.

To do this a newly selected arm must move from its safe

configuration to the newly selected grasp and then the previous

support arm has to move back to its safe configuration. These

motions can be quite complicated so we call an arm planner

for a short period of time to check for feasibility. The planner

we chose to use is also a search-based motion planner [3].

The planner is called both to get the new support arm to

the object, but also to return the old support arm back to its

safe configuration. Evaluating this edge is very expensive since

another planner needs to be called twice. In the next section

we provide a solution to this expensive evaluation time.

C. Search

Our algorithm is search-based planner rooted in A*. All

of these planners run on graphs which are discrete in nature.

When planning for a manipulator which exists in a continuous

configuration space, the space is discretized onto a grid.

The objective of A* is to find an optimal path (sequence

of edges) in the graph that connects a start state sstart to

a goal state sgoal. A* does this by repeatedly expanding

the state in OPEN with the smallest f-value, defined as

f(s) = g(s) + h(s). OPEN is the list of states that have

been discovered by the search but haven’t been expanded yet.

An expansion means to generate the state’s successors and put

them in OPEN . A state only needs to be expanded once.

Our algorithm is a variant of Weighted A* [12]. Weighted

A* inflates the heuristic component of the f-value by ε > 1
causing the search to be more goal directed and find solutions

significantly faster than A*. Weighted A* is not optimal but

is guaranteed to return a solution no worse than ε times the

optimal solution cost even if each state is expanded at most

once [11].

When planning in high-dimensional problems the graph is

too large to compute up front and is instead generated as the

search progresses. One of the characteristics of our problem

is that some edges in our graph are far more expensive to

validate than others. In particular, determining if the object

can switch support arms requires two calls to an arm planner.

Additionally, most states have the option to transition to more

than one arm for several different grasps. Expanding a state

in the usual fashion, i.e. generating all successors and putting

them in OPEN would result in each expansion taking a huge

amount of time. Under this traditional approach most handoffs

will get computed but since they don’t actually get the object

closer to the goal (compared to a motion with the same arm

which moves toward the goal) the planner will never expand

them. This is a massive waste of computation time.

We propose a lazy version of Weighted A* which fully

evaluates edges only when the planner intends to use them.

This is done by giving the edge an optimistic value for its

cost and putting it in OPEN We say this edge does not

have its true cost. Then, only when the state is selected

for expansion, do we evaluate the edge (in our domain this

involves calling arm planners to switch support arms). After

the edge it evaluated we may find that it is invalid, in which

case we throw it out. If it is valid then we now know the

edge’s true cost (and it’s probably more expensive than our

optimistic guess) so we put it back into OPEN and when it

comes out the second time, it will actually be expanded and

will generate successors of its own.

LazyWeightedA* shows our lazy version of weighted A*.

One of the most important differences is that a state can

actually have several copies of itself in OPEN with different

parent states. This isn’t required in normal weighted A* since

only the cheapest path to a state needs to be kept. However,

since many of the edges haven’t been evaluated, we don’t

know the true cost of the states and it’s possible the instance

of the state with the cheapest cost may actually use an edge

which turns out to be invalid after it’s evaluated. Therefore,

we need to maintain duplicate states in OPEN .

Lines 1-2 of LazyWeightedA* are typical of weighted A*.

We iteratively remove the cheapest state in OPEN until the

goal is the cheapest. Lines 3-4 are new and show that if a state

has already been expanded it doesn’t need to be expanded

again. CLOSED contains the states that have already been

expanded. While OPEN allows for duplicates, CLOSED

does not. Typically, these lines are not needed for weighted

A*, but in the lazy variant, multiple copies of a state could

be in OPEN so the ones that come out after s has been

CLOSED have larger costs and can be ignored. Typically,

in weighted A*, when a state is removed from OPEN it is

expanded. We can see in the lazy version, this depends on if

we know its true cost or not (line 5).

If the state’s cost is true, we do an expansion by first

marking the state as closed (line 6) and getting a copy of

each neighboring state (line 7). The set S contains copies

of each state. The function getSuccessors also marks some

states as having trueCost(s′) set to true and other set to false.

This is domain specific and depends on which edges you want

to evaluate lazily. Any state that does not have its true cost

(being evaluated lazily) must have a non-overestimating cost

for the edge c(s, s′). This is needed to guarantee bounded

sub-optimality of the solution cost. On line 9 we see that if a

state has been CLOSED (already expanded) we can ignore

this successor. On line 10 we set the new state’s parent to be

s. On line 11, we compute a g-value for this version of the

state s′ (coming from this parent s). On line 12 we see if

this version of s′ is worth keeping for consideration (conf(s)
represents the actual configuration that corresponds to s). If

we already have a copy of s′ that has a better g-value (and the

g-value is a true cost) then we don’t need this new version. On

lines 13-14, we compute its f-value and put it into OPEN .

Lines 19-25 show the case where a state s comes out of

the OPEN list but doesn’t have its true cost yet. This means

the edge from the parent of s to s needs to be validated. The

getTrueCost function is called on line 19 to do this. If the cost

is finite, the edge exists and we mark the state as having a true

cost and update its g-value. Like the previous computation of

the f-value and insertion into OPEN (lines 24-25), we only

do it if there isn’t a better version of the state (line 23).

This lazy variant of Weighted A* is broadly applicable. It is

LazyWeightedA*()
1: while f(sgoal) > mins∈OPEN(f(s)) do

2: remove s with the smallest f(s) from OPEN
3: if s ∈ CLOSED then
4: CONTINUE
5: else if trueCost(s) then

6: insert s into CLOSED
7: S = getSuccessors(s)
8: for all s′ ∈ S do

9: if s′ /∈ CLOSED then

10: parent(s′) = s
11: g(s′) = g(parent(s′)) + c(parent(s′), s′)
12: if ∄s′′ ∈ OPEN s.t. conf(s′′) = conf(s′) ∧

trueCost(s′′) ∧ g(s′′) ≤ g(s′) then

13: f(s′) = g(s′) + εh(s′)
14: insert s′ into OPEN
15: end if

16: end if
17: end for

18: else

19: c′ = getTrueCost(parent(s), s)
20: if c′ < ∞ then
21: trueCost(s) = true
22: g(s) = g(parent(s)) + c′

23: if ∄s′′ ∈ OPEN s.t. conf(s′′) = conf(s)∧trueCost(s′′)∧
g(s′′) ≤ g(s) then

24: f(s) = g(s) + εh(s)
25: insert s into OPEN
26: end if
27: end if

28: end if

29: end while

both complete and has bounded suboptimality (solutions are

guaranteed to cost no more than ε times the cost of an optimal

solution) with respect to graph used to represent the problem.

However, it only makes sense for domains where evaluating

edges are costly and will offset the additional insert and

remove operations that we perform on OPEN . Additionally,

the memory footprint of the lazy variant is generally worse

than Weighted A* due to maintaining duplicate states.

D. Heuristic

Our heuristic has two components: guiding the object to-

ward the goal and encouraging the most promising handoffs.

In order to guide the search toward the goal, we run a

reverse Dijkstra search for the 3D location of the object back-

ward from the goal to all (x,y,z) cells in the environment. We

call this a “Point Search”. This approximates the distance from

all positions in the world to the goal location. Additionally,

this search is computed with the obstacles, so the heuristic

will guide the object around obstacles (note that since we are

not searching over orientation, we have to use a sphere that fits

inside the object, so it only guides a small part of the object

around obstacles). In order to capture some of the orientation

information of the goal pose, we actually run several of these

Point Searches for different points on the object. By guiding a

set of points on the object toward their goal positions, we help

the search achieve the goal orientation. It is also much more

efficient to compute several 3D searches than one 6D search.

Formally, we will define the ith Point Search as PS(s, i),
where s is the state we are getting the heuristic for. PS uses

the position and orientation of the object in state s in order

to locate the position of the ith point in the world and then

report the distance of that point to its goal location.

The second component of the heuristic is a handoff penalty.

We approximate the number of remaining handoffs needed

to get the object at the goal pose. This approximation is

formulated as a dynamic programming problem and is shown

in numHandoffs. The function finds the minimum number of

handoffs required to get to the goal assuming that the object

is being held by arm with grasp. Lines 3-4 shows the base

case of already being able to put the object at the goal. This

requires 0 handoffs. Lines 6-12 show the general case. We

will handoff to the neighboring arm with a valid grasp (given

the one we’re using) that requires the minimum number of

remaining handoffs to reach the goal. We then add 1 to that

for the handoff we need to get to that arm. The availableGrasps

function uses a look up table to see what grasps are possible

given the one being used (a grasp can invalidate many others

due to collisions).

Finally, there is a base case for a maximum depth (lines

1-2). It’s possible that there may be a huge number of arms

and grasps so searching over all of them may be expensive to

do. Also, it often doesn’t make sense to worry about which

grasp is being used more than 2 or 3 arms out from the

goal. An obvious exception is an object with only 2 grasps

being passed down a linear chain of manipulators. Since each

handoff alternates grasps, in order to have the proper grasp at

the last arm to put the object at the goal, it becomes critical

that the first arm chooses its grasp carefully. We found that

the maximum depth is mostly dependent on the object being

manipulated and how many grasps it has. By returning 0 when

the maximum depth is reached, we are guaranteed not to

overestimate the number of remaining handoffs to the goal.

numHandoffs(arm,grasp,depth)
1: if depth = MAX DEPTH then

2: return 0
3: else if canReachGoal(arm,grasp) then

4: return 0
5: else

6: minV al = ∞
7: for all a ∈ neighborArms(arm) do

8: for all g ∈ availableGrasps(grasp) do

9: minV al = min(minV al, numHandoffs(a,g,depth+1)+1)
10: end for
11: end for

12: return minV al

13: end if

Incorporating the number of remaining handoffs into the

heuristic function provides critical guidance to the search. It

discourages using unneeded handoffs because the heuristic

does not decrease if the action does not reduce the remaining

handoffs. This is useful since evaluating those edges is expen-

sive. It also encourages needed handoffs because the heuristic

will drop on handoff edges that are closer to an (arm,grasp)

pair that goes to the goal. This computation will also help the

planner to choose the right grasps.

This handoff count is scaled by a conservative cost for any

handoff in our system. Since we know any handoff involves

one arm going from its safe configuration to a grasp and

another arm going from a grasp to it safe configuration, an

underestimate of all handoffs would be

HP = max

(

0, min
a0,a1∈Arms

(d(a0, a1)) − max
g0,g1∈Grasps

(d(g0, g1))

)

We call HP our handoff penalty. Arms here is the safe

configuration of each arm and Grasps is the set of grasps on

the object. The distance function d is just a simple euclidean

distance for the end effector (it just needs to be conservative).
We combine all the heuristic components into the following:

h(s) = HP · numHandoffs(armid(s),graspid(s),0)+
1

|PS|

|PS|
∑

i=1

PS(s, i)

Since our heuristic needs to be admissible (an underesti-

mate), we ensure that the handoff term underestimates the

handoffs and the point search term underestimates object

motion (note that we don’t have any motion primitives that

cause a handoff and move the object, so there is no overlap

between these two terms). For the Point Searches we add

the distance remaining for each point to its goal location,

but then divide by the number of Point Searches (giving an

average distance for the object to the goal as represented by

these points). This doesn’t overestimate because an average

is guaranteed to be no bigger than its largest contributing

value. Finally, the handoff term underestimates because we

chose HP to underestimate any possible handoff, and the

numHandoffs function is a conservative guess for the number

of remaining handoffs.

V. EXPERIMENTAL RESULTS

To measure the performance of the planner, we generated

a set of realistic scenes in which we strategically placed arms

such that almost all areas of interest can be reached by at

least one. The manipulators used are the 7 DoF arms of

the PR2 robot. In this section, we present a battery of tests

demonstrating the capabilities of the approach, including the

efficient planning times. A comparision to alternatives is also

provided.

A. Implementation Details

Given that the highest number of degrees of freedom of any

arm in the set available to the planner is seven, the position of

only a single redundant joint has to be recorded in the state

representation, resulting in a total of nine dimensions. The

statespace is discretized as follows. The translational dimen-

sions are discretized with 2cm resolution and the rotational

dimensions, including the joint position of the free angle as

well as the object pose, have 2◦ resolution. Our experiments

included between 3 and 4 arms and the set of predefined grasps

ranged from 12 to 14.

The set of motion primitives employed by the planner

includes twelve actions, each of which translates or rotates the

object along one dimension. The set also includes two primi-

tives that rotate the free angle in each direction. Additionally,

we use adaptive motion primitives [3] that use two analytical

solvers to snap to the goal pose with a single motion when the

search is within range. These motions are capable of achieving

any arbitrary goal pose despite the resolution of the graph. The

set of motions also includes switch support actions, or the act

of performing a handoff. The number of switch support actions

at a given state is determined by the number of grasps defined

in the predefined set multiplied by the number of neighboring

arms within arms reach of the current support arm. Thus, the

branching factor of the graph and the speed with which it is

explored is highly dependent on the number of neighboring

arms and the size of the set of grasps.

Evaluating if a switch support action is valid is an expensive

task. It requires that two paths are computed, one by the

receiving arm, from the safe pose to the specified object grasp,

followed by a path by the current support arm to return to

its safe pose once the handoff is complete. Unfortunately

though, the single arm path planner employed by our planner

is incapable of planning to or from a state in collision. Thus,

the validation of handoff action occurs as follows. Given the

specified grasp, we compute a pregrasp pose that is offset from

the object by a set amount that would remove the gripper from

its invalid state. If an IK solution exists for both the grasp and

the pregrasp pose and they are both determined to be collision

free then a single arm planner is used to plan a path from the

safe pose of the arm to the pregrasp and then an open loop

motion from the pregrasp to the grasp would complete the first

half of the handoff operation. A similar process is performed

on the letting go part of the action. First, we compute an IK

solution for the postgrasp pose, which in our case, is the same

offset from the object as the pregrasp. If the solution exists

and is valid, then a motion plan from the postgrasp pose to the

safe pose is requested of the single arm planner. If a solution

exists, then at this point, we are sure that the entire handoff

action is considered valid and an edge can be added to the

graph. Note that for the object to be picked up in the first

place, a very similar action is used. Instead of planning for

two arms, only one is required to switch between a support

surface and a support arm. In our implementation, we use

a search-based planner [3] for single-arm planning and we

give it a maximum of 1 second to compute a path. The Lazy

Weighted A* is complete and has bounded suboptimality in

general. If we always allowed the single arm planner to run

to termination (either find a solution or exhaust the graph) our

overall approach would be resolution complete and bounded

suboptimality with respect to the graph. However, since we

restrict it to planning in 1 second, we forfeit these guarantees.

The overall cost the planner minimizes is the sum of the

distances traveled by each gripper. The cost of handoff motions

are initially estimated by summing the straight line distance

between the current support gripper and its safe pose and the

straight line distance between the soon to be support gripper

at its safe pose, and the specified grasp on the object. This

approximation is optimistic, so we can use it for lazy edges.

B. Experimental Setup

We use four different scenes in our experiments. Depending

on the scene, between two and four arms are available to

the planner to accomplish the goal. The planning problems

in each scenario were created by hand to assure that each

one met two requirements. The first is that at least a single

handoff is required, meaning a single arm can not perform

a valid motion to go from the start to the goal pose given

kinematic constraints or obstacles in the environment. The

second requirement is for the tests to be challenging, either

because of obstacles in the environment, kinematic constraints

or restrictive start and goal pose orientations. The start and

goal pose orientations of the object play a large role in the

complexity of the trial because the object’s initial orientation

is a large factor in determining the set of feasible grasps to

pick it up with by the neighboring arms. Given that the goals

are defined as 6 DoF poses, it is easy to imagine a scenario

in which an additional 180◦ rotation of the object at the start

pose, may require that one or more additional handoffs beyond

what is already needed are required if the set of grasps contains

only one grasp per side.

The scenarios used for testing are as follows (Figure 2):

1) Tabletop (2 arms, 5 trials): - The PR2 robot is standing

in front of a table with large obstacles on it.

2) Bar (3 arms, 10 trials): Three arms are placed at

fixed locations behind the bar such that the entire width

of the bar surface in front of them can be reached.

Unfortunately, due to the restrictive shoulder pan joint

in the PR2 arm, the counter top behind them can not be

reached. Note, that below the bar are shelves that the

arms can reach into.

3) Self-checkout (3 arms, 5 trials): The arms are placed

such that one of them can empty the cart, while another

arm can swipe the object in front of the bar code scanner

and the last arm can place the object in the bagging area.

4) Car Factory (4 arms, 5 trials): Inspired by Figure 1,

this scenario includes a conveyor belt transporting cars

down an assembly line. Two arms are placed on each

side of the car. The pair of arms closer to the hood are

placed closer to the chassis so they can both reach into

the engine block and pass things to each other as well.

The rear arms are set a bit further from the body of the

vehicle, forcing them out of each other’s reach given

that the objects are of a reasonable size.

Two different objects were used in these experiments. The

first object is a narrow rectangular tray with dimensions, 10cm

x 40cm x 2cm. The set of grasps includes 12 grasps in which

5 are placed equidistant from each other along the length of

each side. There is also one grasp at each end. Note, that since

the tray is especially narrow, a handoff would be infeasible in

which two grasps are used that are directly opposite each other

along the length of the tray. The second object is a rod with

dimensions, 2cm x 30cm x 2cm. We defined 14 grasps for the

rod which includes one at each end. The tray is used in all

the experiments except for the self-checkout scenario.

(a) Tabletop (b) Bar (c) Self-checkout (d) Car factory

Fig. 2: Shown above are the four scenarios used in our experimental results.

success mean max mean mean
rate time(s) time(s) expands handoffs

tabletop (2-arm) 100 10.25 36.52 226 1.33

bar (3-arm) 50 16.93 39.93 857 2

checkout (3-arm) 100 9.67 16.22 220 1.8

factory (4-arm) 100 36.09 78.41 2239 1.8

TABLE I: Performance of the planner in four different scenes.

In each trial, the initial pose of the object, the goal pose

and the set of object grasps are given to the planner. The

planner returns a sequence of trajectories, labeled with which

arms they are for. Note that the initial state of all of the arms

is for them to be in their safe configurations. The planner

is given a maximum of 100 seconds to compute a solution.

A translational tolerance for the goal is specified as a 3cm

cube in which the center of the object is supposed to end

up and a tolerance of 0.05 radians is allowed on the object’s

final roll, pitch and yaw. All experiments were performed on

a computer with an Intel i7 CPU (2.8Ghz), 16GB of RAM,

running Ubuntu 12.04.

After a solution is found, we use a simple deterministic

shortcutter to safely shorten the paths if possible. To speed up

the execution of each handoff procedure, one can collision

check the return-to-safe-pose trajectory of the arm that is

handing off the object against the subsequent portion of

the newly appointed support arm’s trajectory. They can be

executed simultaneously if deemed valid to do so. In our

experiments, we found that while it is dependent on the relative

positioning of the arms, in a large portion of our trials the

trajectories did not cross paths and it would allow for a nice

reduction in execution time.

Results from the trials can be seen in Table I. Overall, the

average planning time is 18.2 seconds and the planner was

successful in planning in 20 of 25 total trials, for a total success

rate of 80%. In particular, we found that in most of the trials

the minimum number of handoffs required were performed but

not in all of them. Additionally, we were pleased to see that

the planner successfully determined that because of the initial

object pose, a series of back and forth handoffs were needed

between the arm used to put the object down and the arm that

transferred the object to it, so that the final grasp was capable

of achieving the goal pose.

C. Naive Approach

We compared the performance of our planner to a naive ap-

proach to planning when only two arms are available. We made

the problem a bit simpler for the naive approach by choosing

trials in which the start and goal poses do not reside in the

same arm’s workspace. This means that a handoff is always

required and deciding which arms perform the pickup and

the putdown is easy. In this approach, handoff configurations

(object pose and grasp for each arm) are sampled until one is

found that passes an exhaustive approval process as explained

below. If it fails at any point along the way, the sample is

dropped. The approach continues sampling possible handoff

configurations until one is found or a timeout is reached.

Fig. 3: The arms are shown in their safe poses in front of the tabletop
scenario. The green line outlines the sampling region in which a
handoff pose will be chosen by the naive approach.

In more details, this method tries to compute a valid handoff

pose by randomly sampling a 6 DoF pose within the defined

sampling region which is chosen manually based on the

overlapping areas of the two workspaces (Figure 3). After a

sample is generated, the object is checked for collisions with

the environment. Then it randomly samples a graspid for each

arm. If an IK solution exists for each arm at its respective grasp

and both are collision free, then we compute a pregrasp for

the receiving arm and a postgrasp for the handing off arm in

the same way that it is performed to evaluate a switch support

action and check if IK solutions exist for both and are collision

free. At this point, a pair of grasps that are valid at the handoff

pose is known and we need to see if the same holds true at

the pickup and putdown locations. IK solutions are computed

naive naive planner planner
success rate mean time(s) success rate mean time(s)

tabletop 90% 18.39 100% 10.245

TABLE II: Performance comparison between the naive approach and
our planner.

using those grasps and object poses and checked for validity.

At this point, five paths are needed to connect the object pickup

to the handoff and then to the object putdown. Note that this

includes returning the pickup arm to its safe pose. If at any

point in this process a step fails (i.e kinematically infeasible,

in collision, planner fails to compute path), then the samples

are discarded and new ones are generated.

In this approach, we use RRTConnect to plan all of the

required paths. RRTConnect is one of the most common and

fastest sampling based methods used today. We use the highly

optimized implementation found in the OMPL [15].

Given that this method is limited to two arms, we are only

able to run it on the tabletop scene. Since it relies on random

sampling, we ran each trial 4 times and the entire set of trials

is averaged together. The planner was only run once per trial.

Results can be seen in Table II. Note that failures in the naive

approach indicate that no solution was found within the 60

second timeout.

D. Incremental Multi-Modal PRM

We compared our planner to the Incremental Multi-Modal

PRM (Incremental-MMPRM) [7]. This method is designed

to plan multi-step plans. The phases are called modes and

each constructs its own PRM. Where modes overlap, transition

states are sampled to allow the PRMs to connect to one another

in order to produce a multi-modal plan that passes through the

different phases. For problems with multi-step structure, this is

far more efficient than sampling in the full configuration space

since some of the modes may have zero volume in the full

configuration space and may be nearly impossible to sample.

We applying Incremental-MMPRM to our manipulation

problem, creating modes for the various phases of the problem

such as one arm moving while the object is at the start, one

arm moving while holding the object, one arm holding the

object while another moves freely, etc. While some examples

of intersections between modes would be an arm grasping the

object while it is at the start or two arms meeting in a handoff.

We gave 6 different problems to the planners (3 from the

tabletop and 3 from a kitchen scenario). Since Incremental-

MMPRM is randomized we averaged the runs over 10 trials on

each problem. Table III shows the results of these experiments.

The path length is computed as the sum of the distances

traveled by each end effector. In general, our method has a

higher success rate, similar planning times, and shorter path

length (shortcutting is applied Incremental-MMPRM paths).

VI. CONCLUSION

In this paper we address the problem of moving an object

from one place to another given control of a multitude of

manipulators that can pass the object amongst each other. This

method success rate mean time(s) mean path length (m)

Our planner 100% 5.26 5.61

Inc-MMPRM 76.7% 6.80 8.64

TABLE III: Comparison to Incremental-MMPRM

Fig. 4: Shown above, going from left to right, is a sequence of
handoffs that successfully bring the rod from the cart to the bag.

is challenging because it combines the discrete combinatorial

planning problem of finding a sequence of manipulators and

grasps to transport the object to its goal, with the continuous

motion planning problem for each of those manipulators. Our

algorithm seamlessly unites the two problems within a graph-

based search which plans for the continuous motion of the

object and the arms manipulating it, while being guided by a

novel heuristic function that estimates a solution to the high

level discrete problem. Our planner determines which arms

and grasps will be used, where handoffs between arms will

occur, as well as the motions of each of the arms. Additionally,

our algorithm uses a lazy version of Weighted A* which

postpones the evaluation of edge validity and cost to when the

planner actually intends to explore them. This variant of the

Weighted A* algorithm is more suited to planning problems

where edges require significant time to evaluate, such as when

another planner is used for that computation. We verified the

effectiveness and scalability of our method through a variety

of simulation experiments controlling up to 4 arms in practical

scenarios (e.g. factory, grocery checkout, and bar). In the

future we are interested in including the ability for the planner

to place objects on support surfaces (e.g. a table or counter)

in order to re-grasp them in a different way. This may allow

the planner to accomplish even more complicated tasks.

REFERENCES

[1] Benjamin Balaguer and Stefano Carpin.

Bimanual regrasping from unimanual machine learning.

http://robotics.ucmerced.edu/sites/robotics.ucmerced.edu/files/page/documents/icra2012a.pdf

In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 3264–3270. IEEE,

2012.

[2] Robert Bohlin and Lydia Kavraki. Path planning using

lazy PRM. In IEEE International Conference on Robotics

and Automation, VOL.1, 2007.

[3] Benjamin J. Cohen, Sachin Chitta, and Maxim

Likhachev. Single- and dual-arm motion planning with

heuristic search. The International Journal of Robotics

Research, 33(2):305–320, 2014.

[4] Rosen Diankov and James Kuffner. Openrave: A plan-

ning architecture for autonomous robotics. Technical Re-

port CMU-RI-TR-08-34, Robotics Institute, Pittsburgh,

PA, July 2008.

[5] Mokhtar Gharbi, Juan Cortés, and Thierry Siméon.

Roadmap composition for multi-arm systems path planning.

In Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on, pages 2471–

2476. IEEE, 2009.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis

for the heuristic determination of minimum cost paths.

IEEE Transactions on Systems, Science, and Cybernetics,

SSC-4(2):100–107, 1968.

[7] Kris Hauser and Jean-Claude Latombe.

Multi-modal motion planning in non-expansive spaces.

The International Journal of Robotics Research, 29(7):

897–915, 2010.

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Over-

mars. Probabilistic roadmaps for path planning in high-

dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12(4):566–580, 1996.

[9] Yoshihito Koga and J-C Latombe.

On multi-arm manipulation planning. In Robotics

and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, pages 945–952. IEEE,

1994.

[10] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient

approach to single-query path planning. In Proceedings

of the IEEE International Conference on Robotics and

Automation (ICRA), pages 995–1001, 2000.

[11] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime

A* with provable bounds on sub-optimality. In Advances

in Neural Information Processing Systems (NIPS) 16.

Cambridge, MA: MIT Press, 2003.

[12] I. Pohl. First results on the effect of error in heuristic

search. Machine Intelligence, 5:219–236, 1970.

[13] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and

Siddhartha Srinivasa. CHOMP: Gradient optimization

techniques for efficient motion planning. In IEEE Inter-

national Conference on Robotics and Automation, 2009.

[14] Jean-Philippe Saut, Mokhtar Gharbi, Juan

Cortés, Daniel Sidobre, and Thierry Siméon.

Planning Pick-and-Place tasks with two-hand regrasping.

In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages 4528–4533. IEEE,

2010.

[15] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki.

The Open Motion Planning Library. IEEE Robotics

& Automation Magazine, 19(4):72–82, December 2012.

http://ompl.kavrakilab.org.

[16] Nikolaus Vahrenkamp, Dmitry Berenson, Tamim Asfour,

James Kuffner, and Rudiger Dillmann. Humanoid mo-

tion planning for dual-arm manipulation and re-grasping

tasks. In IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, October 2009.

http://homepages.laas.fr/nic/Papers/09iros.pdf
http://www.cs.indiana.edu/~hauserk/papers/ijrr2009-MultiModal-preprint.pdf
http://www.clear.rice.edu/comp450/papers/koga_latombe_1994.pdf
http://homepages.laas.fr/daniel/nweb/sites/default/files/publis/sautIROS2010.pdf
http://ompl.kavrakilab.org

	Introduction
	Related Work
	Problem Definition
	Algorithm
	Notations and Assumptions
	Representation
	Search
	Heuristic

	Experimental Results
	Implementation Details
	Experimental Setup
	Naive Approach
	Incremental Multi-Modal PRM

	Conclusion

