
Efficient Cost Computation in Cost Map Planning for Non-Circular
Robots

Jennifer King
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104
jeking@seas.upenn.edu

Maxim Likhachev
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104
maximl@seas.upenn.edu

Abstract— For a robot with a circular footprint, obstacles
in a map can be inflated by the radius of the footprint, and
planning can treat the robot as a point robot. Many robotic
vehicles however have non-circular footprints. When operating
in cluttered spaces it therefore becomes important to evaluate
the footprint of these robots against a cost map. This evaluation
is one of the major computational burdens in planning for
robots whose footprints can not be assumed to be circular.

In this paper, we propose an efficient method for evaluating a
footprint of the robot against a cost map. Our method involves
a transformation of the set of points covered by the footprint
of the robot into two sets of points: points that should be
evaluated against the cost map with inflated obstacles, and
points that should be evaluated against the original cost map.
The cumulative number of these points is much smaller than
the number of points in the original footprint of the robot.
Moreover, the method automatically reduces the robot to a
single point when its footprint is circular. On the theoretical
side, the paper proves the correctness of our method. On the
experimental side, the paper shows that the method results in
a significant speedup.

I. INTRODUCTION

Fast path planning is an important part of many robotic
applications. The ability to quickly compute and recompute
paths is imperative for mobile robots moving amongst static
and dynamic obstacles. Perhaps, one of the most common
approaches to planning is planning with grid-based cost
maps [7][8][13]. Grid-based cost maps are simple to con-
struct, are able to represent arbitrary shape obstacles and
can incorporate complex cost functions.

When planning for a robot with a circular footprint, all
obstacles in the cost map are typically inflated by the radius
of the footprint and the representation of the robot is reduced
to a point robot [3]. In such cases, the evaluation of a cost
of an action reduces to a simple look-up of the costs of
the cells traveled by the robot while executing this action.
While very effective for circular robots, this optimization is
not applicable to the robots with non-circular footprints.

For non-circular robots operating in cluttered environ-
ments with narrow passages (e.g., doorways, parking spots),
it is important to plan by taking the orientation of the
robot into account and using the actual footprint of the
robot [10]. Such planning becomes expensive for several
reasons. First, it needs to be done in at least 3-dimensions
(x, y and orientation). Second, the evaluation of a cost of an

This work was in part supported by Willow Garage

action becomes highly expensive. In fact, usually, this cost
evaluation procedure becomes the most time-consuming part
of planning: it requires the convolution of the set of all the
cells visited by the robot during execution of an action with
a cost map. For example, a 1m by 1m square robot operating
in a 2.5cm grid covers almost 500 cells for a simple turn-in-
place action.

In this paper, we propose an efficient method for cal-
culating action costs. The method is applicable to any
ground robots, regardless of their footprints or holonomic
constraints. Our method first reduces the number of cells to
consider in the cost calculation by removing sets of points
from the footprint which fall inside circles of a fixed radius.
Then, it computes a second cost map which essentially
inflates the original cost map by the radius of the removed
circles. When calculating the action cost, the points which
do not fall inside the circle are convolved against the original
cost map and the circle centers are convolved against the new
cost map. The results of these two separate convolutions are
combined to create a single action cost. This transformation
reduces significantly the number of points involved in the
convolution and thus allows for a faster cost calculation.

In case of a circular robot, our method automatically
reduces to representing the robot with a single point and
inflating the map by the radius of the robot. For non-circular
robots, our method provides a provably-correct optimization
whose benefit depends on how close the footprint of the robot
resembles a circular footprint. In our theoretical analysis,
we show the correctness of the proposed method. In our
experimental analysis, we show that the method can result
in a significant speedup (about three-fold) over the current
approaches.

II. RELATED WORK

In some approaches to planning, the cost map utilized
for computing action cost is binary [2][5]. In such cases,
a cell cost is infinite when the cell is occupied by an
obstacle and zero otherwise. In these environments, action
cost calculation essentially requires the detection of obstacle-
collisions during execution of the action. Rather than perform
the footprint convolution, collision detection algorithms such
as those described in [1][11][12] can be utilized. These
typically provide methods which are computationally less
expensive. However, they do not generalize well to action



cost computation in maps with non-binary costs. Addition-
ally, they are often limited to a particular shape or class of
obstacles.

Tornero, Hamlin and Keyy suggest that any three-
dimensional polygon can be represented by an infinitely sized
set of spheres, or alternatively, any two-dimensional polygon
can be represented by an infinitely sized set of circles. They
note that the accuracy of the representation is directly related
to the complexity for obtaining these circles[15]. Limiting
the set of spheres used in the representation to a single
radius can allow the methods applicable to circular robots
to generalize.

Previous works have also improved performance of action
cost computation for any class of robots by pre-computing
the cells covered when executing an action[10]. Additional
performance improvements have been obtained by keeping
a second cost space map with all obstacles inflated by the
radius of the smallest circle completely enclosing the robot.
All of the cells through which the center of the robot passes
during the action are first checked against this second map.
If all of the centers are obstacle free in the second map,
the action is guaranteed to be obstacle free. Only those
actions that do not produce conclusive results need to be
convolved with the cost map. Each of these methods can
be used in conjunction with our transformation to further
increase efficiency.

III. ALGORITHM

Usually, in cost map planning, the cost of each cell ranges
from 0 to∞, where 0 corresponds to a fully traversable cell,
∞ corresponds to an obstacle (untraversable), and any finite
value in between corresponds to some degree of traversability
(or risk or some other cost function)[16]. The cost map
planners then compute the cost of an action in the following
manner. First, they iterate over all of the cells (points)
covered by the footprint of the robot during the execution of
the action (several examples are shown in Figure 4, top image
in each sub-figure). During this iteration, they compute either
the average or the maximum of the costs of the cells they
iterate over. If any of these cells contain obstacles, then both
the average and the maximum will be equal to ∞. Second,
the cost of the action is set to be the length of the action
(or time it takes to execute it) times the computed average
or computed maximum plus one. Thus, the cost of an action
that involves the footprint of the robot going over an obstacle
becomes infinite, and therefore the whole action becomes
invalid. On the other hand, the cost of an action for which the
footprint of the robot goes over only fully traversable cells
becomes simply the length of the action (or the time it takes
to execute it). The first of these steps is highly expensive, and
our method is directed towards reducing its expense. In the
following, we will assume that in this step we are interested
in computing the maximum over the cells.

The basic idea behind our algorithm is to represent the
footprint of the robot traversing each action (footprint of
the action) with a set of circles of fixed radius r, which fit
completely inside the footprint (see Figure 4, bottom image

in each sub-figure). This modification greatly reduces the
number of cells used in the representation of the footprint
of the action. Using only circles, however, leaves some cells
out. To address this, we introduce the concept of a remainder
set. The remainder set is defined as all of the points in the
footprint of the action which cannot be enclosed by any of
the circles used in our representation. Our new representation
of the footprint of an action is therefore defined as the union
of two sets of points: the centers of the circles, each of radius
r and the remainder set.

In addition to modifying the representation of the footprint
of each action, we also require the use of two cost maps. The
first map is the original cost map. This map is used to look
up the value of the remainder points when performing the
action cost computation. The second map is a modified cost
map with all the obstacles inflated by the radius r of the
circles used in the representation. To achieve this inflation,
every cell in the new cost map is defined to be the maximum
of all the cells within radius r in the original map. This map
is used to calculate the value of each circle center.

Picking an optimal circle radius r and finding the number
of circles that minimize the number of the circle centers plus
the size of the remainder set is an optimization problem.
One approximation to this however can simply be picking
r to be the radius of the largest circle that can be inscribed
into the footprint of the robot at the center of the robot and
computing the centers of the circles for an action to be all
the cells visited by the center of the robot while executing
the action.

Formal definition of the algorithm In the following, we
define the algorithm formally. Let {m1...mN} be a set of
cells. Let us also define a mapping, M0(·), which takes a
cell and returns a value in between 0 and ∞ that represents
the cost of that cell in the cost map.

Let us now define the footprint F of an action as a set of
cells {f1...fn} where each fi is a cell in {m1...mN}. We
define the cost of the footprint as follows:

Definition 1: CF = maxfi∈{f1...fn}M0(fi)

Thus, evaluating the cost of an action involves computing
CF . Our transformation allows for the computation of CF
to be faster than iterating over all the points in {f1...fn}. In
particular, our method transforms the set {f1...fn} into two
sets: set {c1...cq} of q centers of circles, each of radius r,
and set {r1...rm} of the remaining m cells. In other words,
our method transforms the footprint F into a new footprint
F ′ = {c1...cq} ∪ {r1...rm}. The following three definitions
formally define this transformation.

Definition 2: Define a new footprint F ′ = {c1...cq} ∪
{r1...rm} such that ∀fi ∈ F one and only one of the
following statements hold:

1) D(fi, cj) ≤ r for some j (where D(fi, cj) defines the
distance between fi and cj)

2) fi = rj for some j



1 procedure ComputeM2(w, h,M1,M2)

2 M2 = M1

3 for each x >= 0 and x < w

4 for each y >= 0 and y < h

5 if M1(x, y)! = 0

6 for x′ = x− r to x′ = x+ r

7 for y′ = y − r to y′ = y + r

8 d = euclideandistance(x, y, x′, y′)

9 if d <= r and M2(x
′, y′) < M1(x, y)

10 M2(x
′, y′) = M1(x, y)

11 procedure PrecomputeActions()
12 for each action a in ActionList[θ] for each orientation θ of the robot
13 compute footprint F as the set of cells covered by the footprint of the robot

traversing action a starting at 0, 0, θ

14 for each f in F
15 a.Footprint.add(f)

16 compute at most q circles of radius r that are fully enclosed in F
17 for each such circle with center c
18 a.FootprintCircles.add(c)

19 for each f in F
20 d = euclideandistance(f, c)

21 if d <= r remove f from a.Footprint

22 procedure Main()

23 Given the original cost map M1 of width w and height h
24 ComputeM2(w, h,M1,M2)
25 PrecomputeActions()
26 Plan()

Fig. 1. Footprint Transformation Algorithm

Definition 3: Each circle removed from the footprint must
be entirely contained within the footprint. Formally:

∀i, j s.t. D(mi, cj) ≤ r ⇒ ∃k s.t. mi = fk

Definition 4: Define two new mappings, M1(·),M2(·) as
follows:

1) Mapping M1 is an exact copy of M0. Formally, ∀i
M1(mi) = M0(mi).

2) Mapping M2 returns the value which is the maximum
of all cells in the original map within radius r. For-
mally, ∀i M2(mi) = maxmj |D(mi,mj)≤rM0(mj).

The above definition 4 corresponds to defining two maps.
Our method maintains both of these maps, and uses both of
them in evaluating the cost of the transformed footprint F ′.
The following two definitions define exactly how the cost of
the footprint F ′ of an action is computed. First, let us break
F ′ into two subsets F ′1 and F ′2, where F ′1 = {r1...rm} and
F ′2 = {c1...ck}.

Definition 5: The costs of the footprints F ′1 and F ′2 are
defined as:

CF ′
1

= maxri∈{r1...rm}M1(ri)

CF ′
2

= maxci∈{c1...ck}M2(ci)

Definition 6: We define the cost of F ′ as the maximum
of CF ′

1
and CF ′

2
.

A high-level pseudocode of our transformation is shown
in Figure 1. The ComputeM2 function shows the compu-
tation of the map M2 according to the definition 4. The

1 procedure actioncost(x, y, θ, a,M1,M2)

2 initialize max = 0

3 for each r in a.Footprint
4 translate cell r by x, y
5 if M1(r) > max

6 max = M1(r)

7 for each c in a.FootprintCircles
8 translate cell c by x, y
9 if M2(c) > max

10 max = M2(c)

11 cost of action a executed at pose x, y, θ is set to a.cost ∗ (max+ 1)

Fig. 2. Evaluation of the cost of the action a executed by the robot at
pose x, y, θ. The evaluation uses previously computed maps M1 and M2

and nominal cost a.cost (i.e., length or execution time) of the action.

PrecomputeActions function performs the transformation of
the action footprint F into the new footprint F ′ according to
the definitions 2-3. It performs this transformation for every
action a in a list of actions for every possible orientation θ
of the robot. Finally, Figure 2 gives the computation of the
cost of any action a executed at any pose x, y, θ according
to definitions 5-6. This function is called repeatedly during
planning. The function uses maps M1,M2 in evaluating the
footprint F ′ of action a. The footprint is given as the set of
circles, a.FootprintCircles, and the set of remaining cells
a.Footprint.

IV. THEORETICAL ANALYSIS

In this section we prove the correctness of the proposed
method.

Theorem 1: Suppose we are given a footprint F with cost
CF . If we remove circles of radius r from the footprint
according to the definitions 1-6 and create a new footprint
F ′ with cost CF ′ , then CF = CF ′ .

Proof

We call the cell with maximum value in F fp. In other words,
CF = M0(fp). After applying our transform we get a new
footprint F ′ = {r1...rm}∪{c1...ck}. Definition 2 states that
one and only one of the following cases must hold:

1) D(fp, cj) ≤ r for some j.
2) fp = rj for some j
Case 1 - D(fp, cj) ≤ r: We first argue that

M2(cj) = M0(fp) and CF ′
2

= M2(cj). Definition 3
states that all cells within radius r of cj are in the original
footprint. Since fp is the maximum of the footprint, fp must
be the largest value within radius r of cj . By Definition 4,
this means that M2(cj) = M0(fp). Using these same two
rules and following similar logic we can also show that @k
such that M2(ck) > M2(cj). By Definition 5 this means
CF ′

2
= M2(cj) = M0(fp).

Next we would like to show that CF ′ = CF ′
2
. This equality

will follow from definition 6 if we show that CF ′
2
≥ CF ′

1
.

We prove this by contradiction. Assume CF ′
2
< CF ′

1
. Using

definition 4 this means that ∃k such that M1(rk) > M2(cj).
The definition of M1 illustrated in part 1 of definition 4
shows that M1(rk) = M0(rk). Definition 2 states that
rk must be a member of the original footprint. If rk is a



member of the original footprint then M0(fp) ≥ M1(rk)
because fp is the largest value in the footprint by definition.
But we have already shown that M2(cj) = M0(fp) and
M2(cj) < M1(rk). So we have a contradiction. Therefore,
CF ′ = CF ′

2
= M2(cj) = M0(fp) = CF .

Case 2 - fp = rj: First we argue that CF ′
1

= M1(rj)
and M1(rj) = M0(fp). We show this by contradiction.
Assume CF ′

1
6= M1(rj). By definition 5 this means ∃k

such that M1(rk) > M1(rj). Definition 2 states that both
rj and rk were in the original footprint F . But then rj
would not be the maximum value in the footprint. This is a
contradiction because rj = fp and fp is the maximim value
in the footprint by definition. So CF ′

1
= M1(rj) = M0(fp).

Next we need to show CF ′ = CF ′
1
. This equality will

follow from definition 6 if we show that CF ′
1
≥ CF ′

2
. Again

we show this by contradiction. Assume CF ′
1

< CF ′
2
.

This means ∃k such that M2(ck) > M1(rj). By
definition 4, this means that ∃l such that D(ml, ck) ≤ r
and M0(ml) > M0(rj) = M1(rj). Definitions 2 and 3
state that ml and rj were inside the original footprint.
This means that rj can not be the maximum value in
the footprint. This poses a contradiction because rj = fp
and fp is the maximum in the footprint by definition.
Therefore CF ′

1
≥ CF ′

2
and CF ′ = CF ′

1
by definition 6.

Thus CF ′ = M1(rk) = M0(fp) = CF .

V. INTEGRATION WITH PLANNER

We have integrated our method into a lattice-based plan-
ner [10][14]. Lattice-based planning allows for planning
complex dynamically-feasible maneuvers. A state lattice [14]
is a discretization of the configuration space into a set of
states, representing configurations, and connections between
these states, where every connection represents a feasible
path. As such, lattices provide a method for motion planning
problems to be formulated as graph searches. However, in
contrast to many graph-based representations (such as 4-
connected or 8-connected grids), the feasibility requirement
of lattice connections guarantees that any solutions found
using a lattice will also be feasible. This makes them
very well suited to planning for non-holonomic and highly-
constrained robotic systems, such as passenger vehicles.

In our scenario, we define each state to be a 3-dimensional
state: x, y, θ. To demonstrate the benefits of our proposed
optimization, we consider a square robot capable of turning
in place as well as moving forward while rotating. (An ex-
ample of actions suitable specifically to large non-holonomic
vehicles can be found in [10]). Fourteen actions are used in
our lattice, each defined by a unique combination of forward
velocity, rotational velocity and time. We define two turn-
in-place actions, one for turning left forty-five degrees and
another for turning right by the same amount. We define
five forward actions with a duration of one second and a
forward velocity of 1 m/s. The rotational velocity varies for
each action but remains constant throughout the execution of
the action. The range of rotational velocities covers −π/2 to

π/2. Additionally, we define five identical backward actions.
For these, the forward velocity is defined to be -1 m/s.
Finally, we define an extra forward and backward action with
a shorter duration than the others to allow for the robot to
move forward or backward by a single cell. These actions
have no rotational velocity. Figure 3 shows the trajectories of
all of the actions. The two turn in place actions coupled with
the short forward and backward action guarantee that the
planner will generate a path when one is available. The ten
longer actions allow for the planner to select actions which
make larger progress toward the goal, thereby reducing the
overall length (in terms of number of actions) of the planned
path. Note that our method could be used with a non-
holonomic vehicle by adjusting the action space to include
only actions feasible for the robot given its constraints.

Fig. 3. Action Space: Pictured are ten of the fourteen predefined actions in
the action space. Each action is uniquely defined by a translational veloctiy,
rotational velocity and duration. In addition to each of these actions, the
action space contains four more predefined actions which cannot be seen in
the figure: turn in place left, turn in place right, one short forward action
and one short reverse action. The short actions allow for movement by a
single grid space.

During the pre-computation step, we determine the set of
states covered by the robot as it executes each action. We
then perform the transformation defined above on the state
set. To do this, we fit a set of circles inside the footprint of the
robot as it stands still. We then translate these circles along
the path of the robot, rotating them as the body of the robot
rotates through the action. This sweeps a set of points from
the original footprint and leaves only the set of points that did
not fall inside a circle at any point during the action. These
become the remainder set. We record the locations of the
circle centers as they translate and rotate through the action.
These points become the center set. Figure 4 shows the
footprints of the actions before and after the transformation.
Note that only five actions are pictured in the figure. Each
of the fourteen predefined actions is a rotation or reflection
(or both) of one of these five actions.

To search the constructed lattice-based graph, we use
ARA* search [9]. ARA* exploits a property of A* that can
result in much faster generation of solutions, namely that if
consistent heuristics are used and multiplied by an inflation



Fig. 4. Action Footprints before and after transformation: This figure shows the footprint of the robot as it executes each action. The number of cells in
the footprint is indicated for each action. This number directly corresponds to the number of points involved in the convolution with the cost map. Each
of the fourteen actions is a rotation or reflection of one of the five actions pictured above.

factor ε > 1, then A* can often generate a solution much
faster than if no inflation factor is used [6], and the cost of
the solution generated by A* will be at most ε times the cost
of an optimal solution [4]. ARA* operates by performing a
series of these inflated A* searches with decreasing inflation
factors, where each search reuses information from previous
searches. By doing so, it is able to provide suboptimality
bounds on all solutions generated and allows for control
of these bounds, since the user can decide how much the
inflation factor is decreased between searches.

VI. EXPERIMENTAL ANALYSIS

We utilize two separate test scenarios. In the first scenario,
we allow the planner enough time to compute the optimal
path and compare the amount of time to run with and
without the transformation detailed above. In the second
test, we limit the amount of time the planner is given to
compute a path and compare the cost of the paths achieved
by the planner when run with and without our optimization.
This test more accurately represents the use of a system in
the real world, where planning time is often limited.

We define two environments for our testing. The first
is a 25m by 25m space discretized into a 500 by 500 grid
with each cell representing a 5cm by 5cm area. We define
the robot to be 1m by 1m. The second environment is a

48m by 54m space discritized into cells of size 2.5cm by
2.5cm. In this environment, the robot is defined as a 0.5m
by 0.5m square. Figure 5 shows the environments.

All times presented in the following result sets were
recorded from runs of the software executed on a MacBook
Pro with a Pentium Dual Core processor.

A. Optimal Planning

For the first set of tests we utilize the planner with and
without our proposed cost computation optimization. Our
main goal for these tests is to study the effectiveness of the
algorithm. We select three different start and goal locations
for each environment. The planner is run for each different
start/goal pair and we average the results across runs.
Table I shows the results. We study two measurements of
time, the time to precompute and the time to plan. The time
to precompute includes the time it takes to generate the
action footprints pictured in figure 4, bottom images. It also
includes the time it takes to generate the map M2 using the
rules defined in the Algorithm section of this paper.



Fig. 5. Test Environments: The figures above show two test environments.

Without Optimization With Optimization
World Time To Precompute(s) Time To Plan(s) Time To Precompute(s) Time To Plan(s)

1-1 .460 8.410 .670 2.880
1-2 .450 23.380 .660 9.790
1-3 .430 23.450 .660 9.810
2-1 .690 696.480 1.090 116.760
2-2 .740 156.270 1.150 24.970
2-3 .740 1001.00 1.170 81.690

TABLE I
OPTIMAL PLANNING RESULTS: THE FIRST THREE ROWS REPRESENT RESULTS FROM TESTS AGAINST ENVIRONMENT 1. EACH OF THESE TESTS HAVE

A UNIQUE START AND GOAL STATE. THE SECOND THREE ROWS REPRESENT RESULTS FROM TEST AGAINST ENVIRONMENT 2.

Fig. 6. Efficient Path Computation: The figure above shows the path planned by the planner when given 4.0 seconds to produce a solution. the figure on
the left shows the path produced without using our transformation. The figure on the right shows the path produced using the optimization.

B. Real-time Planning

For the second set of tests, we examine the performance
of the planner in real-time environments where suboptimal
planning is often necessary to meet real-time requirements.
We consider a single environment with a single start/goal
location pair. Specifically, we select the configuration which
took the largest amount of time to achieve an optimal path
in the first set of tests. We vary the time limit on the planner
and compare the optimality of the planned paths. Table II

shows the results of this set of tests. Figure 6 compares
the paths acheived when planning time is limited to four
seconds for each planner.

To show the statistical soundness of our results we
run a final set of tests. Here we run the planner multiple
times, randomly selecting a start and goal for each run. We
examine the percentage increase in precomputation time and
the percentage decrease in planning time when using our



Without Optimization With Optimization
Time(s) Cost Epsilon Cost Epsilon

0.5 - - 51000 5.0
1.0 - - 51000 4.4
2.0 51000 5 51000 3.8
4.0 51000 5 48000 2.2
8.0 48000 2.2 47000 1.4
16.0 44000 1.6 40000 1.2

TABLE II
REAL-TIME PLANNING RESULTS: THIS TABLE SHOWS RESULTS

PRODUCED WHEN PLANNING TIME IS LIMITED. THE NON-OPTIMIZED

VERSION OF THE PLANNER FAILS TO FIND A SOLUTION UNTIL GIVEN AT

LEAST 5.0 SECONDS TO PLAN. ADDITIONALLY, THE OPTIMIZED

VERSION OF THE PLANNER CONSISTENTLY OUTPERFORMS THE

NON-OPTIMIZED VERSION IN BOTH COST OF THE RESULTANT PATH AND

ACHEIVED EPSILON VALUE.

World Precomputation Time Increase (%) Plan Time Savings (%)
1 58.60 63.00

TABLE III
COMPUTATION TIME SAVINGS: THE TABLE SHOWS THE AVERAGE %

INCREASE IN PRECOMPUTATION TIME AND THE % DECREASE IN

PLANNING TIME WHEN PLANNING BETWEEN RANDOM START AND GOAL

LOCATIONS IN EACH ENVIRONMENT.

transformation. Results are averaged across runs. Table III
shows the results when we give the planner enough time to
calculate the optimal path.

VII. CONCLUSIONS

Our experimental results show around a sixty percent
decrease in planning time when using the transformation we
propose. This savings is a savings that will be experienced
each time the planner is run. We note that the results also
indicate a sixty percent increase in precomputation time.
While initially this number may appear to offset any gains
made by the planner, it is important to remember that most
of the precomputations (precomputing actions) must only be
run once at startup. They do not need to be run every time the
planner is called. Additionally, the run time of the precom-
putation step is dependent upon the size and complexity of
the robot while the runtime of the planner is dependent upon
the size and complexity of the configuration space. Thus, as
environments become larger and more densely packed with
obstacles the increase in precomputation time becomes small
compared to the savings in planning time.

REFERENCES

[1] M.D.C. Amezquita Benitez, K.K. Gupta, and B. Bhattacharya. Eodm-a
novel representation for collision detection. In Robotics and Automa-
tion, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
volume 4, pages 3727–3732 vol.4, 2000.

[2] J. Buhmann, W. Burgard, A.B. Cremers, Dieter Fox, T. Hofmann,
F. Schneider, J. Strikos, and Sebastian Thrun. The mobile robot rhino.
AI Magazine, 16(1), 1995.

[3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor,
Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles
of Robot Motion: Theory, Algorithms, and Implementations (Intelligent
Robotics and Autonomous Agents). The MIT Press, June 2005.

[4] H. W. Davis, A. Bramanti-Gregor, and J. Wang. The advantages of
using depth and breadth components in heuristic search. In Z. W. Ras
and L. Saitta, editors, Methodologies for Intelligent Systems, 3, pages
19–28, New York, 1988. North-Holland.

[5] A. Elfes. Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57, 1989.

[6] John Gary Gaschnig. Performance measurement and analysis of
certain search algorithms. PhD thesis, Carnegie Mellon University,
1979.

[7] M.H. Hassoun. Fast computation of optimal paths in two- and higher
dimension maps. In IEEE International Symposium on Circuits and
Systems, 1990.

[8] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
New York, NY, USA, 2006.

[9] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems. MIT Press, 2003.

[10] Maxim Likhachev and Dave Ferguson. Planning long dynamically-
feasible maneuvers for autonomous vehicles. In Proceedings of
Robotics: Science and Systems IV, Zurich, Switzerland, June 2008.

[11] Ming Chieh Lin. Efficient collision detection for animation and
robotics. PhD thesis, University of California, Berkeley, 1993. Chair-
Canny, John F.

[12] T. Lozano-Perez. Spatial planning: A configuration space approach.
Computers, IEEE Transactions on, C-32(2):108–120, Feb. 1983.

[13] M. Nakamiya, Y. Kishino, T. Terada, and S. Nishio. A route planning
method using cost map for mobile sensor nodes. In International
Symposium on Wireless Pervasive Computing, 2007.

[14] Mikhail Pivtoraiko and Alonzo Kelly. Generating near minimal
spanning control sets for constrained motion planning in discrete state
spaces. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’05), pages 3231 – 3237,
August 2005.

[15] J. Tornero, J. Hamlin, and R.B. Kelley. Spherical-object representation
and fast distance computation for robotic applications. In Proceedings
of IEEE International Conference on Robotics and Automation, Sacra-
mento, California, April 1991.

[16] Hong Yang, Johann Borenstein, and David Wehe. Sonar-based
obstacle avoidance for a large, non-point, omni-directional mobile
robot. In Omni-directional Mobile Robot, Spectrum 2000 International
Conference on Nuclear and Hazardous Waste Management, pages 24–
28, 2000.


