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ABSTRACT

Training neural machine translation models (NMT) requires a large amount of par-
allel corpus, which is scarce for many language pairs. However, raw non-parallel
corpora are often easy to obtain. Existing approaches have not exploited the full
potential of non-parallel bilingual data either in training or decoding. In this paper,
we propose the mirror-generative NMT (MGNMT), a single unified architecture
that simultaneously integrates the source to target translation model, the target to
source translation model, and two language models. Both translation models and
language models share the same latent semantic space, therefore both translation
directions can learn from non-parallel data more effectively. Besides, the transla-
tion models and language models can collaborate together during decoding. Our
experiments show that the proposed MGNMT consistently outperforms existing
approaches in a variety of language pairs and scenarios, including resource-rich
and low-resource situations.

1 INTRODUCTION

Neural machine translation (NMT) systems (Sutskever et al., 2014; Bahdanau et al., 2015; Gehring
et al., 2017; Vaswani et al., 2017) have given quite promising translation results when abundant
parallel bilingual data are available for training. But obtaining such large amounts of parallel data
is non-trivial in most machine translation scenarios. For example, there are many low-resource
language pairs (e.g., English-to-Tamil), which lack adequate parallel data for training. Moreover, it
is often difficult to adapt NMT models to other domains if there is only limited in-domain parallel
data (e.g., medical domain), due to the large domain discrepancy between the test domain and the
parallel data for training (usually news-wires). For these cases where the parallel bilingual data
are not adequate, making the most use of non-parallel bilingual data (always quite cheap to get) is
crucial to achieving satisfactory translation performance.
We argue that current NMT approaches of exploiting non-parallel data are not necessarily the best,
in both training and decoding phases. For training, back-translation (Sennrich et al., 2016b) is the
most widely used approach for exploiting monolingual data. However, back-translation individually
updates the two directions of machine translation models, which is not the most effective. Specif-
ically, given monolingual data x (of source language) and y (of target language)1, back-translation
utilizes y by applying tgt2src translation model (TMy→x) to get predicted translations x̂. Then the
pseudo translation pairs 〈x̂, y〉 are used to update the src2tgt translation model (TMx→y). x can be
used in the same way to update TMy→x. Note that here TMy→x and TMx→y are independent and up-
dated individually. Namely, each updating of TMy→x will not directly benefit TMx→y. Some related
work like joint back-translation Zhang et al. (2018) and dual learning He et al. (2016a) introduce
iterative training to make TMy→x and TMx→y benefit from each other implicitly and iteratively. But
translation models in these approaches are still independent. Ideally, gains from non-parallel data

1Please refer to Section 2 for the notation in details.
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Figure 2: Illustration of the mirror property of MGNMT.

can be enlarged if we have relevant TMy→x and TMx→y. In that case, after every updating of TMy→x,
we may directly get better TMx→y and vice versa, which exploits non-parallel data more effectively.
For decoding, some related works (Gulcehre et al., 2015) propose to interpolate external language
models LMy (trained separately on target monolingual data) to translation model TMx→y, which
includes knowledge from target monolingual data for better translation. This is particularly useful
for domain adaptation because we may obtain better translation output quite fitting in-domain (e.g.,
social networks), through a better LMy. However, directly interpolating an independent language
model in decoding maybe not the best. First, the language model used here is external, still inde-
pendently learned to the translation model, thus the two models may not cooperate well by a simple
interpolation mechanism (even conflict). Additionally, the language model is only included in de-
coding, which is not considered in training. This leads to the inconsistency of training and decoding,
which may harm the performance.

In this paper, we propose the mirror-generative NMT (MGNMT) to address the aforementioned
problems for effectively exploiting non-parallel data in NMT. MGNMT is proposed to jointly train
translation models (i.e., TMx→y and TMy→x) and language models (i.e., LMx and LMy) in a unified
framework, which is non-trivial. Inspired by generative NMT (Shah & Barber, 2018), we propose to
introduce a latent semantic variable z shared between x and y. Our method exploits the symmetry,
or mirror property, in decomposing the conditional joint probability p(x, y|z), namely:

log p(x, y|z) = log p(x|z) + log p(y|x, z) = log p(y|z) + log p(x|y, z)

=
1

2
[log p(y|x, z)︸ ︷︷ ︸

src2tgt TMx→y

+ log p(y|z)︸ ︷︷ ︸
target LMy

+ log p(x|y, z)︸ ︷︷ ︸
tgt2src TMy→x

+ log p(x|z)︸ ︷︷ ︸
source LMx

] (1)

The graphical model of MGNMT is illustrated in Figure 1. MGNMT aligns the bidirectional trans-
lation models as well as language models in two languages through a shared latent semantic space
(Figure 2), so that all of them are relevant and become conditional independent given z. In such
case, MGNMT enables following advantages:

(i) For training, thanks to z as a bridge, TMy→x and TMx→y are not independent, thus ev-
ery updating of one direction will directly benefit the other direction. This improves the
efficiency of using non-parallel data. (Section 3.1)

(ii) For decoding, MGNMT could naturally take advantages of its internal target-side language
model, which is jointly learned with the translation model. Both of them contribute to the
better generation process together. (Section 3.2)

Note that MGNMT is orthogonal to dual learning (He et al., 2016a) and joint back-translation (Zhang
et al., 2018). Translation models in MGNMT are dependent, and the two translation models could
directly promote each other. Differently, dual learning and joint back-translation works in an im-
plicit way, and these two approaches can also be used to further improve MGNMT. The language
models used in dual learning faces the same problem as Gulcehre et al. (2015). Given GNMT, the
proposed MGNMT is also non-trivial. GNMT only has a source-side language model, thus it cannot
enhance decoding like MGNMT. Also, in Shah & Barber (2018), they require GNMT to share all the
parameters and vocabularies between translation models so as to utilize monolingual data, which is
not best suited for distant language pairs. We will give more comparison in the related work.

Experiments show that MGNMT achieves competitive performance on parallel bilingual data, while
it does advance training on non-parallel data. MGNMT outperforms several strong baselines in
different scenarios and language pairs, including resource-rich scenarios, as well as resource-poor
circumstances on low-resource language translation and cross-domain translation. Moreover, we
show that translation quality indeed becomes better when the jointly learned translation model and
language model of MGNMT work together. We also demonstrate that MGNMT is architecture-free

2



Published as a conference paper at ICLR 2020

!z[− log p(x, y |z)]
x

y

[q(z |x, y)]
Inference Model

x y

μ(x, y)
Σ(x, y)

+
×

 Sample      from   ϵ %(1, I )

DKL[%(μ(x, y), Σ(x, y) | |%(0,I )]

z(x, y) [p(y |x, z; θxy)]
src2tgt TM

[p(y |z; θy)]
target LM

[p(x |y, z; θyx)]
tgt2src TM

[p(x |z; θx)]
source LM

Figure 3: Illustration of the architecture of MGNMT.

which can be applied to any neural sequence model such as Transformer and RNN. These pieces of
evidence verify that MGNMT meets our expectation of fully utilizing non-parallel data.

2 BACKGROUND AND RELATED WORK

Notation Given a pair of sentences from source and target languages, e.g., 〈x, y〉, we denote x as
a sentence of the “source” language, and y as a sentence of the “target” language. Additionally, we
use the terms “source-side” and “target-side” of a translation direction to denote the input and the
output sides of it, e.g., the source-side of the ”tgt2src“ translation is the target language.

Neural machine translation Conventional neural machine translation (NMT) models often adopt
an encoder-decoder framework (Bahdanau et al., 2015) with discriminative learning. Here NMT
models aim to approximate the conditional distribution log p(y|x; θxy) over a target sentence y =
〈y1, . . . , yLy〉 given a source sentence x = 〈x1, . . . , xLx〉. Here we refer to such regular NMT
models as discriminative NMT models. Training criterion for a discriminative NMT model is to
maximize the conditional log-likelihood log p(y|x; θxy) on abundant parallel bilingual data Dxy =

{x(n), y(n)|n = 1...N} of i.i.d observations.

As pointed out by Zhang et al. (2016) and Su et al. (2018), the shared semantics z between x and
y are learned in an implicit way in discriminative NMT, which is insufficient to model the semantic
equivalence in translation. Recently, Shah & Barber (2018) propose a generative NMT (GNMT) by
modeling the joint distribution p(x, y) instead of p(y|x) with a latent variable z:

log p(x, y|z;θ = {θx, θxy}) = log p(x|z; θx) + log p(y|x, z; θxy)

where GNMT models log p(x|z; θx) as a source variational language model. Eikema & Aziz (2019)
also propose a similar approach. In addition, Chan et al. (2019) propose a generative insertion-based
modeling for sequence, which also models the joint distribution.

Exploiting non-parallel data for NMT Both discriminative and generative NMT could not di-
rectly learn from non-parallel bilingual data. To remedy this, back-translation and its variants (Sen-
nrich et al., 2016b; Zhang et al., 2018) exploit non-parallel bilingual data by generating synthetic
parallel data. Dual learning (He et al., 2016a; Xia et al., 2017) learns from non-parallel data in a
round-trip game via reinforcement learning, with the help of pretrained language models. Although
these methods have shown their effectiveness, the independence between translation models, and
between translation and language models (dual learning) may lead to inefficiency to utilize non-
parallel data for both training and decoding as MGNMT does. In the meantime, iterative learning
schemes like them could also complement MGNMT.

Some other related studies exploit non-parallel bilingual data by sharing all parameters and vocab-
ularies between source and target languages, by which two translation directions can be updated by
either monolingual data (Dong et al., 2015; Johnson et al., 2017; Firat et al., 2016; Artetxe et al.,
2018; Lample et al., 2018), and GNMT as well in an auto-encoder fashion. However, they may still
fail to apply to distant language pairs (Zhang & Komachi, 2019) such as English-to-Chinese, which
is also verified in our experiments.

Additionally, as aforementioned, integrating language model is another direction to exploit monolin-
gual data (Gulcehre et al., 2015; Stahlberg et al., 2018; Chu & Wang, 2018) for NMT. However, this
kind of methods often resorts to external trained language models, which is agnostic to translation
task. Besides, although GNMT contains a source-side language model, it cannot help decoding. In
contrast, MGNMT jointly learns translation and language modeling probabilistically and can natu-
rally rely on both together for a better generation.
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Algorithm 1 Training MGNMT from Non-Parallel Data
Input: (pretrained) MGNMTM(θ) , source monolingual dataset Dx, target monolingual dataset Dy

1: while not converge do
2: Draw source and target sentences from non-parallel data: x(s) ∼ Dx, y(t) ∼ Dy

3: UseM to translate x(s) to construct a pseudo-parallel sentence pair 〈x(s), y
(s)
pseu〉

4: Compute L(x(s); θx, θyx, φ) with 〈x(s), y
(s)
pseu〉 by Equation (5)

5: UseM to translate y(t) to construct a pseudo-parallel sentence pair 〈x(t)
pseu, y

(t)〉
6: Compute L(y(t); θy, θxy, φ) with 〈x(t)

pseu, y
(t)〉 by Equation (4)

7: Compute the deviation∇θ by Equation (6)
8: Update parameters θ → θ + η∇θ
9: end while

3 MIRROR-GENERATIVE NEURAL MACHINE TRANSLATION

We propose the mirror-generative NMT (MGNMT), a novel deep generative model which simulta-
neously models a pair of src2tgt and tgt2src (variational) translation models, as well as a pair of
source and target (variational) language models, in a highly integrated way with the mirror property.
As a result, MGNMT can learn from non-parallel bilingual data, and naturally interpolate its learned
language model with the translation model in the decoding process.

The overall architecture of MGNMT is illustrated graphically in Figure 3. MGNMT models the
joint distribution over the bilingual sentences pair by exploiting the mirror property of the joint
probability: log p(x, y|z) = 1

2 [log p(y|x, z) + log p(y|z) + log p(x|y, z) + log p(x|z)], where the
latent variable z (we use a standard Gaussian prior z ∼ N (0, I)) stands for the shared semantics
between x and y, serving as a bridge between all the integrated translation and language models.

3.1 TRAINING

3.1.1 LEARNING FROM PARALLEL DATA

We first introduce how to train MGNMT on a regular parallel bilingual data. Given a parallel bilin-
gual sentence pair 〈x, y〉, we use stochastic gradient variational Bayes (SGVB) (Kingma & Welling,
2014) to perform approximate maximum likelihood estimation of log p(x, y). We parameterize the
approximate posterior q(z|x, y;φ) = N (µφ(x, y),Σφ(x, y)). Then from Equation (1), we can have
the Evidence Lower BOund (ELBO) L(x, y;θ;φ) of the log-likelihood of the joint probability as:

log p(x, y) ≥ L(x, y;θ, φ) = Eq(z|x,y;φ)[
1

2
{log p(y|x, z; θxy) + log p(y|z; θy)

+ log p(x|y, z; θyx) + log p(x|z; θx)}] (2)
−DKL[q(z|x, y;φ)||p(z)]

where θ = {θx, θyx, θy, θxy} is the set of the parameters of translation and language models. The
first term is the (expected) log-likelihood of the sentence pair. The expectation is obtained by Monte
Carlo sampling. The second term is the KL-divergence between z’s approximate posterior and prior
distributions. By relying on a reparameterization trick (Kingma & Welling, 2014), we can now
jointly train all the components using gradient-based algorithms.

3.1.2 LEARNING FROM NON-PARALLEL DATA

Since MGNMT has intrinsically a pair of mirror translation models, we design an iterative training
approach to exploit non-parallel data, in which both directions of MGNMT could benefit from the
monolingual data mutually and boost each other. The proposed training process on non-parallel
bilingual data is illustrated in Algorithm 1.

Formally, given non-parallel bilingual sentences, i.e., x(s) from source monolingual dataset Dx =
{x(s)|s = 1...S} and y(t) from target monolingual dataset Dy = {y(t)|t = 1...T}, we aim to
maximize the lower-bounds of the likelihood of their marginal distributions mutually:

log p(x(s)) + log p(y(t)) ≥ L(x(s); θx, θyx, φ) + L(y(t); θy, θxy, φ) (3)
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where L(x(s); θx, θyx, φ) and L(y(t); θy, θxy, φ) are the lower-bounds of the source and target
marginal log-likelihoods, respectively.

Let us take L(y(t); θy, θxy, φ) for example. Inspired by Zhang et al. (2018), we sample x with
p(x|y(t)) in source language as y(t)’s translation (i.e., back-translation) and obtain a pseudo-parallel
sentence pair 〈x, y(t)〉. Accordingly, we give the form of L(y(t); θy, θxy, φ) in Equation (4). Like-
wise, Equation (5) is for L(y(t); θy, θxy, φ). (See Appendix for the their derivation).

L(y(t); θy, θxy, φ) = Ep(x|y(t))
[
Eq(z|x,y(t);φ)[

1

2
{log p(y(t)|z; θy) + log p(y(t)|x, z; θxy)}]

−DKL[q(z|x, y(t);φ)||p(z)]
]

(4)

L(x(s); θx, θyx, φ) = Ep(y|x(s))

[
Eq(z|x(s),y;φ)[

1

2
{log p(x(s)|z; θx) + log p(x(s)|y, z; θyx)}]

−DKL[q(z|x(s), y;φ)||p(z)]
]

(5)

The parameters included in Equation (3) can be updated via gradient-based algorithm, where the
deviations are computed as Equation (6) in a mirror and integrated behavior:

∇θ = ∇{θx,θyx}L(x(s); ·) +∇{θy,θxy}L(y(t); ·) +∇φ[L(x(s); ·) + L(y(t); ·)] (6)

The overall training process of exploiting non-parallel data does to some extent share a similar idea
with joint back-translation (Zhang et al., 2018). But they only utilize one side of non-parallel data to
update one direction of translation models for each iteration. Thanks to z from the shared approxi-
mate posterior q(z|x, y;φ) as a bridge, both directions of MGNMT could benefit from either of the
monolingual data. Besides, MGNMT’s “back-translated” pseudo translations have been improved
by advanced decoding process (see Equation (7)), which leads to a better learning effect.

3.2 DECODING

Thanks to simultaneously modeling of translation models and language models, MGNMT is now
able to generate translation by the collaboration of translation and language models together. This
endows MGNMT’s translation in target-side language with more domain-related fluency and quality.

Due to the mirror nature of MGNMT, the decoding process is also of symmetry: given a source
sentence x (or target sentence y), we want to find a translation by y = argmaxy p(y|x) =
argmaxy p(x, y) (x = argmaxx p(x|y) = argmaxx p(x, y)), which is approximated by a mir-
ror variant of the idea of EM decoding algorithm in GNMT (Shah & Barber, 2018). Our decoding
process is illustrated in Algorithm 2.

Let’s take the srg2tgt translation as example. Given a source sentence x, 1) we first sam-
ples an initial z from the standard Gaussian prior and then obtain an initial draft translation as
ỹ = argmaxy p(y|x, z); 2) this translation is iteratively refined by re-sampling z this time from the
approximate posterior q(z|x, ỹ;φ), and re-decoding with beam search by maximizing the ELBO:
ỹ ←argmaxy L(x, ỹ;θ, φ)

= argmaxy Eq(z|x,ỹ;φ)[log p(y|x, z) + log p(y|z) + log p(x|z) + log p(x|y, z)] (7)

= argmaxy Eq(z|x,ỹ;φ)

[∑
i

[log p(yi|y<i, x, z) + log p(yi|y<i, z)]︸ ︷︷ ︸
Decoding Score

+ log p(x|z) + log p(x|y, z)︸ ︷︷ ︸
Reconstructive Reranking Score

]
The decoding scores at each step are now given by TMx→y and LMy, which is helpful to find a sen-
tence y not only being the translation of x but also being more possible in the target language2. The
reconstructive reranking scores are given by LMx and TMy→x, which are employed after translation
candidates are generated. MGNMT can leverage this kind of scores to sort the translation candidates
and determine the most faithful translation to the source sentence. It is to essentially share the same
idea as Ng et al. (2019), which propose a neural noisy channel reranking to incorporate reconstruc-
tive score to rerank the translation candidates. Some studies like Tu et al. (2017), Cheng et al. (2016)
also exploit this bilingual semantic equivalence as reconstruction regularization for training.

2Empirically, we find that using log p(yi|y<i, x, z) + β log p(yi|y<i, z) with a coefficient β ≈ 0.3 leads to
more robust results, which shares the similar observations with Gulcehre et al. (2015).

5



Published as a conference paper at ICLR 2020

Algorithm 2 MGNMT Decoding with EM Algorithm
Input: MGNMTM(θ), input sentence x, input language l
Output: x’s translation y
procedure: DECODING(x, l)
1: if l is the “target” language then
2: Swap the parameters ofM(θ) regarding language: {θx, θyx} ↔ {θy, θxy}
3: end if
4: y = RUN(x)
5: return translation y
procedure: RUN(x)
1: Sample z from standard Gaussian: z ∼ N (0, I)
2: Generate initial draft translation: ỹ = argmaxy log p(y|x, z)
3: while not converage do
4: Sample z = {z(k)}Ks=1 from variational distribution: z(k) ∼ q(z|x, ỹ)
5: Generate translation candidates {ŷ} via beam search by maximizing

1
K

∑
z(k) [

∑
i log p(yi|y<i, x, z

(k)) + log p(yi|y<i, z
(k))] . “decoding scores” in Equation (7)

6: Determine the best intermediate translation ỹ via ranking {ŷ} by maximizing 1
K

∑
z(k) [log p(x|z(k))+

log p(x|y, z(k))] . “reconstructive reranking scores” in Equation (7)
7: end while
8: return translation y = ỹ

Table 1: Statistics of datasets for each translation tasks.

Dataset WMT14 EN↔DE NIST EN↔ZH WMT16 EN↔RO IWSLT16 EN↔DE

Parallel 4̃.50m 1.34m 0̃.62m 0̃.20m (TED)
Non-parallel 5.00m 1.00m 1.00m 0.20m (NEWS)
Dev/Test newstest2013/14 MT06/MT03 newstest2015/16 tst13/14&newstest2014

4 EXPERIMENT

Dataset To evaluate our model in resource-poor scenarios, we conducted experiments on WMT16
English-to/from-Romanian (WMT16 EN↔RO) translation task as low-resource translation and
IWSLT16 English-to/from-German (IWSLT16 EN↔DE) parallel data of TED talk as cross-domain
translation. As for resource-rich scenarios, we conducted experiments on WMT14 English-to/from-
German (WMT14 EN↔DE), NIST English-to/from-Chinese (NIST EN↔ZH) translation tasks. For
all the languages, we use the non-parallel data from News Crawl, except for NIST EN↔ZH, where
the Chinese monolingual data were extracted from LDC corpus. Table 1 lists the statistics.

Experimental settings We implemented our models on the top of Transformer (Vaswani et al.,
2017) and RNMT (Bahdanau et al., 2015) and GNMT (Shah & Barber, 2018) as well on Pytorch3.
In this section, we only compare experimental results on Transformer implementation.4

For all languages pairs, sentence were encoded using byte pair encoding (Sennrich et al., 2016a,
BPE) with 32k merge operations, jointly learned from the concatenation of the parallel training
dataset only (except for NIST ZH-EN whose BPEs were learned separately). We used the Adam op-
timizer (Kingma & Ba, 2014) with the same learning rate schedule strategy as Vaswani et al. (2017)
with 4k warmup steps. Each mini-batch consists of about 4,096 source and target tokens respec-
tively. We trained our models on a single GTX 1080ti GPU. To avoid that the approximate posterior
“collapses” to the prior that learns to ignore the latent representation while DKL(q(z)||p(z)) trends
closely to zero (Bowman et al., 2016; Shah & Barber, 2018), we applied KL-annealing and word
dropout (Bowman et al., 2016) to counter this effect. For all experiments, word dropout rates were
set to a constant of 0.3. Honestly, annealing KL weight is somewhat tricky. Table 2 lists our best
setting of KL-annealing for each task on the development sets. The translation evaluation metric is
BLEU (Papineni et al., 2002). More details are included in Appendix.
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Table 2: Statistics of the training datasets for each translation tasks. These values ofDKL[q(z)||p(z)]
are to some extent large, which means that MGNMT does rely on the latent variable.

Dataset WMT14 EN↔DE NIST EN↔ZH WMT16 EN↔RO IWSLT16 EN↔DE

KL-annealing steps 35k 13.5k 8k 4k
DKL[q(z)||p(z)] 6.78 8.26 6.36 7.81

Table 3: BLEU scores on low-resource translation (WMT16 EN↔RO), and cross-domain translation
(IWSLT EN↔DE).

Model
LOW-RESOURCE CROSS-DOMAIN

WMT16 EN↔RO OUT-DOMAIN (TED) IN-DOMAIN (NEWS)
EN-RO RO-EN EN-DE DE-EN EN-DE DE-EN

Transformer (Vaswani et al., 2017) 32.1 33.2 27.5 32.8 17.1 19.9
GNMT (Shah & Barber, 2018) 32.4 33.6 28.0 33.2 17.4 20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 34.1 35.3 28.4 33.7 22.0 24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b) 33.9 35.0 27.8 33.3 20.9 24.3
Transformer+JBT + non-parallel (Zhang et al., 2018) 34.5 35.7 28.4 33.8 21.9 25.1
Transformer+Dual + non-parallel (He et al., 2016a) 34.6 35.7 28.5 34.0 21.8 25.3
MGNMT 32.7 33.9 28.2 33.6 17.6 20.2
MGNMT + non-parallel 34.9 36.1 28.5 34.2 22.8 26.1

4.1 RESULTS AND DISCUSSION

As shown in Table 3 and Table 4, MGNMT outperforms our competitive Transformer base-
line (Vaswani et al., 2017), Transformer-based GNMT (Shah & Barber, 2018) and related work
in both resource-poor scenarios and resource-rich scenarios.

MGNMT makes better use of non-parallel data. As shown in Table 3, MGNMT outperforms
our competitive Transformer baseline (Vaswani et al., 2017), Transformer-based GNMT (Shah &
Barber, 2018) and related work in both resource-poor scenarios.

1. On low-resource language pairs. The proposed MGNMT obtains a bit improvement over Trans-
former and GNMT on the scarce bilingual data. Large margins of improvement are obtained by
exploiting non-parallel data.
2. On cross-domain translation. To evaluate the capability of our model in the cross-domain set-
ting, we first trained our model on TED data from IWSLT benchmark as in-domain training, and then
exposed the model to out-of-domain NEWS non-parallel bilingual data from News Crawl to access-
ing in-domain knowledge. As shown in Table 3, being invisible to in-domain training data leads to
poor performance in in-domain testset of both Transformer and MGNMT. In this case, in-domain
non-parallel data contributes significantly, leading to 5.7∼6.4 BLEU gains. We also conduct a case
study on the cross-domain translation in Appendix.
2. On Resource-rich scenarios. We also conduct regular translation experiments on two resource-
rich language pairs, i.e., EN↔DE and NIST EN↔ZH. As shown in Table 4, MGNMT can obtain
comparable results compared to discriminative baseline RNMT and generative baseline GNMT on
pure parallel setting. Our model can also achieve better performance by the aid of non-parallel
bilingual data than the compared previous approaches, consistent with the experimental results in
resource-poor scenarios.
4. Comparison to other semi-supervised work. We compare our approach with well-established
approaches which are also designed for leveraging non-parallel data, including back-translation
(Sennrich et al., 2016b, Transformer+BT), joint back-translation training (Zhang et al., 2018, Trans-
former+JBT), multi-lingual and semi-supervised variant of GNMT (Shah & Barber, 2018, GNMT-
M-SSL), and dual learning (He et al., 2016a, Transformer+Dual). As shown in Table 3, while
introducing non-parallel data to either low-resource language or cross-domain translation, all listed
semi-supervised approaches gain substantial improvements. Among them, our MGNMT achieves
the best BLEU score. Meanwhile, in resource-rich language pairs, the results are consistent. We
suggest that because the jointly trained language model and translation model could work coordi-
nately for decoding, MGNMT surpasses joint back-translation and dual learning. Interestingly, we
can see that the GNMT-M-SLL performs poorly on NIST EN↔ZH, which means parameters-sharing

3The original GNMT is based on RNN, and we adapted GNMT to Transformer.
4See Appendix for results on RNMT, which is consistent to Transformer.
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Table 4: BLEU scores on resource-rich language pairs.

Model WMT14 NIST

EN-DE DE-EN EN-ZH ZH-EN

Transformer (Vaswani et al., 2017) 27.2 30.8 39.02 45.72
GNMT (Shah & Barber, 2018) 27.5 31.1 40.10 46.69
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 29.7 33.5 41.73 47.70
Transformer+BT + non-parallel (Sennrich et al., 2016b) 29.6 33.2 41.98 48.35
Transformer+JBT + non-parallel (Zhang et al., 2018) 30.0 33.6 42.43 48.75
Transformer+Dual + non-parallel (He et al., 2016b) 29.6 33.2 42.13 48.60
MGNMT 27.7 31.4 40.42 46.98
MGNMT + non-parallel 30.3 33.8 42.56 49.05

Figure 4: BLEU vs. scales of non-
parallel data on IWSLT EN↔DE tasks.

Figure 5: BLEU increments vs. adding one side mono-
lingual (w/o interactive training) or non-parallel bilin-
gual data for MGNMT on IWSLT EN↔DE tasks.

is not quite suitable for distant language pair. These results indicate its promising strength of boost-
ing low-resource translation and exploiting domain-related knowledge from non-parallel data for
cross-domain scenarios.

Table 5: Incorporating LM for decoding
(IWSLT task).

Model EN-DE DE-EN

MGNMT: dec. w/o LM 21.2 24.6
MGNMT: dec. w/ LM 22.8 26.1
Transformer 17.1 19.9
Transformer+LM-FUSION 18.4 21.1

MGNMT is better at incorporating language
model in decoding In addition, we find from Ta-
ble 5 that simple interpolation of NMT and exter-
nal LM (separately trained on target-side mono-
lingual data) (Gulcehre et al., 2015, Transformer-
LM-FUSION) only produces mild effects. This can
be attributed to the unrelated probabilistic model-
ing, which means that a more naturally integrated
solution like MGNMT is necessary.

Table 6: Comparison with NCMR (IWSLT task).

Model EN-DE DE-EN

MGNMT + non-parallel 22.8 26.1
Transformer+BT w/ NCMR (w/o) 21.8 (20.9) 25.1 (24.3)
GNMT-M-SSL w/ NCMR (w/o) 22.4 (22.0) 25.6 (24.9)

Comparison with noisy channel model
reranking (Ng et al., 2019) We com-
pare MGNMT with the noisy channel
model reranking (Ng et al., 2019, NCMR).
NCMR uses log p(y|x) + λ1 log p(x|y) +
λ2 log p(y) to rerank the translation candi-
dates obtained from beam search, where λ1 = 1 and λ2 = 0.3, which are similar to our decoding
setting. As shown in Table 6, NCMR is indeed effective and easy-to-use. But MGNMT still works
better. Specifically, the advantage of the unified probabilistic modeling in MGNMT not only im-
proves the effectiveness and efficiency of exploiting non-parallel data for training, but also enables
the use of the highly-coupled language models and bidirectional translation models at testing time.

Effects of non-parallel data. We conduct experiments regarding the scales of non-parallel data on
IWSLT EN↔DE to investigate the relationship between benefits and data scales. As shown in Fig-
ure 4, as the amount of non-parallel data increases, all models become strong gradually. MGNMT
outperforms Transformer+JBT consistently in all data scales. Nevertheless, the growth rate de-
creases probably due to noise of the non-parallel data. We also investigate if one side of non-parallel
data could benefit both translation directions of MGNMT. As shown in Figure 5, we surprisingly
find that only using one side monolingual data, for example, English, could also improve English-
to-German translation a little bit, which meets our expectation.
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Figure 6: ∆BLEU wrt DKL.

Effects of latent variable z. Empirically, Figure 6 shows gains
become little when KL term gets close to 0 (z becomes uninfor-
mative), while too large KL affects negatively; meanwhile, Table
2 shows that the values of DKL[q(z)||p(z)] are relatively reason-
able; besides, decoding from a zero z leads to large drops. These
suggest that MGNMT learns a meaningful bilingual latent variable,
and heavily relies on it to model the translation task. Moreover,
MGNMT adds further improvements to decoding by involving lan-
guage models that condition on the meaningful semantic z. (Table 5). These pieces of evidence
show the necessity of z.

Table 7: Training (hours until early stop) and decod-
ing cost comparison on IWSLT task. All the exper-
iments are conducted on a single 1080ti GPU.

Model Training (hrs) Decoding
Transformer ∼17 1.0×
Transformer+BT ∼25 1.0×
GNMT-M-SSL ∼30 2.1×
Transformer+JBT ∼34 1.0×
Transformer+Dual ∼52 1.0×
MGNMT ∼22 2.7×
MGNMT + non-parallel ∼45 2.7×

Speed comparison MGNMT introduces
extra costs for training and decoding com-
pared to Transformer baseline. When be-
ing trained on parallel data, MGNMT only
slightly increases the training cost. However,
the training cost regarding non-parallel train-
ing is larger than vanilla Transformer because
of the on-fly sampling of pseudo-translation
pairs, which is also the cost of joint back-
translation and dual learning. As shown in
Table 7, we can see that on-fly sampling im-
plies time-consumption, MGNMT takes more
training time than joint back-translation but less than dual learning. One possible way to improve
the efficiency may be to sample and save these pseudo-translation pairs in advance to the next epoch
of training.

As for inference time, Transformer+{BT/JBT/Dual} are roughly the same as vanilla Transformer
because essentially they do not modify decoding phase. Apart from this, we find that the decod-
ing converges at 2∼3 iterations for MGNMT, which leads to ∼2.7× time cost as the Transformer
baseline. To alleviate the sacrifice of speed will be one of our future directions.

Table 8: Comparison on robustness of
noisy source sentence.

Model GNMT MGNMT

En-De 27.5 27.7
De-En 31.1 31.4
En-De (noisy) 19.4 20.3
De-En (noisy) 23.0 24.1

Robustness of noisy source sentence We conduct ex-
periments on noisy source sentence to investigate the ro-
bustness of our models compared with GNMT. The exper-
imental setting is similar to Shah & Barber (2018), i.e.,
each word of the source sentence has a 30% chance of
being missing. We conduct experiments on WMT En-
De. As shown in Table 8, MGNMT is more robust than
GNMT with noisy source input. This may be attributed to
the unified probabilistic modeling of TMs and LMs in MGNMT, where the backward translation
and language models are naturally and directly leveraged to better ”denoise” the noisy source input.
Nevertheless, the missing content in the noisy source input is still very hard to recover, leading to
a large drop to all methods. Dealing with noisy input is interesting and we will leave it for future
study.

5 CONCLUSION

In this paper, we propose the mirror-generative NMT model (MGNMT) to make better use of non-
parallel data. MGNMT jointly learns bidirectional translation models as well as source and target
language models in a latent space of the shared bilingual semantics. In such a case, both translation
directions of MGNMT could simultaneously benefit from non-parallel data. Besides, MGNMT can
naturally take advantage of its learned target-side language model for decoding, which leads to better
generation quality. Experiments show that the proposed MGNMT consistently outperforms other
approaches in all investigated scenarios, and verify its advantages in both training and decoding. We
will investigate whether MGNMT can be used in completely unsupervised setting in future work.
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A LEARNING FROM NON-PARALLEL DATA: DERIVATION

We first take the target marginal probability log p(y(t)) for example to show its deviation. Inspired
by Zhang et al. (2018), we introduce y(t)’s translation x in source language as intermediate hidden
variable, and decompose log p(y(t)) as:

log p(y(t)) = log
∑
x

p(x, y(t)) = log
∑
x

Q(x)
p(x, y(t))

Q(x)

≥
∑
x

Q(x) log
p(x, y(t))

Q(x)
(Jenson inequality) (8)

=
∑
x

Q(x) log p(x, y(t))−Q(x) logQ(x)

In order to make the equal sign to be valid in Equation (8), Q(x) must be the true tgt2src translation
probability p∗(x|y(t)) , which can be approximated by MGNMT through p∗(x|y(t)) = p(x|y(t)) =
p(x,y(t))
p∗(y(t))

= 1
T Ez[p(x, y

(t)|z)] via Monte Carlo sampling5. Analogously, the intermediate hidden

variable x is the translation of y(t) given by MGNMT itself (described in Section 3.2), which pro-
duces a pair of pseudo parallel sentences 〈x, y(t)〉. This is similar to the back-translation (Sennrich
et al., 2016b), which requires an externally separate tgt2src NMT model to provide the synthetic
data other than the unified model itself as in MGNMT.

Remember that we have derived the low-bound of log p(x, y) in Equation (2). As a result, we now
get the lower bound of log p(y(t)) as L(y(t); θy, θxy, φ) by

log p(y(t)) ≥ L(y(t); θy, θxy, φ) = Ep(x|y(t))
[
Eq(z|x,y(t);φ)[

1

2
{log p(x|z) + p(x|y(t), z)

+ log p(y(t)|z) + log p(y(t)|x, z)}] (9)

−DKL[q(z|x, y(t);φ)||p(z)]− log p∗(x|y(t))
]

Since p(x|y(t), z), p(x|z) and p∗(x|y(t)) are irrelevant to parameters {θy, θxy}, L(y(t); θy, θxy, φ)
could be simplified on a optimization purpose, namely:

L(y(t); θy, θxy, φ) = Ep(x|y(t))
[
Eq(z|x,y(t);φ)[

1

2
{log p(y(t)|z; θy) + log p(y(t)|x, z; θxy)}]

−DKL[q(z|x, y(t);φ)||p(z)]
]

(10)

The lower-bound L(y(t); θy, θxy, φ) of log p(y(t)) serves as a training objective to optimize
{θy, θxy, φ}. Likewise, the lower bound of the likelihood on the target marginal probability
log p(x(s)) could be derived as:

L(x(s); θx, θyx, φ) = Ep(y|x(s))

[
Eq(z|x(s),y;φ)[

1

2
{log p(x(s)|z; θx) + log p(x(s)|y, z; θyx)}]

−DKL[q(z|x(s), y;φ)||p(z)]
]

(11)

B IMPLEMENTATION DETAILS

We follow the GNMT (Shah & Barber, 2018) to implement our MGNMT. For machine translation,
we have a source sentence x = 〈x1, . . . , xLx〉 and a target sentence y = 〈y1, . . . , yLy〉. As afore-
mentioned, MGNMT consists of a variational src2tgt and a tgt2src translation models (TMx→y(θxy),

5In order to make the equal sign to be valid in Equation 8, Q(x) must satisfy the following condition
p(x,y(t))

Q(x)
= c, where c is a constant and does not depend on x. Given

∑
xQ(x) = 1, Q(x) can be calculated

as:

Q(x) =
p(x, y(t))

c
=

p(x, y(t))∑
x p(x, y

(t))
= p∗(x|y(t))

where p∗(x|y(t)) denotes the true tgt2src translation probability, while the target marginal probability p∗(y) =
c = 1

T
due to the assumption that the target sentences in Dy are i.i.d.
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TMx→y(θyx)), as well as a source and a target variational language model(LMx(θx),LMy(θy)). These
four components are conditioned on a shared inference model q(z|x, y;φ) as approximate posterior.
The overall architecture is shown in Figure 3.

Now, we first introduce the implementations based on RNMT, which is similar to (Shah & Barber,
2018). Then we introduce the Transformer-based variant.

B.1 RNMT-BASED MGNMT

Language Model Let’s take the target language model LMy(θy) as an example. LMy(θy) mod-
els the computation of p(y|z; θy), which is implemented by a GRU-based (Cho et al., 2014)
RNNLM (Mikolov et al., 2010) with the latent variable z as additional input. The probabilities
p(y|z), for i = 1, ..., Lx are factorized by:

p(y|z) =

Ly∏
j

p(yj |y<t, z) = softmax(E(yj)
>Wyh

y
j) (12)

where Wy is a learnable linear transformation matrix, E(yj) is the embedding of yj , and the hidden
state hy

j is computed as:

hy
j = GRU(hy

t−1, [z;E(yt−1)]) (13)

where [·; ·] is a concatenation operation.

Likewise, the source language model LMx(θx) models p(x|z; θx) in a mirror way.

Translation Model Let’s take the src2tgt translation model TMx→y(θxy) as an example.
TMx→y(θxy) models the computation of p(y|x, z; θxy), which is implemented by the variational vari-
ant of the widely-used RNMT (Bahdanau et al., 2015). RNMT uses an encoder-decoder framework.
The conditional probabilities p(y|x, z), for i = 1, ..., Lx are factorized by:

p(y|x, z) =

Ly∏
j

p(yj |y<t, x, z) = softmax(E(yj)
>Uys

y
j) (14)

where Uy is a learnable linear transformation matrix, and the decoder hidden state sy
j is computed

as:

s̃y
j = GRU(sy

t−1, [z;E(yt−1)]) (15)

cy
j =

Lx∑
i

αjiv
x
i , αji = softmax(a(s̃y

j , v
x
i )) (16)

sy
j = GRU(s̃y

j , c
y
j) ‘ (17)

where vx
i is the i-th encoder hidden state, cy

j is the attentive context vector, which is a weighted
average of the source hidden states by attentive weight αji given by the attention model a. The
encoder hidden state vx

i is modeled by a bidirectional GRU (Schuster & Paliwal, 1997; Cho et al.,
2014):

vx
i =
←−−−→
BiGRU(vx

i±1, E(xi±1)) (18)

Likewise, the tgt2src translation model TMx→y(θyx)) models p(x|z; θx) in a mirror way.

Inference Model The inference model q(z|x, y;φ) serves as an approximate posterior, which is a
diagonal Gaussian:

q(z|x, y;φ) = N (µφ(x, y),Σφ(x, y)) (19)
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We first map the sentences x, and y to a sentence representation vector using a bidirectional GRU,
followed by an average pooling, respectively:

r̄x =
1

Lx

Lx∑
i

←−−−→
BiGRU(rx

i±1, E(xi±1)) (20)

r̄y =
1

Ly

Ly∑
j

←−−−→
BiGRU(ry

t±1, E(yt±1)) (21)

where r̄x and r̄y is the fixed-length sentence vector which is the average of the hidden states of the
bidirectional GRU of x and y, respectively. We then parameterize the inference model by:

q(z|x, y;φ) = N (Wµ[r̄x; r̄y],diag(exp(WΣ[r̄x; r̄y]))) (22)

B.2 TRANSFORMER-BASED MGNMT

Theoretically, MGNMT is independent from neural architectures we choose. As for Transformer-
based MGNMT, we substitute the translation models from RNMT to Transformer (Vaswani et al.,
2017), which is also extended to condition on latent semantic. The language models and inference
model remain the same.

B.3 HYPERPARAMETERS

RNMT-based MGNMT adopts 512-dimensional GRUs, 512-dimensional word embeddings, and a
100-dimensional latent variable z. As for Transformer-based MGNMT, we use the same configu-
rations as transformer-base in Vaswani et al. (2017). The embeddings of the same language
are shared in the MGNMT in our implementations. For KL-annealing Bowman et al. (2016), we
multiply the KL divergence term by a constant weight, which we linearly anneal from 0 to 1 over
the initial steps of training. The KL-annealing steps are sensitive to languages and the amount of
dataset. We include the KL-annealing steps of best results for each language in the paper.

B.4 IMPLEMENTATION OF OTHER BASELINES

Back-translation (Sennrich et al., 2016b, BT), joint back-translation (Zhang et al., 2018, JBT), and
dual learning (He et al., 2016a, Dual) are effective training strategies which do not depend on specific
architecture. Suppose that we have monolingual data Dx and Dy, and bilingual parallel Dxy. Note
that the forward and backward TMs here are all Transformer or RNMT.

• BT: To train TMx→y, we first petrain a backward translation model TMy→x. And then we
use TMy→x to translate Dx into a pseudo source corpus Dx′ by beam search (b = 2), and
Dx′ and Dy form the pseudo parallel corpus, namely Dx′y. We finally use the collection
of Dx′y and Dxy to train TMx→y. The BT training for TMy→x is similar by alternating the
language.

• JBT: JBT is an extension of BT in an alternative and iterative manner. 1) We first pretrain
TMx→y and TMy→x on Dxy, respectively. 2) We use TMy→x/TMx→y to generate pseudo
parallel corpora Dx′y/Dxy′ , respectively. 3) We then re-train TMx→y/TMy→x on the collec-
tion ofDxy andDx′y/Dxy′ for 1 epoch, respectively. So now we have a pair of better TMx→y
and TMy→x. 4) We finally repeat 2) and 3) with the better TMs until training converges.

• Dual: 1) We first pretrain TMx→y and TMy→x on Dxy, respectively, and LMx and LMy
on Dx and Dy respectively. Note that in the following training process, the LMs are
fixed. 2) To train TMs from monolingual corpora, the rest of the training process fol-
lows He et al. (2016a) to iteratively and alternatively optimize the language model re-
ward and reconstruction reward. Our implementation is heavily inspired by https:
//github.com/yistLin/pytorch-dual-learning.
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C EXPERIMENTS ON RNMT

C.1 IDENTICAL SET OF EXPERIMENTS AS TRANSFORMER

We show experiments on RNMT in Table 9 and 10, which shows the consistent trending as
Transformer-based experiments. These results suggest that MGNMT is architecture-free, which can
theoretically and practically be adapted to arbitrary sequence-to-sequence architecture.

C.2 COMPARISON WITH GNMT IN ITS ORIGINAL SETTING.

The lack of official GNMT codes and their manually created datasets makes it impossible for us to
directly compare MGNMT with GNMT in their original setting. This is why we initially resorted
to standard benchmark datasets. Nevertheless, we try to conduct such comparisons (Table 11).
We followed Shah & Barber (2018) to conduct English-French experiments. The parallel data are
provided by Multi UN corpus. Similar to Shah & Barber (2018), we created a small, medium and
large amount of parallel data, corresponding to 40K, 400K and 4M sentence pairs, respectively. We
created validation set of 5K and test set of 10K sentence pairs. For non-parallel data, we used the
News Crawl articles from 2009 to 2012. Note that in Shah & Barber (2018), there is a monolingual
corpora consisting 20.9M monolingual sentences used for English, which is too large and time-
consuming. Here we used 4.5M monolingual sentences for English and French, respectively. As
shown in Table 11, MGNMT still outperforms GNMT.

Table 9: BLEU scores on low-resource translation (WMT16 EN↔RO), and cross-domain transla-
tion (IWSLT EN↔DE). We report results of Newstest2016 testset for WMT16 EN↔RO, as well
as IWSLT tst2014 testset for out-of-domain (TED), and WMT newstest2014 testset for in-domain
(NEWS).

Model
LOW-RESOURCE CROSS-DOMAIN

WMT16 EN↔RO OUT-DOMAIN (TED) IN-DOMAIN (NEWS)
EN-RO RO-EN EN-DE DE-EN EN-DE DE-EN

RNMT 29.3 29.9 23.1 28.8 13.7 16.6
GNMT 30.0 30.7 23.4 29.4 13.8 16.9
GNMT-M-SSL + non-parallel 31.6 32.5 23.6 29.6 17.5 22.0
RNMT-BT + non-parallel 31.0 31.7 23.7 29.9 16.9 21.5
RNMT-JBT + non-parallel 31.7 32.3 24.0 30.1 17.6 22.1
RNMT-DUAL + non-parallel 31.9 32.5 23.4 29.6 17.3 21.9
RNMT-LM-FUSION + non-parallel 29.5 30.3 - - 14.1 17.0
MGNMT 30.4 31.2 23.7 29.8 13.8 17.0
MGNMT + non-parallel 32.5 32.9 24.2 30.4 18.7 23.3

Table 10: BLEU scores on resource-rich language pairs. We report results of Newstest2014 testset
for WMT14, and MT03 testset for NIST.

Model WMT14 NIST

EN-DE DE-EN EN-ZH ZH-EN

RNMT (Bahdanau et al., 2015) 21.9 26.0 31.77 38.10
GNMT (Shah & Barber, 2018) 22.3 26.5 32.19 38.45
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 24.8 28.4 32.06 38.56
RNMT-BT + non-parallel (Sennrich et al., 2016b) 23.6 27.9 32.98 39.21
RNMT-JBT + non-parallel (Zhang et al., 2018) 25.2 28.8 33.60 39.72
MGNMT 22.7 27.9 32.61 38.88
MGNMT + non-parallel 25.7 29.4 34.07 40.25
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Table 11: BLEU scores of RNMT-based experiments on English-French using similar settings as
Shah & Barber (2018). Numbers in parentheses are quoted from GNMT paper. Note that because
we used 4.5M English monolingual sentences instead of the original 20.9M (too time-consuming),
the reproduced results of “GNMT-M-SSL” are a bit lower.

Model
40K 400K 4M

avg. ∆
EN-FR FR-EN EN-FR FR-EN EN-FR FR-EN

RNMT 11.86 12.30 27.81 28.13 37.20 38.00 25.88 0
GNMT 12.32(12.47) 13.65(13.84) 28.69(28.98) 29.51(29.41) 37.64(37.97) 38.49(38.44) 26.72 0.84
GNMT-M-SSL + non-parallel 18.60 (20.88) 18.92 (20.99) 35.90(37.37) 36.72(39.66) 38.75(39.41) 39.30(40.69) 31.37 5.49
MGNMT 12.52 14.02 29.38 30.10 38.21 38.89 27.19 1.31
MGNMT + non-parallel 19.25 19.33 36.73 37.57 39.45 39.98 32.05 6.17

D CASE STUDY

As shown in Table 12, we can see that without being trained on in-domain (NEWS) non-parallel
bilingual data, the baseline RNMT shows obvious style mismatches phenomenon. Although all the
enhanced methods alleviate this domain inconsistency problem to some extent, MGNMT produces
the best in-domain-related translation.

Table 12: An example from IWSLT DE-EN cross-domain translation. In this case, all the models
were trained on out-of-domain parallel bilingual data from TED talks (IWSLT2016), and exposed to
in-domain non-parallel bilingual data of NEWS domain (News Crawl).

Source “Die Benzinsteuer ist einfach nicht zukunftsfähig”, so Lee Munnich, ein Experte für
Verkehrsgesetzgebung an der Universität von Minnesota.

Reference “The gas tax is just not sustainable”, said Lee Munnich, a transportation policy expert at
the University of Minnesota.

RNMT “The gasoline tax is simply not sustainable,” so Lee Munnich, an expert on the University
of Minnesota.

RNMT-BT “The gas tax is simply not sustainable,” so Lee Munnich, an expert on traffic legislation at
the University of Minnesota .

RNMT-JBT “The gas tax is just not sustainable,” say Lee Munnich, an expert on traffic legislation at
the University of Minnesota .

MGNMT “The gas tax is just not sustainable,” said Lee Munnich, an traffic legislation expert at
the University of Minnesota.

Given triple parallel dataset {x, y, z}:

log p(x, y, z) ≥ L(x, y, z;θ, φ) = Eq(γ|x,y,z;φ)[
1

3
{log pxy + log pxz + log pyx + log pyz + log pzx

+ log pzy + log px + log py + log pz}
−DKL[q(γ|x, y, z;φ)||p(γ)]

Given monolingual dataset {z}

log p(z) ≥ L(z;θ, φ) = Ex∼pzx,y∼pzyEq(γ|x,y,z;φ)[
1

3
{log pxz + log pyz + log pz}

−DKL[q(γ|x, y, z;φ)||p(γ)]

Given parallel dataset {x, y}

log p(x, y) ≥ L(x, y‘;θ, φ) = Ez∼pxz,z∼pyzEq(γ|x,y,z;φ)[
1

3
{log pxy + log pyx + log pzx + log pzy + log px + log py}

−DKL[q(γ|x, y, z;φ)||p(γ)]
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