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Phishing is a plague in cyberspace. Typically, phish detection methods either use human-
verified URL blacklists or exploit webpage features via machine learning techniques. However,
the former is frail in terms of new phish, and the latter suffers from the scarcity of effective
features and the high false positive rate (FP). To alleviate those problems, we propose a layered

anti-phishing solution that aims at 1) exploiting the expressiveness of a rich set of features with
machine learning to achieve a high true positive rate (TP) on novel phish, and 2) limiting the FP
to a low level via filtering algorithms.

Specifically, we proposed CANTINA+, the most comprehensive feature-based approach in

the literature including eight novel features, which exploits the HTML Document Object Model
(DOM), search engines and third party services with machine learning techniques to detect phish.
Moreover, we designed two filters to help reduce FP and achieve runtime speedup. The first is

a near-duplicate phish detector that uses hashing to catch highly similar phish. The second is a
login form filter, which directly classifies webpages with no identified login form as legitimate.

We extensively evaluated CANTINA+ with two methods on a diverse spectrum of corpora with
8118 phish and 4883 legitimate webpages. In the randomized evaluation, CANTINA+ achieved

over 90% TP on unique testing phish and over 99% TP on near-duplicate testing phish, and about
0.4% FP with 10% training phish. In the time-based evaluation, CANTINA+ achieved over 87%
TP on unique testing phish, about 95% TP on near-duplicate testing phish, and about 1% FP
under 20% training phish with a two-week sliding window. Capable of achieving 0.4% FP and

over 90% TP, our CANTINA+ has been demonstrated to be a competitive anti-phishing solution.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General
– Security and Protection; H.3.3 [Information Storage and Retrieval]: Retrieval Models; I.5.1

[Computing Methodologies]: Pattern Recognition

General Terms: Algorithms, security, languages

Additional Key Words and Phrases: Anti-phishing, machine learning, information retrieval

1. INTRODUCTION

Phishing is a form of identity theft, in which criminals build replicas of target
websites and lure unsuspecting victims to disclose their sensitive information like
passwords, personal identification numbers (PINs), etc. According to one survey
by the Gartner Group [McCall 2007], phishing attacks in the United States caused
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$3.2 billion loss in 2007, with about 3.6 million victims falling for the attacks, a
huge increase from the 2.3 million the year before. Moore et al [Moore and Clayton
2007] reported that the loss to consumers and businesses in 2007 in the US alone
was around $2 billion. A significant proportion of those losses was caused by one
particularly infamous group, known as the “rock phish gang”, that uses toolkits
to create a large number of unique phishing URLs, putting additional pressure on
the timeliness and accuracy of blacklist-based anti-phishing techniques. Although
there have been many advances in anti-phishing solutions in recent years, phishing
still causes tremendous losses every year.
The exact definition of phish varies from paper to paper. Here, we define phish

to be a webpage satisfying the following criteria:

(1) It impersonates a well-known website by replicating the whole or part of the
target site, showing high visual similarity to its target.

(2) It has a login form requesting sensitive information such as a password.

Sometimes, phishing attacks are launched in multiple pages where users need to
click a few buttons before arriving at the page with login forms. Though absent
initially, login forms will appear eventually due to the nature of phishing activity.
Generally, mainstream anti-phishing methods either utilize human-verified URL

blacklists, or go for phish via features using machine learning algorithms. While
the former is intuitive, mostly involving URL matching, the latter is relatively
complicated. The general idea of any feature-based method is to first find a set of
discriminative features that could help distinguish phish and non-phish, then learn
a machine learning model based on those features over a training set composed of
phish and legitimate pages, and finally apply the model to classify a web page whose
identity is to be examined. Among those steps, obtaining a high quality feature
set is of primary importance. A variety of features have been proposed for phish
detection in the literature, however, some of those features are not discriminative
enough, and almost all of them only utilize the URL and HTML DOM to examine
the discrepancy between phish and non-phish. In our work, we propose the most
comprehensive feature-based approach using a rich set of resources including the
URL, HTML DOM, third party services, and search engines to detect phish, which
is demonstrated to be very effective against phishing attacks by our experiment and
is the primary contribution of our work in this paper.
Though somewhat effective, existing solutions have apparent weaknesses. While

human-verified blacklists are widely adopted in industry due to the very low FP,
they do not generalize well to new attacks. For example, Sheng et al [Sheng et al.
2009] found that zero hour protection offered by major blacklist-based toolbars has
a TP between 15% and 40%. Furthermore, human-verified blacklists can be slow to
respond to new phishing attacks, and updating blacklists usually involves enormous
human effort. For example, PhishTank, a community site where people can view
and confirm phishing sites, posted statistics in March 2009 showing that it took on
average 10 hours to verify a submitted URL [PhishTank a]. Sheng et al found that
blacklists were updated at different speeds, and an estimated 47% - 83% of phish
appeared on blacklists 12 hours after they were launched [Sheng et al. 2009]. Finally,
human-verified blacklists can be easily overwhelmed by automatically generated
URLs, which is a tactic in use already by rock phish.
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On the other hand, while feature-based approaches offer a more general mech-
anism to detect novel attacks, not many effective features have been proposed.
Furthermore, this type of methods tend to have a relatively higher FP. Concerns
over liability for false positives have been a major barrier to deploying these tech-
nologies [Sheng et al. 2009]. To underscore this point, Sheng et al [Sheng et al. 2009]
evaluated eight popular toolbars, all of which employ human verified blacklists to
achieve an extremely low FP in spite of the amount of human labor required.

An ideal anti-phishing solution needs to have reasonable TP against new attacks
with very low FP while involving minimum manual labor. The key to achieve
a high TP is to design new features that are characteristic of phishing patterns,
and the core ingredient leading to a very low FP is filtering via heuristics. With
those in mind, we set as our goal in this paper contributing to the literature by
addressing the weaknesses of both blacklists and feature-based methods in a unified
framework. Specifically, we propose novel features to improve the TP and design
filtering algorithms absent in the literature to reduce FP and human effort.

We name such a layered system CANTINA+, which exploits the generalization
power of machine learning techniques and the expressiveness of a rich set of webpage
features to detect phish variants. Our pipeline consists of three major modules. The
first leverages the high similarity among phishing webpages due to the prevalent use
of phishing toolkits, and examines a webpage’s similarity to known phishing attacks
via hashing to filter highly similar phish. The second exploits the property that
phishing attacks usually utilize login forms to request sensitive information, and
employs heuristics to filter webpages with no login forms prior to the classification
phase. The third module, the core of our framework, utilizes 15 highly expres-
sive features with machine learning algorithms to classify webpages. This module
adopts the idea of extracting website ownership from our previous work [Xiang and
Hong 2009] in building two features, and significantly extends our past work with
CANTINA [Zhang et al. 2007] by eight novel discriminative features. Details about
contributions of this paper over [Zhang et al. 2007] are given in section 2.

This paper makes the following three research contributions. First, we propose
eight novel features capturing the intrinsic characteristics of phishing attacks using
a wide spectrum of resources, including the HTML DOM, search engines, and third
party services, obtaining superior classification performance. Second, our approach
ameliorates the typical weakness of high FP of feature-based approaches by using a
layered structure with login form filtering. Note that login form detection is quite
nontrivial due to the flexibility of the HTML DOM, which will be explained in
section 3. Third, the diversity of web pages in our corpus and the comprehensiveness
of our evaluation methods all exceed the techniques in the literature.

In our experiment, we evaluate our approach on a rich corpus with web pages
from six categories, and conducted a thorough experiment with randomized and
time-based methodologies to inspect the generality of our method as well as its
real-world performance. In the randomized evaluation, CANTINA+ achieved an
over 90% TP on unique testing phish, an over 99% TP on near-duplicate testing
phish, and an about 0.4% FP under 10% training phish with login form filtering.
In the time-based evaluation, our method achieved an over 87% TP on unique
testing phish, an about 95% TP on near-duplicate testing phish, and an about 1%
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FP under 20% training phish with a two-week sliding window. Those phishing
attacks whose timestamps fall in the sliding window will be used to train machine
learning models, and by using such a length-adjustable moving window, we are able
to incorporate the latest phishing variants into our training data and also achieve
runtime speedup. There has not been any experimental evaluation as to what is
acceptable for end users in the literature, and we have among the lowest FP rate
of any feature-based detection techniques out there. It is possible to get even lower
false positives using extremely conservative features, though this would significantly
impact true positives.
The remainder of this paper is organized as follows. Section 2 presents a liter-

ature review, followed by a high-level description of the CANTINA+ architecture
in section 3. Subsequently, we elaborate on our hash-based near duplicate phish
detection and login form filtering algorithms in section 4 and section 5 respectively.
Section 6 is dedicated to a detailed depiction of our feature set and machine learn-
ing algorithms. The experiment setup is sketched out in section 7, and the full
experimental results using both evaluation methodologies are reported in section
8. In section 9, we present a detailed error analysis, portray potential exploita-
tion techniques phishers may adopt to defeat our design, and point out some other
limitations of our proposed approach. We wrap up with conclusions in section 10.

2. RELATED WORK

In terms of client applications, anti-phishing techniques can be categorized into
phishing email detection and phishing webpage detection. One major work for the
former is PILFER [Fette et al. 2007], in which Fette et al designed ten features
exploiting the email HTML and employed random forest as the learning algorithm
to classify emails. In another work, Abu-Nimeh et al [Abu-Nimeh et al. 2007]
adopted the bag-of-words strategy and simply used a list of 43 most frequent words
as features in a machine learning approach. Since our focus in this paper is on the
latter and feature-based techniques dominate in the anti-phishing arena, we will
focus the related works in feature-based phishing web page detection.
One area of work in the literature uses URL features to detect phishing web-

pages. Garera et al [Garera et al. 2007] categorized phishing URLs into four groups,
each capturing a phishing pattern, and used a set of fine-grained features from the
phishing URLs together with other features to detect phish. Applying a logistic
regression model yielded an average TP of 95.8% and FP of 1.2% over a repository
of 2508 URLs. Though interesting, this method has unstable performance in that
URLs could be manipulated with little cost, causing the features to fail.
Researchers have also proposed approaches that guard users against phishing

attacks by monitoring the information flow, mostly the password. Kirda et al
implemented a system called AntiPhish [Kirda and Kruegel 2005], which watches
the password field of the HTML form and searches the domain of the site being
visited among a list of previous logins when identical password is found. AntiPhish
warns users of potential attacks if a domain match is not found. One problem with
this tool is that manual labor is usually involved, and also false positives could be
raised if the same password is used on multiple sites, which is what users typically
do. Moreover, no formal evaluation of the tool was conducted. Another work is
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password hashing (PwdHash) by Ross et al in [Ross et al. 2005]. PwdHash sends
a hash value computed from the user’s password and the website domain, rather
than the plain text password, to the server for authentication, rendering password
stealing at the fake phishing site futile. However, as claimed by the authors, their
technique suffers from spyware, DNS attacks, focus stealing, etc. Our approach in
this paper, however, focuses on another perspective of the anti-phishing campaign,
i.e., detecting a phishing site before users input their passwords. We believe that
the safest way to protect the users is to identify fake sites and warn them not to
give their passwords, rather than encrypt the passwords. In a recent study, Yue et
al [Yue and Wang 2010] designed a client-side tool called BogusBiter, which sends
a large number of bogus credentials to suspected phishing sites, hiding the real
credential among the bogus ones. However, BogusBiter relies on web browsers’
built-in components or third-party toolbars to detect phish and thus is more of a
reaction rather than detection technique.

Another area explores the visual and image elements to protect users from phish-
ing attacks. To exploit visual similarity between webpages, Liu et al [Liu et al. 2005]
proposed a method using three similarity metrics, i.e., block level similarity, layout
similarity and overall style similarity, based upon webpage segmentation. A page is
reported as phishing if any metric has a value higher than a threshold. Experiment
on 320 official bank pages and 8 phishing pages showed a 100% TP and 1.25% FP.
Though interesting, this work suffers from the following weaknesses: small corpus
size, a high FP, and the potentially instability due to the high flexibility of the
layout and style elements in the HTML documents. In [Dhamija and Tygar 2005],
Dhamija et al proposed a new scheme named dynamic security skins, which authen-
ticates the server by users’ visual verification of the expected image and an image
or “skin” generated by the server. Though interesting, this paper has no formal
evaluation. SpoofGuard [Chou et al. 2004], a technique proposed by Chou et al.,
utilizes image check as one feature, examining the domain name and the existence
of popular target site logos on a web page. However, [Chou et al. 2004] simply
performed exact matches for all images on a page, which is easy to beat and very
computationally prohibitive. Another work that exploits visual elements is [Medvet
et al. 2008], in which Medvet et al compute a signature using the visible text, visible
images and overall visual look-and-feel to compare the suspected pages with their
legitimate counterparts. They conducted pairwise comparison along each dimen-
sion, which is costly even with some optimization. Moreover, finding the phishing
target site is a very hard problem, and Medvet et al did not explain how they did
that for a phishing attack impersonating any general brand. Recently, Chen et al
[Chen et al. 2010] took a holistic view of the visual similarity between web pages,
and applied compression algorithms on the pages as indivisible entities to detect
phish. One problem of their approach is that it cannot handle novel attacks well.

Techniques that make use of features based on the HTML DOM to detect phish
are also available. In [Rosiello et al. 2007], Rosiello et al came up with a layout-
similarity-based approach, trying to overcome the problem in [Kirda and Kruegel
2005] that the same password for multiple sites tend to raise false alerts by An-
tiPhish. They added one extra layer of examination, checking the similarity of the
HTML DOM between the web page currently being visited and the one visited be-
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fore with the same password. This technique, however, is brittle in that the HTML
DOM is very easy to manipulate without changing the layout of the web page. In
[Ludl et al. 2007], Ludl et al applied a J48 decision tree algorithm on 18 features
solely based on the HTML and URL, achieving a TP of 83.09% and a FP of 0.43%
over a corpus with 4149 good pages and 680 phishing pages. However, features
purely based on HTML DOM and URL are rather limited and may fail in captur-
ing artfully designed phishing attacks. Studies [Zhang et al. 2007] have shown that
search engines and third party services like WHOIS are effective in providing clues
about the legitimacy of a webpage, and our research in this paper fully utilizes
those tools in defining a rich set of high-level webpage features.

Another feature-based work exploring the HTML DOM is CANTINA [Zhang
et al. 2007], in which Zhang et al proposed a content-based method using a simple
linear classifier on top of eight features, achieving an 89% TP and a 1% FP on 100
phishing URLs and 100 legitimate URLs. In CANTINA+, we added significant new
ingredients and achieved better results. Specifically, we used four of the CANTINA
features, extended another one of them, and augmented CANTINA with ten more
expressive features, eight of which are novel ones proposed by us. Instead of using a
simple linear classifier, we adopted state-of-the-art machine learning algorithms to
build detection models. Moreover, we conducted much more thorough evaluation
on a much larger and richer corpus.

Aside from the methods introduced above that examine the degree of unusualness
of a webpage via features, other techniques have been proposed that detect phish by
directly discovering the target brand being phished. Pan et al [Pan and Ding 2006]
proposed a method that extracts the webpage identity from key parts of the HTML
via the χ2 test, and compiled a list of features based on the extracted identity. Their
method achieved an average FP of about 12%. However, the assumption that the
distribution of identity-related words usually deviates from that of other words is
questionable, which is indicated by their high FP. Even in DOM objects, the most
frequent term often does not coincide with the web identity. Xiang et al [Xiang and
Hong 2009] proposed a hybrid detection model that recognizes phish by discovering
the inconsistency between a webpage’s true identity and its claimed identity via
search engine and information extraction techniques. Their full system achieved a
TP of 90.06% and a FP of 1.95%.

The analog of identifying the target brand of phishing attacks in the email domain
is the sender ID verification in the email authentication protocol, which aims at
verifying that every email originates from the domain from which it claims to have
been sent. However, while the latter has been solved well by industry solutions such
as the sender ID framework, the former still remains a hard research problem. If
the targeted brand were known a priori, the phishing attack could have be detected
trivially and techniques as proposed in the literature are unnecessary.

Ideas trying to combine the merits of blacklist-based and feature-based methods
in a unified framework also exist. In a recent work, Xiang et al [Xiang et al. 2010]
proposed a content-based probabilistic approach, which leverages existing human-
verified blacklists and applies the shingling technique, a popular near-duplicate de-
tection algorithm used by search engines, to detect phish. Their algorithm achieved
0% FP with a TP of 67.15% using search-oriented filtering, and 0.03% FP and
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73.53% TP without filtering.
In addition to the research reviewed above, anti-phishing toolbars based on dif-

ferent techniques are also available, many of which exploit blacklists to assure a
low FP. Well-known products include Microsoft Internet Explorer (IE) 8, Firefox
3, McAfee SiteAdvisor, Symantec Norton 360, EarthLink, account guard by eBay,
etc. The technical details of these products have not been made publicly available,
however, their effectiveness has been measured in [Sheng et al. 2009].

3. SYSTEM ARCHITECTURE

Figure 1 shows the overall flow of CANTINA+. The feature extractor, shared by
the training and testing phases, is the core of our hybrid framework, in which the
values of the 15 features are extracted. Specifically, the goal of the training phase is
to obtain the feature values for each instance of the training corpus, which is then
used by the machine learning engine to build classifiers. The goal of the testing
phase is to label real web pages as phish or not.
In the testing phase, we first apply two filters to web pages to reduce false posi-

tives and speed up runtime performance. The first filter is a hash-based filter that
compares a web page against known phish. The second filter checks a given web
page for a login field. We will describe the details of these two filters in the next
two sections. If the web page is not detected as a near-duplicate of the existing
phish and a login form is found in the HTML, we move on to extract the 15 features
from the web page using the URL, HTML DOM and other resources, and apply
a pre-trained model to classify its identity. In real-world scenarios, we can use a
sliding window to include the most recent phishing attacks in the training data.

4. HASH-BASED NEAR-DUPLICATE PAGE REMOVAL

The growing use of toolkits [Cova et al. 2008] to create phish produces a massive
volume of phishing webpages that are very similar or even identical to each other
in terms of HTML. This observation led us to adopt page duplicate detection algo-
rithms to identify pages that are extremely likely to be phish, by comparing a given
page against known phish. In our previous work [Xiang et al. 2010], we proposed an
adaptive probabilistic anti-phishing algorithm based on URL blacklists exploiting
the high similarity among phishing attacks. In this work, we simply design a more
rigorous hash-based filter to quickly recognize identical phish while mainly rely on
the machine learning engine to detect other variants.
To detect duplicate pages, we used the SHA1 hash algorithm, a popular method

for checking if two pieces of digital content are the same [NIST 1995]. SHA1 is a
fast and secure procedure that produces 160-bit hash values and is applicable to
content of any length with a low likelihood of collisions. To use SHA1, we first
remove all spaces in the HTML. We also remove all default values in HTML input
fields and replace them with empty strings. Our rationale here is that we have seen
some phishing sites that insert random email addresses into such fields. We then
compute a SHA1 hash on the processed HTML, which is then compared against a
pool of hash values of known phishing web pages. Currently, we use PhishTank’s
verified blacklist as our known list of phishing sites.
We acknowledge that this hashing-based filter is easy to beat. However, it is
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Fig. 1. System architecture. In the training stage, A1) 15 feature values are extracted from

each instance in the training corpus; A2) the feature values are organized in proper format and
forwarded to the machine learning engine; A3) classifiers are built for phish detection. In the
testing stage, B1) the hash-based filter examines whether or not the incoming page is a near-
duplicate of known phish based on comparing SHA1 hashes; B2) if no hash match is found, the

login form detector is called, which directly classifies the webpage as legitimate if no login form
is identified; B3) the webpage is sent to the feature extractor when a login form is detected; B4)
the pre-trained learning models run on the features and predict a class label for the webpage.

highly effective against existing phish today, is fast in terms of runtime performance,
and cheap to implement. Also, we only use it as a filtering step to remove near-
duplicate phish, and mainly rely on machine learning approaches with our feature
set for phish detection.

5. LOGIN FORM DETECTION

Almost all phishing attacks try to trick people into sharing their information through
a fake login form. In this section, we present our algorithm using the HTML DOM
to filter pages with no login forms prior to the classification step. On the surface,
this sounds simple, yet finding a login form in practice is actually by no means
trivial. Typically, a login form is characterized by three properties, i.e., 1) FORM
tags, 2) INPUT tags, and 3) login keywords such as password, PIN, etc. INPUT
fields are usually used to hold user input. Login keywords guarantee that we are
actually facing a login form rather than other types of forms such as the common
search form. We compiled 42 login keywords to allow flexibility in detecting various
patterns such as “passcode”, “customer number”, etc.
Due to phishing and other unconventional design patterns, a login form does

not always satisfy all three properties above, and to cope with such variations, we
designed the following algorithm to declare the existence of a login form.

(1) We first handle the regular case in which form tags, input tags and login
keywords all appear in the DOM. Login keywords are searched in the text nodes
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as well as the alt and title attributes of element nodes of the subtree rooted at the
form node. Return true if all three are found.

(2) We then handle the case where form and input tags are found, but login
keywords exist outside the subtree rooted at the form node f . First, we examine
whether the form f is a search form by searching for keyword “search” in the same
scope as in step 1. If f is not a search form, we traverse the DOM tree up for K
levels1 to ancestor node n, and search login keywords under the subtree rooted at
n in the same scope as in step 1. Return true if a match is found.

(3) We then capture the phishing pattern in which forms and inputs are detected,
but phishers put login keywords in images and refrain from using text to avoid being
detected. Check the subtree rooted at f for text and images, and return true if no
text is found and only images exist.

(4) Finally, we handle the case where phishers only use input fields and leave
out form tags on purpose. Search login keywords and image patterns in a similar
fashion, but in the scope of the whole DOM tree r, and return proper results.

This algorithm covers most of the login form variants, with a 98.06% TP on
our phishing corpus as shown in section 8.1. The features in this algorithm may
flag a form as a login form when it actually is not. However, this slightly larger
coverage on the one hand helps prevent falsely filtering a phishing page prior to
the content analysis stage, and on the other still removes the vast majority of
pages with no login forms from consideration, thus reducing false positives and
significantly accelerating the detection process.

6. A FEATURE-RICH MACHINE LEARNING FRAMEWORK FOR ANTI-PHISHING

When the hash-based filter finds no matches with existing phish and the login
form filter detects a login form in the HTML, our approach relies on the machine
learning engine to capture phishing variants. The set of high-level features is the
major contribution of this paper, and in this section we will elaborate on the design
and rationale of our feature set, as well as the machine learning algorithms. In
particular, features 2, 3, 4, 12 are taken from CANTINA, feature 5 and 13 are
taken from [Garera et al. 2007], feature 11 is a variant of one feature in CANTINA,
and features 1, 6, 7, 8, 9, 10, 14, 15 are the novel ones we proposed.
It is necessary to point out that false positives or false negatives might be caused

by each feature. However, the combination of all the features will make up for the
inadequacy of individual features, and will yield better performance.

6.1 High-level Webpage Features

We have organized our features into three categories. The first (features 1 through
6) deals with the URL of the web page. The second (features 7 through 10) inspects
the HTML content of the web page. The third (features 11 through 15) involves
searching the web for information about that web page. Specifically, feature 1, 6,
7, 8, 9, 10, 14, 15 are novel ones proposed by us in CANTINA+.
URL-based Features

1We took K = 2 in our current implementation.
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(1) Embedded domain . This feature examines the presence of dot separated
domain/hostname patterns such as “www.ebay.com” in the path part of the web-
page URL. URLs corresponding to legal websites usually show these patterns in
the hostname segment of the URL, while phishers sometimes add their target’s do-
main/hostname in the path segment to trick users into trusting their phishing sites.
To capture more of such phishing URLs, we avoid hard-coded domains and instead
search in the path segment of the URL with a pre-compiled regular expression that
seeks dot-separated string segments2.

(2) IP address. This feature checks if a page’s domain name is an IP address.
Attackers often employ IP address in the URL to disguise a webpage’s malicious
nature, while legitimate websites almost always use domain names instead of IP
addresses due to their easy memorability.

(3) Number of dots in URL. This feature counts the number of dots in the
URL. Phishing pages tend to use more dots in their URLs than the legitimate sites.

(4) Suspicious URL. This feature checks if a page’s URL contains an “at” (@)
or the domain name has a dash (-). An @ symbol in a URL causes the string to
the left to be disregarded, with the string on the right treated as the actual URL
for retrieving the page. Combined with the limited size of the browser address bar,
this makes it possible to write URLs that appear legitimate within the address bar,
but actually cause the browser to retrieve a different page. Dashes are also not
often used by legitimate sites.

(5) Number of sensitive words in URL. In [Garera et al. 2007], Garera et
al summarized a set of eight sensitive words3 that frequently appear in phishing
URLs, and we create this feature counting the number of the eight sensitive words
that are found in a page URL. This is a numeric feature with a range of 0 to 8.

(6) Out-of-position top level domain (TLD). This feature checks if a TLD
appears in an unusual position in the URL. An example is http://cgi.ebay.com.
ebaymotors.732issapidll.private99dll.qqmotorsqq.ebmdata.com, in which we
see the TLD “com” in a position usually not for TLDs in the hostname.

HTML-based Features

(7) Bad forms. Phishing attacks are usually accomplished through HTML
forms. This feature checks if a page contains potentially harmful HTML forms. To
satisfy our definition of harmful, a webpage is required to have all of the following:
1) an HTML form, 2) an <input> tag in the form, 3) keywords related to sensitive
information like “password” and “credit card number” or no text at all but images
only within the scope of the HTML form, 4) a non-https scheme in the URL in the
action field or in the webpage URL when the action field is empty.
Login form recognition here is realized by the SAX parser, a sequential access parser
API to read data from XML documents, rather than the complicated DOM-based

2Three constraints must be met for a dot-separated string to be eligible for an embedded domain.
First, at least three segments must exist. Second, each segment must have two or more characters.
Third, each segment is composed of letters, numbers and underscores only.
3The sensitive words include “secure”, “account”, “webscr”, “login”, “ebayisapi”, “signin”, “bank-
ing”, “confirm”.
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process as in the login form filter in section 5. Specifically, we defined 39 login-
related keywords to narrow down our focus to forms that truly request user private
information. In some hard cases, attackers remove all the textual content in the
HTML form and only use images of text to avoid text-based detection. We do
regard such forms as harmful, though we currently do not have a reliable way of
detecting them. We also note that attackers may craft login form patterns that
render this feature futile. However, the combination of our 15 features may still
capture other phishy characteristics of a web site.

(8) Bad action fields. From an engineering point of view, placing the authen-
tication scripts of the whole website in one location facilitates the development
and maintenance of the code, and legitimate websites tend to adopt this practice.
Accordingly, the authentication methods in the script on legitimate websites are
usually called via absolute URLs in the action field of the HTML form. However,
phishing sites are usually ephemeral and the design principle is often to make every-
thing as simple as possible, as a result of which the authentication code is usually
placed in the current directory and the action field of the HTML form is typically
a simple file name. As such, this feature is set to 1 if the action field is empty
or a simple file name, or points to a domain different from the webpage domain.
The last branch is to identify cross-domain scripting, which is sometimes deemed
harmful for web applications. The HTML forms in which the action fields are scru-
tinized in this feature denote those login forms, i.e., those that meet the first three
requirements in the bad forms feature above. Though we have found exceptions
from both phishing and good pages that break the above formulation, this feature
is still demonstrated to be among the top performing ones in our feature set.

(9) Non-matching URLs. This feature examines all the links in the HTML,
and checks if the most frequent domain coincides with the page domain. The ra-
tionale behind this feature is that links on phishing sites are usually meaningless
and thus noisy values such as “#”, “index.html”, URLs of the target legitimate
sites, etc., are often seen especially when the attacks are automatically created by
toolkits, leading to inconsistency between the page domain and the most frequent
domain in the links. Sometimes, the links on a phishing page point back to vari-
ous parts of the phishing site, however, phishers do not very often use a different
absolute URL for each such link but rather stick to similar URLs. To catch that
pattern, we count the percentage of highly-similar links4 in the HTML, and set the
value of this feature to 1 if any single pattern occurs more often than a threshold.
In addition, we also count the percentage of empty or ill-formed links in the HTML,
and apply thresholding to set corresponding feature values.

(10) Out-of-position brand name . The vast majority of companies put their
brand name into their domain name. Typically, the brand name appears in the
domain string as the second-level or third-level domain. Phishing sites, however,
are always hosted on compromised or newly registered domains. To make these
sites look trustworthy, attackers sometimes include brand names or domain names
of the victim sites in their phishing URLs, causing an out-of-position brand name.

4Highly-similar links in this paper are defined to be those that are either identical or differ only
in the fragment component of the URL.
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The example in the 6th feature above still applies here, in which ebay, the target
brand, appears in an unusual position in the hostname.
However, since we have no a priori knowledge about the brand name of a web page,
we follow the analysis in the 9th feature above and use the most frequent domain
keyword in the HTML links as the website brand name. With this estimated brand
name, we remove the page domain keyword as well as the string to its right from
the URL, and search in the remaining portion for the brand name. If a match is
found, the page under investigation is suspicious and the feature value is set to 1.

Web-based Features

(11) Age of domain . This feature checks the age of the webpage domain name.
Many phishing sites are hosted on recently registered domains, and as such have a
relatively young age. To exploit that property, this feature measures the number of
months since the domain name was first registered. Specifically, we performWHOIS
lookups to retrieve the domain registration date, and if the domain registration
entry is not found on the WHOIS server, this feature will simply return -1, deeming
it suspicious. Note that this feature does not account for phishing sites launched
on compromised legal domains, nor does it account for phishing sites hosted on
otherwise legitimate domains.

(12) Page in top search results. This feature was originally used in CANTINA
[Zhang et al. 2007]. Specifically, we extract the top K words from the page content
ranked by the term frequency and inverse document frequency (TF-IDF) metric,
and search those top terms plus the webpage domain keyword5 in Google. The
webpage is deemed legitimate if the page domain matches the domain name of any
of the top N search results; otherwise, it is regarded as being phishy. The intu-
ition behind this feature is that search engines are more likely to index legitimate
websites, while phishing sites have much less chance of being crawled. According
to the experimental findings in [Zhang et al. 2007][Xiang and Hong 2009], we took
K = 5, N = 30 in this work. We used Google as the collection corpus in this work,
and estimated the document frequency of a term w by the number of result entries
obtained by searching w in Google.

(13) PageRank . PageRank is a link analysis algorithm first used by Google, in
which each document on the web is assigned a numerical weight from 0 to 10, with
0 indicating least popular and 10 meaning most popular. In our method, we add
another value−1 when the PageRank value for a particular webpage is not available.
An intuitive rationale behind this feature is that phishing webpages usually have
very low PageRank scores due to their ephemeral nature and few incoming links
pointing to them, while legitimate cases tend to have higher PageRank values. This
feature was also used in [Garera et al. 2007].

(14) Page in top results when searching copyright company name and
domain . This and the following feature complement the 12th feature by directly
seeking the webpage on the web without analyzing the terms in the page content.
Generally, the TF-IDF feature above may not work well for two cases. First, some

5The domain keyword is the segment in the domain representing the brand name, which is usually

the non-country code second-level domain such as “Paypal” for “paypal.com” or the third-level
domain such as “ebay” in http://www.ebay.com.au/.
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terms with high TF-IDF scores may not be relevant in searching the intended
webpage, and as a result, the query may not return the expected webpage domain
in top N entries. Second, due to company affiliations, two closely related domains
are sometimes literally different such as “blogger.com” and “blogspot.com”, which
renders straightforward string matching inadequate.

This feature uses as query phrase the page domain plus the copyright company
name that is usually found on the bottom of a webpage showing a website’s brand
name, and treats a webpage as suspicious if its domain is absent from the top N
search results and legitimate otherwise. This brand recognition idea was taken from
our previous work [Xiang and Hong 2009]. In this paper, we only employed the
copyright field to extract brand names instead of searching the page title and using
the whole page content via named entity recognition.

There are many advantages to this feature. First, search engines are more likely
to have entries in their index for legitimate sites, and searching the page domain
and the website brand name directly has a higher chance of returning the intended
page in top positions, thus remedying the first problem of the 12th feature. Second,
this feature alleviates the second weakness of the 12th feature as discussed above
in that related domains tend to be all returned when searching the copyright brand
name without other irrelevant query terms thanks to the broad coverage of modern
search engines. Third, copyright fields may not show up in every page, and once
they are missing, we simply query the page domain in search engines. Again, the
argument in the first benefit of this feature explained above applies here, and we
eschew false positives even if we misclassify a phish under this scenario.

The copyright field on a webpage typically shows some patterns like “Copyright c⃝
1995-2008 eBay Inc. All Rights Reserved.”, and we defined 11 regular expressions
to extract brand names. Some pages have more than one copyright field, and we
prefer the one with word overlap with the page domain, with keywords like “Inc.”,
“Ltd.”, or simply the last copyright field. Since this and the following feature seek
the intended webpage directly via search engines, we impose a relatively stricter
constraint onN and examine the topN = 10 search results for the webpage domain.

(15) Page in top results when searching copyright company name and
hostname . This feature is identical to the 14th feature except that we use the
hostname instead of the domain name in the query, which is useful especially when
the domain name is too short to introduce noisy results in top result entries.

6.2 Machine Learning Algorithms

We compare six state-of-the-art learning algorithms in training the phish detector,
including Support Vector Machines (SVM) [Burges 1998], Logistic Regression (LR),
Bayesian Network (BN) (a probabilistic graphical model that makes inferences via
a directed acyclic graph), J48 Decision Tree, Random Forest (RF) and Adaboost,
with the primary goal of evaluating the effectiveness of our feature set. All the ML
algorithm implementations were taken from the Weka package [Witten and Frank
2005]. We found through extensive experiment that BN performed consistently
within the top performing group of algorithms. None of the other algorithms sig-
nificantly outperformed it, and it was frequently ranked No.1. Therefore, we only
report the performance of BN in this paper.
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7. EXPERIMENTAL SETUP

7.1 Evaluation Metrics

In our experiment, we adopted true positive rate and false positive rate as the
main evaluation metrics. We also used the F1 measure, which integrates both TP
and FP with equal weights into one summary statistic. In tuning the machine
learning models, we adopted the concept of Receiver Operating Characteristics
(ROC) curves [Fawcett 2006] and employed the area under the ROC curve (AUC)
[Cortes and Mohri 2003] metric, which, as a standard approach to evaluate binary
classification performance, portrays the trade-off between TP and FP. Statistically,
the AUC equals the probability that given a randomly generated positive instance
and negative instance, a classifier will rank the positive one higher than the negative
one, and thus is a good summary statistic for model comparison.

7.2 Webpage Corpus

Our webpage collection consists of phishing cases from PhishTank, and legitimate
webpages from five sources. To eliminate the impact of language heterogeneity on
our content-based method, we only included English web pages in our corpus. Our
legitimate collection mainly focuses on popular sites, commonly spammed sites,
common phishing target sites, etc. Although our corpus is not representative of
what users would experience in their every day browsing, by evaluating CANTINA+
on these hard cases, we actually provide the worst case performance statistics,
which is more beneficial for an objective evaluation of our method and its real-life
application that follows.
Phishing sites are usually ephemeral, and most pages will not last more than

a few days typically because they are taken down by attackers to avoid tracking.
To fully study our approach over a larger corpus, we downloaded the phishing
pages when they were still live and conducted our experiment in an offline mode.
Our downloader employed Internet Explorer to render the webpages and execute
Javascript, so that the DOM of the downloaded copy truly corresponds to the page
content and thus gets around phishing obfuscations. We also downloaded images
to allow us to use CANTINA [Zhang et al. 2007] for comparison.
For phishing instances, we used the phish feed of Phishtank [PhishTank b], a large

community-based anti-phishing service with 35, 849 active accounts and 489, 397
verified phish [PhishTank a] by November 20, 2009. The phish corpus in our exper-
iment was collected over two periods, with the researchers of this paper manually
removing nonexisting URLs. Phish set 1 was collected starting in early May of
2008, and 6943 phishing webpages were downloaded during a five-month period.
Phish set 2 was initiated in late February of 2009 and a total of 1175 phish were
garnered from February 27, 2009 to April 2, 2009. The purpose of two-separate
web crawls is to roughly examine whether or not phishers tend to reuse phishing
sites built a while ago.
To thoroughly test the FP, we collected the same five sets of legitimate web

pages in two separate crawlings, the details of which are given in Table I, with
legitimate corpus 1 for randomized evaluation and legitimate corpus 2 for time-
based evaluation. The missing pages in legitimate corpus 2 compared with the
legitimate corpus 1 were due to broken links. Fetterly et al discovered through
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large-scale web crawling that webpage content was fairly stable over time [Fetterly
et al. 2003], and based on that finding, we did not download legitimate corpus 2
at each time point but rather downloaded only once the whole set at a time later
than all the phishing timestamps in phish set 2.

Table I. Legitimate collections from 5 sources. The size column marked by “1” gives the corpus
sizes for randomized evaluation, while that marked by “2” gives the corpus sizes for time-based

evaluation. We use legitimate corpus 1 and legitimate corpus 2 to refer to the two collections.
Legitimate corpus 2 was downloaded on April 2, 2009, and was a subset of legitimate corpus 1.
Source Size (1) Size (2) Crawling Method

Top 100 English sites 1023 958 Crawling homepages to a limited depth
from Alexa.com

3Sharp [3sharp report 2006] 101 87 Downloading webpages that still existed

at the time of downloading

Generic banks 985 878 Crawling the homepages for a varying
on Yahoo directory number of steps within the same domains

Other categories 371 330 Same as the generic bank category
of Yahoo directory

The most common 81 69 Saving login pages of those sites

phishing targets

7.3 Evaluation Methodology

For anti-phishing algorithms, two typical evaluation methodologies exist, i.e., ran-
domized evaluation and time-based evaluation. The former is mainly to inspect the
overall performance on all the available data, while the latter is to examine the
performance under more real-world scenarios, training models on the past data and
applying the models to future cases. To fully evaluate our approach, we adopted
both methodologies in our experiment.
In light of a significant percent of near-duplicate phish with high similarity in

terms of content due to the use of toolkits, it is necessary to see how our approach
performs on the testing data with unique phish and with near-duplicates of the
training phish respectively. Ideally, the TP on the testing set with unique phish
should be reasonably high, and the TP on the testing set with near-duplicate phish
of the training set should be even higher, if not 100%. Accordingly, we conducted
two series of experiments under each evaluation methodology, using unique testing
phish and near-duplicate testing phish respectively. This unique and near-duplicate
dichotomy is important also because learning models with repetitive patterns in the
training data tends to decrease the effectiveness of our machine learning approach.
In the randomized evaluation, we utilized both phish set 1 and phish set 2, and

legitimate corpus 1 in this evaluation. We adopted the standard train, validation
and test methodology, which is a common practice in machine learning. All the
train/test splits were performed randomly. We reserved 70% percent of the legit-
imate set as the testing set, and used the remaining 30% for model training and
tuning. To see the impact of the percentage of phish p in the training data on the
detection performance, we built a series of randomly selected training sets varying p
from 10% to 70%. In optimizing the algorithm parameters, those training sets with
different p were further divided via stratified sampling into a training portion and
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Table II. Statistics of near-duplicate phish detection. In detecting near-duplicate phish in set
1, we only examined the phish set 1 for hash matches, while for phish set 2, we scanned through

both phishing sets. There is only one common duplicate phish between two sets, suggesting that
phishers do not replicate phishing sites created long ago for future attacks.

Phish set 1 Phish set 2

Download time May 2008 – Sep 2008 Feb 27, 2009 – Apr 2, 2009

Total size 6943 1175

#unique webpages 1595 624

a validation portion. Stratification ensures that the class distribution is preserved
between the training and validation parts. In performing the final tests with the
optimal model parameters, the whole training sets were used to train the classifiers.
To reduce random variation and avoid lucky train/test splits, we used the average
statistics over 10 runs in all our experiments.
In the time-based strategy specifically, we utilized the timestamps of the phishing

attacks and simulated real-life scenarios by training our models on the past data
and testing them on future data via a sliding window mechanism. We used legiti-
mate corpus 2 and phish set 2 in this experiment. Specifically, we moved a sliding
window of length L (in terms of days) step by step along the time line and applied
our detection algorithm to the webpages with timestamp Ti (day in our current
evaluation) using models learned on a training set composed of the phishing data
with time labels falling in window [Ti−L, Ti−1] and a subset of randomly selected
legitimate webpages from legitimate corpus 2 in Table I. Varying the percentage of
phish p in the training set from 20% to 70% controls how many legitimate cases to
be chosen for each sliding window. After a subset of legitimate pages are randomly
selected into the training set for each sliding window, the rest of the legitimate
corpus together with the phishing instances on time point Ti make their way into
the testing set for the evaluation of TP and FP on time point Ti. The reported TP
and FP are the mean of the TPi and FPi at all time points.

8. EXPERIMENTAL RESULTS

8.1 Hash-based Near-duplicate Phish Detection

Our goal is to see the extent to which phishing toolkits are employed to produce
phishing site replicas, and thus we compute the hash values for all phish in our cor-
pus using the algorithm given in section 4 and explicitly keep only one copy among
the webpages with identical SHA1. Table II shows that 72.67% phish are replicas
according to our hash-based filtering algorithm, suggesting the effectiveness of this
hashing-based filter in capturing near-duplicate phish and their simple variants.

8.2 Login Form Detection

As shown in Table III, we successfully detected 98.06% phishing pages with login
forms, and filtered a significant percentage of good pages from other categories.
For the remaining 1.94% phishing pages, they either do not have a login form (very
rare in our phish corpus), use login keywords not in our list such as “serial key”,
or organize the form/input tags in a way our method misses.
This step contributes to the reduction of FP in that a certain portion of legiti-

mate pages as shown in Table III are removed from being processed by the feature
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Table III. Statistics of login form detection. 98.06% phishing pages with login forms were

successfully detected.

Corpus Phishtank Alexa 3Sharp Banks Yahoo Prominent

#total pages 2219 1023 101 985 371 81

#detected with login forms 2176 263 31 229 77 73

% good pages filtered 74.29 69.31 76.75 79.25 9.88

extraction and classification modules. Note that we actually did not particularly
train the models on pages without forms in the whole layered system. Some legiti-
mate pages for training purposes happen to contain no login forms. If the training
set consists solely of pages with login forms, the TP and FP will both be higher.

8.3 Randomized Evaluation

The main goal of randomized evaluation is to inspect thoroughly the overall perfor-
mance of CANTINA+ on all our data via stratification and multiple run averaging,
which is a standard practice in machine learning. In this section, we show the per-
formance of our layered method under the smallest percentage of training phish,
i.e., 10%, mainly due to two reasons. First, this setting is more realistic because
in the real-world scenario, the volume of legitimate cases typically far outnumbers
phishing attacks. Second, our approach did not manifest drastic difference under
various percentages of training phish. For the same reason, we only give the ex-
perimental result under 20% training phish in the time-based evaluation in section
8.4. This number is different from the 10% in the randomized evaluation in that
we only used legitimate corpus 2 in the time-based evaluation and for some sliding
window, the volume of the training phish is large enough such that we do not have
90% legitimate pages for training.

8.3.1 Machine Learning Model Tuning. Machine learning algorithms use differ-
ent strategies to regulate the learning process. Normally, a variety of factors are
considered by an algorithm. We chose to tune only the most important factors for
each algorithm due to combinatorial effects. We tuned our models on the validation
set and used the optimal parameters for our final classifiers.
For each algorithm, we found the optimal parameter with the best AUC 6 via 10-

run tuning. Specifically, the optimal settings always improved the algorithms over
the default parameters, mostly with less than 2% improvement in AUC. Typically,
when the amount of training phish is insufficient, the AUC on the validation set is
undesirable due to the low TP, and as the proportion of phish in the training set
increases, AUC gradually amplifies and then possibly declines at the point where
the degradation on FP outweighs the improvement on TP. In terms of the model
complexity parameter, we see that mostly the classifiers achieved optimality when
the amount of regularization is just appropriate. The major reason is that we are
tuning the classifiers on a separate validation set, and overly small penalization
leads to overfitting, while the other extreme yields undertrained models.
In the testing phase of randomized evaluation, we assigned the models with the

optimal parameters, and tested them on a separate testing set. We felt that this
was a reasonable and feasible approach, since in a real deployment, one could tune

6Area under the ROC curve, introduced in section 7.1
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Table IV. Performance (10-run average) of CANTINA+ using Bayesian Network and CANTINA

under randomized evaluation. For all cases in the table, CANTINA+ was trained with 10% phish
in the training set. The legitimate testing sets are the same for the evaluations on both unique
testing phish and near-duplicate testing phish, and therefore, the FPs remain the same. Overall,
CANTINA+ significantly outperforms CANTINA. CANTINA has no explicit training phase, and

is not influenced by the percentage of phish in the training set.

Type of phish in the testing set
Unique Near-duplicate

Algorithm Login filtering TP (%) FP (%) F1 TP (%) FP (%) F1

CANTINA+ Yes 92.54 0.407 0.9592 99.63 0.407 0.9961
(with BN) No 93.47 0.608 0.9632 99.64 0.608 0.9952

CANTINA Yes 71.47 0.335 0.8320 93.17 0.335 0.9630

No 72.15 0.714 0.8348 93.19 0.714 0.9612

the models offline and then employ the optimal setup for online scenarios.

8.3.2 Testing on the Holdout Data with Unique Phish. Multiple run averaging
is a standard practice in machine learning, and the goal of this experiment is to
examine the performance of our feature set trained on randomly selected phish and
tested on the remaining unique phish. Specifically, we used all the good URLs in
legitimate corpus 1 and all the unique phishing webpages in our collection, i.e., 1595
from phish set 1 and 624 from phish set 2. In Table IV, we show the performance
of CANTINA+ in this experiment with 10% phish in the training data.

As shown in Table IV, CANTINA+ achieved a high TP of 92.54% and 93.47%
with a low FP of 0.407% and 0.608% with and without login form filtering respec-
tively. The filtering step makes the TP significantly worse. For all cases including
CANTINA, FP filtering via login form detection significantly improves FP because
a certain number of legitimate pages (Table III) are detected with no login forms.

8.3.3 Testing on the Holdout Data with Near-duplicate Phish. The goal of this
experiment is to show that learning with our feature set performs very well, if not
perfectly, on the near-duplicate of the phish in the training set under the randomized
evaluation setting. This is critical in demonstrating the power of our machine
learning approach since we might as well directly use the simpler hash-based filtering
if our proposed approach performs poorly on near-duplicate testing phish. In this
experiment, we used a subset of good URLs in legitimate corpus 1 and unique
phishing URLs from phish set 1 and phish set 2 for training, and tested our models
on the near-duplicate phish from phish set 1 and phish set 2, i.e., a total of 5899
near-duplicate phish. In Table IV, we show the TP and FP of CANTINA+ in this
experiment with 10% phish in the training data.

With only 10% training phish, CANTINA+ was able to achieve a very high TP
of 99.63% and 99.64% with and without FP filtering respectively due to the strong
similarity between the phish in the training and testing data, manifesting the power
of our feature set in capturing the characteristics of phishing attacks. The exper-
iment result also shows no significant effect of the FP filter. Since our legitimate
corpus contains no replicated instances, choosing unique or near-duplicate testing
phish only influences TP and the FP remains the same, as shown in the table.
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Table V. Performance (10-run average) of CANTINA+ using Bayesian Network under time-

based evaluation with a two-week sliding window. For all cases in the table, CANTINA+ was
trained with 20% phish in the training set. The legitimate testing sets are the same for the
evaluations on both unique testing phish and near-duplicate testing phish, and therefore, the FPs
remain the same. CANTINA+ achieves a high F1 of over 0.93 under all cases.

Type of phish in the testing set

Unique Near-duplicate

Algorithm Login filtering TP (%) FP (%) F1 TP (%) FP (%) F1

CANTINA+ Yes 88.56 1.320 0.9328 95.28 1.320 0.9693
(with BN) No 90.47 1.870 0.9407 95.65 1.870 0.9685

8.4 Time-based Evaluation

The randomized experiment in the previous section aims at evaluating CANTINA+
using the standard machine learning practice in which the training and testing data
are randomly selected with multiple runs to reduce variance. The main goal of
time-based evaluation, however, is to inspect the performance of CANTINA+ in
real-world scenarios, in which we train our models using historical data and apply
the models to future data. Since the overhead of stepwise parameter tuning for each
sliding window is prohibitive, we did not explicitly tune the model parameters in
this experiment and simply used the default values. In addition, because the original
CANTINA has no training process, its performance should remain identical and we
therefore did not compare our approach with CANTINA again in this evaluation.
The experimental result of this time-based evaluation using a two-week sliding
window with 20% training phish in each sliding window is shown in Table V.

8.4.1 Result on Unique Testing Phish. The goal of this experiment is to evaluate
our approach on real-world phish stream with models trained on historic phishing
attacks that have no overlap with the phish in the testing set. In this experiment,
the positive corpus comes from the 624 unique phishing URLs from phish set 2,
and the negative data set uses all the pages in legitimate corpus 2.
Table V shows that CANTINA+ achieved a high TP of 88.56% and 90.47% with

and without FP filtering respectively with only two weeks’ worth of phish in the
training set for each sliding window. Login form filtering makes the TP significantly
worse yet benefits the FP significantly.
We see that the TPs on the unique testing phish in the randomized evaluation in

Table IV are better, mainly because for two-week long sliding windows, the number
of training phish in each sliding window is usually smaller than its counterpart under
the randomized evaluation, leading to slightly inferior TPs as a result. Another
subtlety that causes this discrepancy is that the TP on the phishing data of the
first day in our phish corpus is zero. In addition, the number of training phish with
different sliding windows varies significantly, from a minimum of 19 to a maximum
of 398, causing considerable variations in the resultant TPs across days, which is
confirmed by the result that the maximum TP did not always occur under the
setting with 70% training phish for each algorithm.
Table V also shows that with 20% phish in the training set in each sliding win-

dow, the FP of CANTINA+ with no login form filtering is 1.870%, which drops
to 1.320% with login form filtering, both worse than the counterpart in the ran-
domized experiment. The gap in FPs under the two evaluation methodologies can
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be attributed to the following observations. First, we conducted 10 experiments
and averaged the resultant statistics for each setting in the randomized evaluation,
which helped reduce random variations in the performance. On the other hand,
we could not perform 10-run averaging in the time-based evaluation due to the
nature of this experimental strategy, since the training phish in the sliding win-
dow prior to the current time point are fixed and could not be randomized. This
one-time random selection of legitimate pages might cause unlucky train/test split,
leading to variable FPs. Second, learning models are optimized in the randomized
experiment, while default parameter values are used in the time-based analysis.
A breakdown on the performance by days shows that the FP of our approach on

the second day in our corpus is significantly worse than the other days, and after
that the FP stays relatively stable. This is caused by the fact that we only have
one day’s worth of training phish in evaluating our model on the web pages of the
second day, leading to a very small training set and therefore the undesirable FP.

8.4.2 Result on Near-duplicate Testing Phish. The goal of the experiment in
this section is to demonstrate the effectiveness of our feature set on real-world phish
stream with near-duplicate attacks of the training phish. Specifically, we utilized
part of the 624 unique phishing URLs from phish set 2 and part of legitimate corpus
2 for training, and evaluated the models on the 550 near-duplicate phish from phish
set 2 and the remaining URLs of legitimate corpus 2.
Overall, the pattern in the result of this experiment in Table V is similar to that

of the experiment on unique testing phish in section 8.3.2. Particularly, the TP of
CANTINA+ is around 95%, higher than the statistics in the experiment on unique
testing phish, which is what we expected since the testing phish here highly resemble
the training phish. However, the 95% TP here is lower than the over 99% TP
(Table IV) in the randomized evaluation, and we offer two explanations regarding
this gap. First, we have more training phish in the randomized experiment. Second,
the testing phish set in the randomized evaluation is much larger (5348 vs 551),
subsuming more near-duplicate instances.

8.5 Result under Various Percents of Training Phish

In deploying our system for real-world applications, we need to build a training set
and train our approach in advance, for which the percentage of phish in the training
data is a key parameter. To examine the impact of the ratio of the two types of
web pages in the training data on the performance of our approach, we varied its
value and evaluated the performance of CANTINA+ under both the randomized
and time-based evaluation. The experimental result is given in Fig. 2 and Fig. 3.
In Fig. 2, a significant positive correlation is seen between TP and the percent

of phish in the training data in all cases but the time-based evaluation on near-
duplicate phish. This trend is self-evident in that machine learning models are able
to detect more phish with more phishing patterns in the training set. Fig. 3 illus-
trates a similar story in terms of FP, with a significant negative correlation between
FP and the percent of phish in the training data. Although the FP of CANTINA+
deteriorated as more training phish were added, the ratio between opposite classes
in the training data, among other parameters, is of our choosing, and we can always
optimize our approach to guarantee the best generalized performance.
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Fig. 2. TPs of CANTINA+ using Bayesian Network. Eight curves are shown, corresponding to
all the combinations of evaluation methodology, type of testing phish and the use of login form
filtering. A significant positive correlation is seen between TP and the percent of training phish.

With other settings being identical, CANTINA+ always performs better on near-duplicate testing
phish than on unique testing phish, and login form filtering makes the TP significantly worse. The
two curves corresponding to the randomized evaluation on near-duplicate testing phish with and

without login form filtering almost coincide.

8.6 Comparing CANTINA+ vs CANTINA

Zhang et al proposed CANTINA, a content-based method, which performed com-
petitively in their experiment against two state-of-the-art toolbars, SpoofGuard
and Netcraft [Zhang et al. 2007]. We implemented an offline version of CANTINA,
and evaluated our hierarchical CANTINA+ with CANTINA on the same testing
sets in the randomized evaluation. Table IV shows that our CANTINA+ always
outperformed CANTINA by a huge margin in terms of TP, with a comparable FP.
In the experiment on unique testing phish, CANTINA+ outperformed CANTINA

with a huge margin of over 0.12 in terms of F1, a statistically significant result in-
dicating the superiority of CANTINA+. In particular, CANTINA+ gained an over
20% improvement over CANTINA on TP. Notably, our experiment shows a TP of
about 71% for CANTINA in Table IV, drastically different from the TP of 89% in
our original CANTINA paper [Zhang et al. 2007]. Three factors mainly caused this
discrepancy. First, one feature in CANTINA assumes phishing mostly focuses on
nine target sites and examines the inconsistency between the nine logos and the page
domain. As phishing attacks evolve, however, the distribution of the most phished

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 · Guang Xiang et al.

10 20 30 40 50 60 70
Percentage of phish in the training set (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Fa

ls
e
 p

o
si

ti
v
e
 r

a
te

 (
%

)

Performance of CANTINA+ using Bayesian Network

rand/no
rand/yes
time/no
time/yes

Fig. 3. FPs of CANTINA+ using Bayesian Network. The four curves correspond to the perfor-
mance of our approach on unique testing phish. FP rises as the percentage of phish in the training
data increases. Login forming filtering makes the FP significantly better.

brands changes, and this feature in CANTINA often fails. Second, CANTINA
learns its feature weights on a rather limited 200 URLs, leading to significantly
undertrained model. For instance, the “IP address” feature in CANTINA almost
never fires alarms, but has a non-trivial weight. Third, we evaluated CANTINA
in this paper on a much larger collection with harder testing cases, compared with
the 200 testing URLs from three categories in [Zhang et al. 2007].
Particularly, CANTINA has no explicit training stage, which explains the phe-

nomenon that the TPs of CANTINA only show slight fluctuations under an increas-
ing value of the percentage of training phish. Furthermore, the testing legitimate
sets remain the same under various ratios of training phish, and thus the FPs of
CANTINA are thus constant.
In another experiment comparing CANTINA+ with CANTINA, we evaluated

both methods on the 5899 near-duplicate phish from phish set 1 and phish set 2,
and report the result in Table IV. The statistics indicate that CANTINA+ still
outperformed CANTINA on this data set with a F1 of around 0.99 versus 0.96.
Particularly, CANTINA+ beat CANTINA by far in terms of TP, with a roughly
6% margin. We observe that the TP of CANTINA is about 93% in this experiment,
significantly better than its 71% TP on the unique testing phish. The cause of this
is that we utilized a much larger testing set with substantial near-duplicate of the
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training phish in this experiment.

8.7 Learning with Individual Features

0.0 0.2 0.4 0.6 0.8 1.0
Area under the ROC curve (AUC)

Embedded domain

IP address

#Dots

Suspicious URL

#Sensitive words in URL

Out-of-position TLD

Bad forms

Bad action fields

Non-matching URLs

Out-of-position brand

Age of domain

Page in top search results

PageRank

Search copyright+domain

Search copyright+hostname

Fig. 4. Area under the ROC curve (AUC) of BN with each single feature (1-dimensional input
space) under 10% training phish. Top-performing features include bad forms, bad action fields,
non-matching URLs, and page in top search results, with over 0.85 AUC.

The statistics in the previous sections were obtained by using the whole feature
set (15 features in total), and in this section, we evaluate the contribution of each
single feature to the overall performance. We refrain from using TP/FP and instead
stick to the summary statistic AUC in measuring the performance of each individual
feature, because the separability of opposite classes in the 1-dimensional input space
is prone to the impact of the quality of training data, and TP/FP may exhibit high
variance since they only capture a single aspect of the big picture.
Across the learning algorithms, BN, Adaboost, RF and LR perform comparably,

with all significantly better than J48, which in turn significantly outperforms SVM.
We find through our experiment that the correlation between the AUC of each
feature and the percent of phish in the training data is almost zero, and therefore,
we only report the result with BN under 10% training phish in Fig. 4.
Fig. 4 shows that a few features clearly stand out from the others with over 0.85

AUC, including “bad forms”, “bad action fields”, “non-matching URLs”, and “page
in top search results”. Besides, “age of domain”, “search copyright company name
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plus domain”, “search copyright company name plus hostname” and “PageRank”
also perform fairly with over 0.75 AUC, though less stellar than the above four
superstars. The remaining features are apparently inferior, with under 0.7 AUC or
even close to 0.5 AUC, almost amounting to random guessing.

9. DISCUSSION

9.1 Analysis on the Performance of Individual Features

In this section, we give a thorough analysis of possible errors our features might
make. We also offer some insight on how phishers could defeat our feature set, as
well as brief discussion about potential improvements to defeat attackers’ attempt.

(1) Embedded domain . This feature leads to below 0.61 AUC for all learn-
ing algorithms, suggesting an overall poor performance when used alone. Typi-
cally, legitimate domains/hostnames rarely show this pattern, but there are excep-
tions such as URL http://groups.google.co.za/group/misc.invest.options/

about?hl=st. A remedy for such cases is to impose stricter constraints in the reg-
ular expressions demanding the dot-separated patterns to correspond to genuine
domains/hostnames. In response, phishers could remove such embedded patterns,
however, the principle that phishing URLs have to look somewhat legitimate often
requires the domain of the victim site to appear in the phishing URL, which will
be caught by this embedded domain feature.

(2) IP address. This feature alone yields an undesirable AUC of less than
0.56 in our evaluation, indicating a poor performance slightly better than random
guessing. Legitimate entities rarely, if not never, publish their websites via IP
addresses, while a lot of phishing sites employ IP address to disguise their suspicious
URLs. However, we did find a legitimate page using IP address in our corpus,
which significantly deteriorated the performance of this feature. Since the FP of
this feature is very low, an alternative usage is to employ it as a filter rather than
a feature in the machine learning framework.

(3) #dots in URL. Though not very good (AUC below 0.74), this feature
outperforms the first two by a considerable margin. It is likely that legitimate
URLs contain slightly more dots in some cases, however, phishing URLs typically
cannot have this number reduced significantly in that attackers usually have to
attach the target domain/hostname in the phishing URL as a masquerade.

(4) Suspicious URL. This feature performs poorly, with an AUC of less than
0.55. The “at” (@) sign is never encountered in the webpage URLs in our cor-
pus, partially because criminals have moved away from using @ since modern web
browsers check for this feature. Dash “-” are seen often in both our phishing and
legitimate repositories.

(5) #sensitive words in URL. With under 0.73 AUC, this feature is based on
the empirical finding of [Garera et al. 2007]. Attackers could simply eliminate those
words or use variants of them in the URLs, thus defeating this feature. However,
since phishing attacks usually target the login pages of famous websites, phishing
URLs tend to manifest a certain word pattern, and though a specific set of words
may lose effectiveness over time, the general idea still holds and discovering new
words will enhance this feature accordingly.
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(6) Out-of-position TLD . Due to the prevalent use of phishing toolkits, the
out-of-position TLD pattern is not rare. Moreover, TLDs are clearly defined and
easily extractable. In terms of false positives, a significant portion is caused by the
use of top level domains as regular strings in the non-TLD positions of the hostname.
We manually define a set of 11 TLDs7 that often appear in a non-TLD position
of the hostname in hope of eliminating corresponding false positives. However, the
incompleteness of this summarization still led to a number of false positives, the
most typical a few of which include TLD “travel” as in travel.yahoo.com, TLD
“web” as in web.sourceforge.com, and TLD “fi” as in fi.netlog.com.

This feature could be improved in many ways. Defining a more complete list of
multi-purposed TLDs will help in controling FP. This feature can also be used as
a filter rather than a feature for machine learning in light of its low FP.

(7) Bad forms. This feature is among the best in the whole set, achieving an
AUC of over 0.89 in almost all cases. To spoof this feature, attackers could use login
keywords beyond our dictionary, put the login keyword outside the FORM tag in
the HTML, or rely on images of text, etc. In responding to phishers’ manipulation,
we can design new constraints or relax existing ones in this feature to capture
more phishing patterns, such as adding more entries in the login keyword list,
expanding the search scope, etc. On the other hand, certain legitimate webpages
may meet the four conditions of this feature and are thus deemed as malicious.
Though a login form is incorrectly detected in such cases, the page is unlikely to
show suspicious patterns on the features, and we will rely on the features to make
correct classification.

(8) Bad action fields. This is another top-performing feature, with an AUC
of more than 0.89 in almost all cases. This feature examines three criteria in a dis-
junctive fashion when looking for bad action fields. One trick to spoof the features
in this feature is to use an absolute URL or a relative URL with directory hierarchy
in the action field to refer to the authentication code. As a countermeasure, we
can extend this feature by checking the scheme part of the URL in the action field.
Since phishing pages seldom use “https”, this simple enhancement is able to catch
this phishing exploitation regardless of absolute or relative URLs being used.

(9) Non-matching URLs. This is another top-ranked feature, with over 0.85
AUC. Extracting values for this feature is complicated, and two types of errors may
occur due to the enormous ways of assigning link values in the HTML. An example
for false positive is a webpage on the “live.com” domain, whose most frequent
domain in the HTML links is “msn.com”. On the contrary, attackers could try to
evade detection by designing links in the HTML in a way that this feature misses.
For example, a different URL8 can be assigned to each link in the HTML, and the
most frequent domain is chosen to point to the webpage domain. However, this
process significantly magnifies the cost of building a massive volume of phishing
sites via toolkits, and may not be feasible for phishers in reality.

7This set of country code and non-country code top level domains include mu, bt, info, ci, il, tv,
fr, gm, my, it, us.
8By “different” in this context, we mean two URLs that differ not only in the fragment component
of the URL.
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(10) Out-of-position brand name . False negatives of this feature are caused
by a number of factors. The first is that most phishing pages do not include the
target brands in the URL domain names. The second issue is that the set of
heuristics in extracting the dominant domain keyword in the HTML only cover
common patterns and may fail to discover the genuine target brand name under
some occasions.

On the other hand, raising warnings on legitimate sites is rare for this feature,
since it is not common practice for legitimate websites to insert the brand name
before the webpage domain. The only a few false positives in our experiment
share one property, i.e., the dominant domain keyword equals the page domain
keyword, which is in turn a substring of the segment to its left in the hostname, such
as www.chaseonline.chase.com. As a remedy, we can add one simple heuristic
removing such unintended matches to reduce potential false positives.

Though the AUC of this feature is only slightly better than that of random guessing
(an AUC of 0.5), the enhanced version of this feature as analyzed above will have
extremely low FP, indicating that out-of-position brand name can be used as a filter
rather than a feature in the machine learning framework with trivial contributions.
Moreover, more patterns can be encoded into this feature to cover more phishing
URL variants, magnifying the TP of this feature when used alone.

(11) Age of domain . Mostly with an AUC between 0.7 and 0.84, this feature
behaves fairly. Attackers sometimes upload phishing sites onto compromised legal
domains, or host phishing attacks on otherwise legitimate domains, in which cases
the age of domain is much older than typical phishing domains. However, there
is a limit on the extent attackers could go in compromising legitimate sites given
the fact that the cyberspace is paying increasingly intensive attention to security.
On the other hand, newly registered legal domains tend to be incorrectly regarded
as being phishy. However, other features of such new legitimate sites may exhibit
typical benign patterns, and a correct prediction is thus still likely.

(12) Page in top search results. One of the best features in the whole set,
this feature has an AUC of over 0.85. In terms of false negatives, this feature
will fail if a phishing domain is returned among top N results. However, real-time
applications of our algorithm do not suffer from this problem as much. An informal
explanation for that has two main points. First, when a new phish just comes out
of attackers’ workshop, few, if any, backlinks exist for it, and search engines are
unlikely to return its domain in a top entry; second, search engines might index the
phish as time progresses when more links on the web begin referring to it, however,
the phish may have already become unavailable due to the short-lived nature of
phishing activity.

For false positives, one cause is the selection of irrelevant query words via the TF-
IDF metric. As a remedy, extending TF-IDF with other IR measures in selecting
query words may help boost the intended domain to top result positions. Another
possible cause of false positives is that the top search results subsume domains
pointing to the same entity as the webpage domain, yet with different literal repre-
sentations, such as “live.com” and “msn.com”. Such related domains pose a threat
to the current design of this feature, and feature 14 and 15 below are introduced to
ameliorate this problem. One last hard situation is new legitimate websites, which
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have not been covered by web crawlers, and thus might be mistakenly warned by
this feature. For such cases, we rely on other features to make correct classifications.

(13) PageRank . Mostly with an AUC between 0.76 and 0.8, this feature per-
forms fairly in distinguishing the two types of webpages. Exploitation techniques
exist for manipulating search engine algorithms to boost PageRank, however, ma-
jor search engines are constantly improving their techniques to provide safer and
better services, rendering phishers’ attempt largely ineffective.
On the other hand, classifying a webpage based on PageRank only is not a simple
task when the PageRank value is not available. Given an astronomical number of
pages on the web, it is impossible that each has a valid PageRank value, especially
for the gigantic number of unpopular webpages. In addition, though hosted on
well-known websites, certain specific pages deep in the URL directory hierarchy
may have zero or missing PageRank. Therefore, it will be more effective to harness
other informative features to remedy the weakness of PageRank, and our other
features serve that purpose.

(14) Search copyright company name plus domain . This is another well-
performing feature, with an AUC between 0.76 and 0.8. Aiming at finding the
intended webpage directly by searching the copyright brand name and page do-
main, this feature is able to augment the TF-IDF feature under a certain cir-
cumstances. For instance, for legitimate URL http://help.blogger.com/bin/

static.py?page=start.cs which the TF-IDF feature misclassifies, searching the
copyright brand name “Google” plus the page domain successfully brings up “blog-
ger.com” in top 10 entries.
In terms of false positives, one source of error comes from the process of extract-
ing copyright brand names. The current regular expressions in this feature do not
capture all the copyright variants and thus may fail in finding a brand name, or
return noisy strings in addition to the intended copyright name. Searching such
queries sometimes fails to retrieve the page domain among top 10 positions. An-
other possible cause of false positives is that the copyright name and page domain
sometimes coincide. Executing search with two identical brand names in the query
may bring up irrelevant results in top positions. On the other hand, false negatives
are mostly caused by the cases in which phishing pages are hosted by compromised
legal domains with no copyright fields.
Multiple ways exist in improving this feature. The first is to design more robust
and effective brand name detectors, so that the recognized copyright name indeed
subsumes the brand name with minimal noise. Another way is to remove duplicate
domains in the query to boost the ranking of the intended page domain.

(15) Search copyright company name plus hostname . This feature is based
on a similar rationale as feature 14, with a better AUC in general (over 0.8), and
accordingly, the resultant two types of errors are also analogous. However, since
domain is only a substring of the hostname, this feature imposes stricter query
criteria and thus has lower FP and TP than feature 14.

In addition to the AUC of each feature under the machine learning framework,
we also give a more straightforward evaluation of the binary features among our
feature set in Table VI. In this table, TP is simply the percentage of phishing
attacks that the value of each feature indicates phishy (1 or 0 depending on the
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Table VI. Performance of the binary features without using machine learning algo-
rithms. TP in this table is computed as the ratio between the number of pages on

which the feature values indicate phishy and the total number of phishing attacks.
FP in this table is computed as the ratio between the number of pages on which the
feature values indicate phishy and the total number of legitimate pages. We used all
2219 unique phishing attacks (phish set 1 + phish set 2) and 2561 legitimate pages

(legitimate corpus 1) in this experiment. Top-performing features include page in top
search results, bad forms, bad action fields, and non-matching URLs, which agree
very well with the feature-wise result by AUC.

Feature name TP (%) FP (%)

Embedded domain 20.05 0.16

IP address 10.50 0.04

Suspicious URL 11.99 3.59

Out-of-position TLD 7.80 0.27

Bad forms 91.80 11.52

Bad action fields 88.01 9.64

Non-matching URLs 79.68 5.58

Out-of-position brand name 7.08 0.27

Page in top search results 92.92 21.44

Search copyright brand plus domain 65.57 9.76

Search copyright brand plus hostname 73.41 9.84

specific features), and FP is the percentage of the legitimate web pages that the
value of each feature indicates phishy, with neither involving the learning step.
Statistics in Table VI show that page in top search results, bad forms, bad action
fields, and non-matching URLs perform the best in distinguishing two types of web
pages, coinciding with the result by AUC above.

9.2 Runtime Performance

Our framework is composed of a training phase and a testing phase (Figure 1).
The training phase can be done offline, and so users do not experience any time
delay in this stage. When deployed and put into real-time usage, the testing phase
is conducted in an online fashion as each webpage arrives, and the modules with
high time complexity to a great extent determine the runtime performance and
user experience. Since a certain information for each webpage in our corpus such as
WHOIS records has been extracted and stored locally apriori, we only report the
approximated running time (microseconds) of CANTINA+ in this section. All our
experiment was conducted on a computer with a 1.73GHz processor and 2G RAM.
For the hash-based duplicate removal component, the SHA1 hash can be com-

puted efficiently on the HTML, causing no apparent delay in the work flow. The
average run time of this module is 58992ms± 28231ms per webpage in our corpus
(mean ± standard deviation). Detecting login forms only involves traversing the
HTML DOM, with an average run time of 151979ms± 722565ms per page. Once
the feature values have been extracted, applying the pre-trained machine learning
models also consumes an amount of time that is trivial. The module with critical
time issue is the feature extractor, and we will give a thorough analysis on the time
complexity of this module based on each individual feature.
The runtime performance of all our features is given in Table VII. Features in the

first category (feature 1 through 6) simply probe the URLs via hard-coded patterns
or simple regular expressions, and are thus the least time intensive in the feature
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Table VII. Average running time and standard deviation of each feature (microseconds).

The “bad forms” feature has a huge standard deviation of 2.56e+5ms due to its use of regular
expressions on the page content to extract copyright company names and the high irregularity
of HTML documents. The “age of domain” feature has a big standard deviation of 1.02e+6ms
due to the irregular response times of the WHOIS service.

Feature name Average runtime (msec) Standard deviation

Embedded domain 78 1099

IP address 72 1065

Number of dots in URL 32 699

Suspicious URL 32 704

Number of sensitive words in URL 46 846

Out-of-position TLD 68 1027

Bad forms 240049 2562551

Bad action fields 62 977

Non-matching URLs 7552 10946

Out-of-position brand name 88 1172

Age of domain 606266 1020873

Page in top search results 639736 440999

PageRank 500473 422601

Search copyright brand plus domain 414202 228470

Search copyright brand plus hostname 408619 206084

set. Features in the second category (feature 7 through 10) generally run slower
than those in the first category due to the use of HTML DOM. However, DOM
maneuver is essentially tree traversal with a certain extra string operations and is
thus still sufficiently fast. Actually, multiple tasks are completed in one traversal of
the HTML DOM in our implementation, such as finding the most frequent domain
keyword via heuristics, recording all the forms and their action fields, etc., which
significantly expedites the running of feature extraction. In contrast, the third
category (feature 11 through 15) involves web search in addition to playing with
the HTML DOM, yielding multiple round-trip web traffic, and thus to a large degree
determines the time performance of our approach.

Various measures exist in improving the time performance of the feature extrac-
tion module. An essential strategy is caching. The age of domain feature benefits
from caching the most, since the domain registration date is invariant and typical
browsing behavior keeps most people on a small group of favorite websites to them.
Also, the domain is shared throughout the whole site, and WHOIS lookups only
need to be performed once. Similarly, caching the query and result pairs for the
three search engine based features helps improve runtime performance. Particu-
larly, the two features involving copyright search will be accelerated tremendously
thanks to users’ surfing habits and the fact that the copyright field is usually ho-
mogeneous within the same website. Another way to speedup the search-oriented
features is to directly cache the URLs that have already been checked.
Besides proper caching, login form detection also plays a critical role in lowering

the time complexity of our system. In reality, the vast majority of legitimate pages
do not have login forms and thus will be directly filtered with a “legitimate” label.
Only a tiny percent of the whole web with login forms will have to go through
the feature extraction process, and users probably visit these webpages to access
their accounts, which involves a fair amount of typing and checking and thus gives
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our approach some extra time in determining the legitimacy of the corresponding
pages. As long as users are warned before their personal credentials are submitted,
the latency mostly caused by web search is acceptable since user experience is barely
impacted and more importantly, no harm has been done to the web users.

9.3 Limitations of the Current CANTINA+

There are a certain phishing variants that our current CANTINA+, as well as
almost all existing anti-phishing solutions, cannot deal with properly, which in
turn makes our work and further research effort worthwhile.
Cross site scripting (XSS) is a type of typical security vulnerability in web ap-

plications by which criminals may launch a variant of phishing attack. Our anti-
phishing solution is certainly not a panacea, but it is not designed to deal with
this type of attacks in the first place. In this case, we will rely on other techniques
such as cookie protection to assist our approach in detecting phish. Considering
the fact that almost all phishing attacks are targeting on well-known financial sites,
we have every reason to believe that those sites would provide solutions to mitigate
XSS vulnerabilities.
Another difficult scenario is that attackers compromise legitimate domains and

host phishing attacks on those servers. Though other features of CANTINA+
might fail in this case, the following features still work: “page in top search re-
sults”, “PageRank”, “page in top results when searching copyright company name
and domain”, “page in top results when searching copyright company name and
hostname”, and our anti-phishing algorithm therefore still has a chance catching
such attacks.
Attackers sometimes build phishing web pages purely made up of images, leaving

our algorithm no text to analyze. Although text-based technique is infeasible here,
the sheer fact that there are only a bunch of images and a login form without text
at all on a web page is a good indicator of a phishing attack, and we could train
models using this as a feature.

10. CONCLUSIONS

In this paper, we presented CANTINA+, a layered solution for phishing web page
detection with two goals: 1) to catch the constantly evolving novel phishing at-
tacks, and 2) to control the false positive rate under an acceptable level. Exploiting
the generalization power of machine learning techniques, CANTINA+ achieves the
former with a classification engine that fully enjoys the expressiveness and effective-
ness of a rich set of high-level features of our design, which is the major contribution
of our work in this paper. Based on the observation that all of the current phishing
attacks utilize login forms to hold sensitive user information, CANTINA+ realizes
the latter by a login form detection algorithm that filters webpages with no login
forms prior to the feature extraction step. Not only does this filter reduce the FP
to a much lower level, it also significantly speeds up the running of our system.
Moreover, exploiting the fact that a substantial percent of current phishing sites
are created automatically by toolkits with high similarity, CANTINA+ employs a
hash-based filtering module to inspect web pages in the beginning of the layered
pipeline to identify near-duplicate attacks in a fast and highly reliable fashion.
Significantly overcoming the weaknesses of the mainstream URL blacklists and
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feature-based phish detection approaches, CANTINA+ is demonstrated in our ex-
tensive experiment over a diverse spectrum of corpus to be an effective anti-phishing
solution. Specifically, in the randomized evaluation where training and testing
phish are randomly selected, CANTINA+ achieved over 90% TP on unique testing
phish, over 99% TP on near-duplicate testing phish, and about 0.4% FP under 10%
training phish with login form filtering to slash false positives. In the time-based
evaluation methodology where earlier phish were used as training data to build clas-
sification models for later attacks, our approach achieved over 87% TP on unique
testing phish, about 95% TP on near-duplicate testing phish, and about 1% FP
under 20% training phish with a two-week sliding window. Capable of achieving
0.4% FP and over 90% TP, our CANTINA+ has the potential to be a competitive
anti-phishing solution.
Our CANTINA+ achieved comparable performance under six state-of-the-art

learning algorithms in the detection engine, which manifests that the superior per-
formance comes from the efficacy of our feature set and hybrid design rather than
a particular pick of machine learning algorithms. This also suggests that in real-
world deployment of CANTINA+, practitioners could choose their favorite learning
algorithms as necessary.
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