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16.1 Review on duality

16.1.1 Construction

Given a general minization problem,
min
x∈Rn

f(x)

s.t.hi(x) ≤ 0, i = 1, ..m

li(x) = 0, j = 1, ...r

These do not need to be convex functions. We can write the Lagrangian:

L(x, u, v) = f(x) +
∑

uihi(x) +
∑

vili(x)

Contrain ui to be non-negative. One property of the Lagrangian is:

f(x) ≥ L(x, u, v)

where x is feasible. So it’s a lower bound of f(x) over the feasible set.
Minimize the both sides, we have

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x∈Rn

L(x, u, v) = g(u, v)

Here g(u, v) is called the dual funciton, which provides a lower bound of the primal optimal value f∗. To
get the best lower bound, g is maximized over u, v, yielding the dual problem

max
v∈Rm,v∈Rr

g(u, v)

s.t.u ≥ 0

16.1.2 Properties

Weak Duality By construction, f∗ ≥ g∗ is always true (even the primal problem is not convex).
Another key property is that the dual problem is always convex (again even the primal problem is not con-
vex).
Notes for proof
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• Minimizing a convex function and maxmizing a concave function over a convex set are both convex
problems

• Minimizing a convex f is maximizing −f , which is concave.

• Dual problem is concave because it is affine of u, v

Example:

min f(x) = x4 − 50x2 + 100x, s.t.x ≥ −4.5

Minimizing the Lagrangian over x involves the differential of f , which is a cubic function. It has a closed-form
solution of the roots.

Figure 16.1: Nonconvex quartic minimization

The red line in the right figure is the primal optimal value and the black line is the dual function value. Here
the strong duality is not satisfied.

16.1.3 More on strong duality

The stong duality holds when Slater’s condition is satisfied. Then back to LP with duality. Since all the
constraints are linear, if the primal LQ is feasible, then strong duality holds. In addition, if the primal LP
is not feasible but the dual LP is, strong duality holds as well.

16.1.4 Duality gap

Defined as on feasible x, u, v:
f(x)− g(u, v)

Since
f(x∗) ≥ g(u, v)

f(x) ≥ g(u∗, v∗)

if the duality gap is zero, then x is primal optimal u, v are dual optimal.
Or we can say

f(x)− f∗ ≤ f(x)− g(u, v)

This provides a upper bound of how far away from the primal optimal solution. If the dual is easy to
evaluate, this is a good stopping criterion for gradient descent.
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16.2 KKT conditions

Setup:

min
x∈Rn

f(x)

s.t.hi(x) ≤ 0, i = 1, ..m

li(x) = 0, j = 1, ...r

KKT conditions:

• Stationarity 0 ∈ ∂L(x, u, v), i.e. zero is subgradient of Lagrangian. This indicates x minimizes
Lagrangian over all x.

• Complementary slackness uihi(x) = 0,∀i. If hi(x) is strictly less than zero, then ui = 0. If hi(x)
equals zero, then ui can be any value.

• Primal feasibility hi(x) ≤ 0, li(x) = 0,∀i, j

• Dual feasibility ui ≥ 0,∀i

Lemma 16.1 If x∗ and u∗, v∗ are primal and dual solutions, with zero duality gap, then x∗ and u∗, v∗ satisfy
the KKT conditions

Proof: Let x∗, u∗, v∗ be primal and dual solutions with zero duality gap. Then f(x∗) = g(u∗, v∗).
By the dual fucntion definition,

g(u∗, v∗) = min
x∈Rn

f(x) +
∑

u∗i hi(x) +
∑

v∗j lj(x)

Since it’s minimum, we can plug in x∗,

min
x∈Rn

f(x) +
∑

u∗i hi(x) +
∑

v∗j lj(x) ≤ f(x∗) +
∑

u∗i hi(x
∗) +

∑
v∗j lj(x

∗)

Since x∗ is primal feasible, ∑
u∗i hi(x

∗) +
∑

v∗j lj(x
∗) ≤ 0

g(u∗, v∗) ≤ f(x∗)

The conclusion is that all these inequalities are actually equalities.
More specifically, look at the first inequality. When it is equality, we know x∗ also minimizes the Lagrangian.
→ 0 ∈ ∂f(x∗) +

∑
u∗i hi(x

∗) +
∑
v∗j lj(x

∗)→ stationarity condition.
For the second inequality, we have

∑
u∗i hi(x

∗) +
∑
v∗j lj(x

∗) = 0.
∑
v∗j lj(x

∗) = 0 because x∗ is feasible. So∑
u∗i hi(x

∗) = 0. Given u∗i hi(x
∗) ≤ 0,∀i, we know actually u∗i hi(x

∗) = 0,∀i. → complementary slackness.
Primal feasibility and dual feasibility are obvious.

Lemma 16.2 If x∗ and u∗, v∗ satisfy the KKT conditions, then x∗ and u∗, v∗ are primal and dual solutions.

Proof: By the dual fucntion definition,

g(u∗, v∗) = min
x∈Rn

f(x) +
∑

u∗i hi(x) +
∑

v∗j lj(x)
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By stationarity, x∗ minimizes the Lagrangian, i.e.

g(u∗, v∗) = L(x∗, u∗, v∗) = f(x∗) +
∑

u∗i hi(x
∗) +

∑
v∗j lj(x

∗)

Given complementary slackness and primal feasibility,∑
u∗i hi(x

∗) +
∑

v∗j lj(x
∗) = 0

g(u∗, v∗) = f(x∗)

Therefore duality gap is zero andx∗ and u∗, v∗ are primal and dual feasible so x∗ and u∗, v∗ are primal and
dual optimal

Then we can say

Theorem 16.3 For a problem with strong duality (e.g., assume Slaters condition: convex problem and there
exists x strictly satisfying non- affine inequality contraints),
x∗ and u∗, v∗ are primal and dual solutions ⇐⇒ x∗ and u∗, v∗ satisfy the KKT conditions

16.3 Examples

16.3.1 Quadratic with equality constraints

Let’s consider for Q � 0, and form the following optimization problem,

min
x∈Rn

1
2x

TQx+ cTx

subject to Ax = 0

An example of this problems comes up is Newton’s method.When we compute Newton step for minx∈Rnf(x)
subject to Ax = b
It is a convex problem with no inequality constraints, so we will have only one set of new variables corre-
sponding to the equality constraints, called u.
We can define the Lagrangian

L(x, u) = 1
2x

TQx+ cTx+ u(Ax− 0)

For x and u which satisfies KKT conditions, we need to have:
Stationarity: 0 = Qx+ c+ATu
Primal feasibility: Ax = 0
There is no complementary slackness and dual feasibility conditions because no inequality constraints exist.
We can write these conditions in a matrix form:[

Q AT

A 0

] [
x
u

]
=

[
−c
0

]

16.3.2 Lasso

Let’s consider the lasso problem:
Given response y ∈ Rn, predictors A ∈ Rn×p(columns A1, ..., Ap), solve the optimization problem
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min
x∈Rp

1
2‖y −Ax‖

2 + λ‖x‖1

Since there is no constraints, the KKT conditions will only contain stationarity condition:

0 = −AT (y −Ax) + λs

where s ∈ ∂λ‖x‖1, i.e.,

si ∈


1 if xi > 0

−1 if xi < 0

[−1, 1] if xi = 0

Rewrite the condition as:
AT (y −Ax) = λs

We can derive from this condition that if |ATi (y−Ax)| < λ, then xi = 0. According to the KKT conditions,
s ∈ (−1, 1) strictly. And the only time this can happen is when xi = 0.

16.3.3 Group Lasso

Group lasso problem appears in the situation where instead of individual predictors, we want to select entire
groups such that each group is scientific meaningful.
This problem is similar to lasso problem,while predictors A is split up into groups, i.e., A = [A(1)A(2)...A(G)],
Also, the coefficient vector is split up into the same group, i.e., x = [x(1)x(2)...x(G)]
The group lasso problem can be written as the following:

min
x=(x(1)x(2)...x(G))∈Rp

1
2‖y −Ax‖

2 + λ
G∑
i=1

√
p(i)‖x(i)‖2

The difference between the lasso problem is that in group lasso problem the 1-norm penalty is replaced by
a sum of 2-norm penalty.

√
p(i) is a term that counts for group sizes, where p(i) is the number of variables

in the ist group.
Group lasso smooths the 1-norm ball of lasso problem in some direction, as shown in the picture below (From
Yuan and Lin (2006), Model selection and estimation in regression with grouped variables”).

Figure 16.2: Group Lasso

The thought is that by doing this, it is possible to choose some group to be zero entirely, which forces some
coefficient to be all zero. And in the group chosen to be non-zero, all the component are non-zero.
To prove the thought, let’s look at the KKT condition of this problem. Since there is no constraint, just
look at the stationarity condition which respect to every group of x(i).
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AT(i)(y −Ax) = λ
√
p(i)s(i), i = 1, ..., G

Where each s(i) ∈ ∂‖x(i)‖2, i.e.,

si ∈

{
x(i)/‖x(i)‖2 if x(i) 6= 0

z ∈ Rp(i) : ‖z‖2 ≤ 1 if x(i) = 0
, i = 1,...,G

Hence if ‖AT(i)(y −Ax) = λ
√
p(i)s(i)‖2 < λ

√
p(i), then x(i) = 0, else

AT(i)(y −Ax) = λ
√
p(i)s(i) = λ

√
p(i)x(i)/‖x(i)‖2

In this case, we can solve for x(i), and get the following equation:

x(i) = (AT(i)A(i) +
λ
√
p(i)

‖x(i)‖2
I)−1AT(i)r−(i)

where r−(i) = y −
∑
j 6=i

A(j)x(j)

Hence our previous thought is proved.
This also suggests an algorithm to compute compute group lasso. That is, if the condition holds for ‖AT(i)(y−
Ax) = λ

√
p(i)s(i)‖2 < λ

√
p(i), then we set the group to be zero. And if the condition holds for the second

case, then we set:

x(i) = (AT(i)A(i) +
λ
√
p(i)

‖x(i)‖2
I)−1AT(i)r−(i)

Note that x(i) is on both sides. Iterative method is used in this algorithm. We start with a guess, and plug
in x(i) of previous iteration in the right of the equation to compute new x(i).

16.4 Constrained form and Lagrange form

Often in statistics and machine learning we’ll switch back and forth between constrained form, where t ∈ R
is a tuning parameter,

min
x∈Rn

f(x) subject to h(x) ≤ t (C)

and Lagrangian form, where λ ≥ 0 is a tuning parameter,

min
x∈Rn

f(x) + λ · h(x) (L)

and claim these two forms are equivalent under certain condition. Here we assume that f, h are convex.
To prove that this is true, let’s first think about going from constrained form to Lagrange form.
If problem (C) is strictly feasible, then we know that strong duality holds because of the fact that it is strictly
convex. Hence there exists some λ ≥ 0, which in this case is the dual solution, such that any solution x∗,
which is the primal optimal in (C), is going to minimize

f(x) + λ · (h(x)− t)
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This is equivalent to min f(x) + λ · h(x) as long as t is not infinite.
Hence we can get that if the problem is convex and strictly feasible, then there exists some λ ≥ 0 such that
the constraint problem is the Lagrange problem.
About the other side, let’s go from Lagrange form to constrained form.
If we have a solution to

min
x∈Rn

f(x) + λ · h(x)

Let’s call it x∗. Take t = h(x∗), then go through the KKT conditions for problem:

min
x∈Rn

f(x) subject to h(x) ≤ t

The stationarity condition is satisfied because of the fact that we choose x∗ to

min
x∈Rn

f(x) + λ · h(x)

Which is the same thing to

min
x∈Rn

f(x) + λ · (h(x)− t)

Complementary slackness condition, which is λ ·(h(x∗)−t) is also true because t is defined as t = h(x∗). And
primal feasibility condition also holds because we define t = h(x∗). Hence x∗ satisfies the KKT conditions,
so x∗ is also the solution for the problem

min
x∈Rn

f(x) subject to h(x) ≤ t

To summarize, we have the following conclusion:

⋃
λ≥0
{solutions in (L)} ⊆

⋃
t
{solutions in (C)}⋃

λ≥0
{solutions in (L)} ⊇

⋃
t such that (C) is strictly feasible

{solutions in (C)}

These two forms are almost equivalent, because (C) is not always strictly feasible. However, note that the
only value of t that leads to a feasible but not strictly feasible constraint set is t = 0, i.e.,

x : g(x) ≤ t 6= ∅, x : g(x) = t = ∅ ⇒ t = 0

If t = 0 and the problem is not strictly feasible, by setting λ = ∞, we can enforce the constraint h(x) = 0,
and achieve the solution in Lagrange form.
For example, this is true if g is a norm, and in such situation we do get perfect equivalence. Otherwise it is
minor nonequivalent.

16.5 Uniqueness in 1-norm penalized problems

Theorem 16.4 Let f be differentiable and strictly convex, A ∈ Rn×p, λ > 0. Consider

min
x∈Rp

f(Ax) + λ‖x‖1

If the entries of A are drawn from a continuous probability distribution (on Rn×p), then with probability 1
the solution x∗ ∈ Rp is unique and has at most min{n,p} nonzero components.
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Here function f must be strictly convex, but there is no restrictions on the dimensions of A (we could have
p � n). Also, this holds for ∀λ > 0. We can prove this theorem by using the KKT conditions and simple
probability argument. Proof: The KKT conditions for this problem are:

AT∇f(Ax) + λs = 0

And we can rewrite this as:

−AT∇f(Ax) = λs

where s ∈ ∂λ‖x‖1, i.e.,

si ∈

{
{sign(xi)} if xi 6= 0

[−1, 1] if xi = 0

for i = 1, 2, ..., n First we can note that Ax, s are unique.
Define the set S = {j : |ATj ∇f(Ax)| = λ}, from the KKT conditions we can learn that any solution must

satisfies xi = 0 for all i /∈ S. First, assume that rank(AS) < |S|( here A ∈ Rn×|S|, which is the submatrix
of A corresponding to columns in S). Then for some i ∈ S

Ai =
∑

j∈S{i}

For both sides of the above equation, take an inner product with −∇f(Ax), we have

siλ =
∑

j∈S\{i}

cjsjλ

and then for both sides of the above equation, multiply by si

λ =
∑

j∈S\{i}

(sicjsj)λ

1 =
∑

j∈S\{i}

sicjsj

Call sicjsj as aj , and we can show that

siAi =
∑

j∈S\{i}

ajsjAj

where aj satisfies 1 =
∑

j∈S\{i}
aj This means that siAi ∈ aff{sjAj , j ∈ S\{i}} It is straightforward to show

that, if the entries of A have a density over Rn×p, then A is in general position with probability 1, and the
above situation siAi ∈ aff{sjAj , j ∈ S\{i}} can’t happen with probability 1. The picture below shows this
conclusion.
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Figure 16.3: Relationships of columns of A

Therefore, if entries of A are drawn from continuous probability distribution, any solution must satisfy
rank(AS) = |S| Since the matrix AS has the number of columns equal to |S|, which is less or equal to p and
the number of rows equal to n. Recalling the KKT conditions, this means the number of nonzero components
in any solution is ≤ |S| ≤ minn, p
Furthermore, we can reduce our optimization problem by partially solving. For our problem, plug in 0 for
all xi that i /∈ S, and we have

min
xS∈R|S|

f(ASxS) + λ‖xS‖1

Since AS has full rank, this problem is strictly convex. Hence the solution in this problem is unique.
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