

Detecting Repurposing and Over-Collection
in Multi-party Privacy Requirements Specifications

Travis D. Breaux1, Daniel Smullen1, Hanan Hibshi1, 2

Institute of Software Research, Carnegie Mellon University1
Pittsburgh, Pennsylvania, United States

College of Computing, King Abdul-Aziz University2
Jeddah, Saudi Arabia

{breaux,dsmullen,hhibshi}@cs.cmu.edu

Abstract—Mobile and web applications increasingly leverage
service-oriented architectures in which developers integrate
third-party services into end user applications. This includes
identity management, mapping and navigation, cloud storage,
and advertising services, among others. While service reuse
reduces development time, it introduces new privacy and security
risks due to data repurposing and over-collection as data is
shared among multiple parties who lack transparency into third-
party data practices. To address this challenge, we propose new
techniques based on Description Logic (DL) for modeling multi-
party data flow requirements and verifying the purpose
specification and collection and use limitation principles, which
are prominent privacy properties found in international
standards and guidelines. We evaluate our techniques in an
empirical case study that examines the data practices of the Waze
mobile application and three of their service providers: Facebook
Login, Amazon Web Services (a cloud storage provider), and
Flurry.com (a popular mobile analytics and advertising
platform). The study results include detected conflicts and
violations of the principles as well as two patterns for balancing
privacy and data use flexibility in requirements specifications.
Analysis of automation reasoning over the DL models show that
reasoning over complex compositions of multi-party systems is
feasible within exponential asymptotic timeframes proportional
to the policy size, the number of expressed data, and orthogonal
to the number of conflicts found.

Index Terms—Data flow analysis, privacy principles,
requirements validation.

I. INTRODUCTION
Increasingly, companies expose their information system

features to outside developers for reuse and integration into
third-party applications through Application Programmer
Interfaces (APIs). Popular examples include the Google Maps
API for navigation and routing services, and the Facebook
Login and Google+ for identity management and social
networking services. These services reduce development costs
because outside developers can leverage stable third-party
code. When these services are offered at low or no cost, small
companies and end-user programmers can trial these services
while developing cutting-edge application concepts, such as
the Waze crowdsourcing traffic application that combines
social networking with first-person traffic monitoring (e.g.,
reporting road hazards, speed traps, etc.)

Increased integration has obvious benefits to developers
and consumers alike; however, new privacy risks arise from
increased information sharing across services. Information that
users share with friends on Facebook, for example, can be
exposed to anonymous Waze users, or third-party advertisers
with whom the Facebook users have no direct business
relationship. This includes receiving access to a user’s social
network data or to a user’s travel itinerary. Despite increased
E.U. and U.S. government regulations [7], to our knowledge
software developers lack the tools needed to specify personal
data requirements in a distributed system that align their
practices with accepted privacy principles.

Contributions: we present new techniques to formally
model multi-party data flows requirements and align these
models with three critical privacy principles: the purpose
specification principle, which requires that the purposes for
which data is collected should be explicitly stated; the
collection limitation principle, which requires that collection
of personal data should be limited, e.g., limited to that which
will be used; and the use limitation principle, which requires
that uses be limited to the purposes for which the data was
originally collected (with exceptions for consent and legal
compliance). These principles are represented in varying
degrees across the U.S. Fair Information Practice Principles
(FIPPs) and OECD Guidelines on the Protection of Privacy
and Transborder Flows of Personal Data, and van der Sipe and
Maalej note the impact of these principles on mobile
applications, in particular [24]. Together, the principles reduce
the risk of over-collection, which is the collection of more
information than is needed, and repurposing, which is using or
sharing data for purposes other than that for which data was
collected. Repurposing occurs at data collectors, who collect
information from the data subject, or at data processors, who
process personal information on behalf of data collectors. In
composable systems, these principles are challenging to verify
due to the transitive nature of data storage and processing
across multiple parties.

The remaining paper is organized as follows: we introduce
a running example in Section II, the approach in Section III,
our case study design in Section IV, with results in Section V,
threats to validity in Section VI, related work in Section VII,
and our discussion and summary in Section VIII.

978-1-4673-6905-3/15 c© 2015 IEEE RE 2015, Ottawa, ON, Canada
Research Paper

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

166

II. RUNNING EXAMPLE
We illustrate our approach in a running example based on

the mobile application (app) Waze, which is a navigation app
that uses crowdsourcing to report traffic, road hazards, speed
traps, and other events. We revisit this example throughout the
paper and within our case study design and results.

Data requirements that govern the data flows seen in Fig. 1
appear in platform developer polices, customer agreements,
terms-of-use and terms-of-service agreements, and privacy
policies. Because many of these documents are viewed as
legal contracts, developers must align these requirements with
their information systems. In the case of privacy policies, the
policy also serves as a representation to the user about what
the company does internally with user data.

Fig. 1. Data flows among the Waze mobile app and their third-party

service providers; social network data is collected from Facebook Login and
potentially shared with Flurry.com, while Waze user data is stored in the

Amazon AWS cloud

III. APPROACH
We first review background, before introducing the new Eddy
language extensions.
A. Background on Privacy Specifications

Our privacy specifications are based on the Eddy language
[8], which has formal semantics expressed in Description
Logic (DL) - a subset of first-order logic for expressing
knowledge. A DL knowledge base KB is comprised of
intensional knowledge, which consists of concepts and roles
(terminology) in the TBox T, and extensional knowledge,
which consists of properties, objects and individuals
(assertions) in the ABox [3]. In this paper, we use the DL
family ALC, which includes logical constructors for union,
intersection, negation, and full existential qualifiers over roles.
Concept satisfiability, concept subsumption and ABox
consistency in ALC are PSPACE-complete [3].

Description Logic includes axioms for subsumption,
disjointness, and equivalence with respect to a TBox.
Subsumption describes individuals using generalities: we say a
concept C subsumes a concept D, written 𝑇 ⊨ 𝐷 ⊑ 𝐶, if
D𝔗 ⊆ C𝔗 for all interpretations 𝔗 that satisfy the TBox T. The
concept C is disjoint from a concept D, written 𝑇 ⊨ 𝐷 ⊓ 𝐶 →
⊥, if D𝔗 ∩ C𝔗 =⊘ for all interpretations 𝔗 that satisfy the
TBox T. Finally, the concept C is equivalent to a concept D,
written 𝑇 ⊨ C ≡ D, if C𝔗 = D𝔗 for all interpretations 𝔗 that
satisfy the TBox T.

The universe of discourse consists of the set Req of
requirements, Action of actions, Actor of actors, Datum of data

types, and Purpose of data purposes. A specification is a DL
knowledgebase KB that consists of multiple requirements. A
requirement is a DL equivalence axiom 𝑟 ∈ 𝑅𝑒𝑞 that is
comprised of the DL intersection of an action concept
𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛 and a role expression that consists of the DL
intersection of roles ∃𝑅! ⊓ … ∃𝑅! ∈ 𝑅𝑜𝑙𝑒𝑠. We are primarily
concerned with four roles in this paper: hasSource indicates
the source actor from whom the data was collected; hasObject
indicates the data on which an action is performed;
hasPurpose indicates the purpose for which data is acted
upon; and hasTarget indicates the recipient to whom data is
transferred. For example, requirement 𝑝! for a 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈
𝐷𝑎𝑡𝑢𝑚, and purpose 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 ∈ 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 in the
TBox T, such that it is true that:

 (1) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊓
 ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟 ⊓
 ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

Each requirement is contained in exactly one modality
concept in the TBox T as follows: Permission contains all
actions that an actor is permitted to perform; Obligation
contains all actions that an actor is required to perform; and
Prohibition contains all actions that an actor is prohibited from
performing. We adapt the axioms of Deontic Logic [13], such
that it is true that 𝑇 ⊨ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, wherein
each required action is necessarily permitted. If the
requirement 𝑝! is required such that 𝑇 ⊨ 𝑝! ⊑ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛,
then 𝑇 ⊨ 𝑝! ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛. We can now compare the
interpretations of two requirements based on the role fillers to
precisely infer conflicts. A conflict is defined as 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ≡
𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ⊓ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛.

We define a data flow trace as a subset of requirements
pairs 𝑟!, 𝑟! ∈ 𝑅𝑒𝑞 × 𝑅𝑒𝑞 that map from a source action 𝑟! to
a target action 𝑟!. We can trace permitted data collections
(source action) to permitted data uses and data transfers (target
actions) when the role values of the source and target actor,
datum and purpose entail a shared interpretation. For each
requirement written in the form 𝑟! ≡ 𝑎 ⊓ ∃𝑅!,!.𝐹!,! ⊓
∃𝑅!,!.𝐹!,! ⊓ … ⊓ ∃𝑅!,!.𝐹!,! in the TBox 𝑇, such that
𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸} and 𝑅!,!…𝑅!,! ∈ 𝑅𝑜𝑙𝑒𝑠,
we compare role fillers 𝐹!,!…𝐹!,! between the source and
target actions to yield one of four exclusive Modes as follows
for some 𝑗 ≠ 𝑘:
• U: Underflow, occurs when the data source is subsumed by

the target, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,!
• O: Overflow, occurs when the data target is subsumed by

the source, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,!
• E: Exact flow, occurs when the data source and target are

equivalent, if and only if, 𝑇 ⊨ 𝐹!,! ≡ 𝐹!,!
• N: No flow, otherwise.

Figure 2 presents an example trace from our study reported
in Section 5, produced using the Eddy toolset. There, the
Flurry (F) collection requirements FP17 and FP24 trace to the
transfer requirement FP15; each requirement is represented as a
node with arrows pointing in the direction of the inferred data
flow. Nodes are annotated with the requirements expressed in

Authentication
Services

Scalable Storage Services

Facebook Login Waze Flurry.com

Mobile Analytics
&

Advertising
Services

basic profile
information,

email address,
age, list of

friends, photo

driving route,
location,
speed,

device ids

Data flow

Legend:

167

Eddy’s syntax: “P” means permission, followed by the action
verb and role values for hasObject, hasSource and
hasPurpose. Requirement FP15 does not specify the source
from whom the data was collected, which we therefore assume
to mean “anyone.” Thus, the collection sources “end-user” and
“application” are more specific than the transfer source
“anyone,” which appear as underflows (red arrows). The
datum “device-id” in FP15 is a subset of the data collected
under FP17 and FP24, so the solid line arrow matching the datum
is blue to show an overflow.

Fig. 2. Example data flow trace: solid lines represent data, dashed lines
represent the data source, and dotted lines represent the purpose; these lines
are marked ase overflows (blue), underflows (red); and exact flows (black)

Below, the collection requirement p1 in formula (3)
encodes requirement FP24 from Figure 2, and p2 in formula (4)
encodes the transfer requirement for FP15. In formula (2), we
show that device-id is subsumed by the broader set of data
collected under FP24. Thus, the following are true:

(2) 𝑇 ⊨ 𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ⊑ (𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ⊔ 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊔ 𝑎𝑝𝑖_𝑘𝑒𝑦)
(3) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. (𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑

⊔ 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊔ 𝑎𝑝𝑖_𝑘𝑒𝑦)
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑒𝑛𝑑_𝑢𝑠𝑒𝑟 ⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒

 (4) 𝑇 ⊨ 𝑝! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟 ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡.𝐴𝑐𝑡𝑜𝑟

⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒

Based on the subsumption relation entailed in formula (2), we
can map the trace (𝑝!, 𝑝!)⟶ (𝑂,𝑈,𝐸) onto the three Modes
for the roles hasObject, hasSource and hasPurpose,
respectively. In general, tracing data flows allows an analyst to
visualize dependencies between collection, use and transfer
requirements. In this paper, we extend this formalization to
enable traces across multi-party specifications, which requires
a shared lexicon to unify terminology across specifications.

B. New Extensions to Privacy Specifications
We now present extensions to privacy specifications to

trace data flows across parties and check a specification for
compliance with the three privacy principles.
1) Tracing Multi-party Data Flows. In multi-party data flows,
we must trace from one actor’s transfer permissions to another
actor’s collection permissions. For example, the Waze privacy
policy describes permissions to collect and transfer personal
information to and from social networks. However, Waze
interoperates with multiple social networks, such as Facebook
and Google+, who each provide this service to Waze. Each 3rd
party has their own privacy policy that governs the flow of
data to and from Waze. We formalize these relationships in a
service map that assigns each party in the service relationship
to one or more roles, and a dictionary that maps terminology

from one specification to terminology in the other. Each
specification can be written independently and thus developers
need only align specifications based on their known service
relationships, as opposed to the more difficult challenge of
developing a universal ontology. To distinguish between
actors and their specifications, we introduce the set Agent that
contains unique identifiers for each actor in the domain of
discourse. In addition, we introduce the mapping function
𝑝𝑜𝑙𝑖𝑐𝑦 ∶ 𝐴𝑔𝑒𝑛𝑡⟶ 𝑆𝑝𝑒𝑐 that maps agent 𝑖𝑑 ∈ 𝐴𝑔𝑒𝑛𝑡 to their
privacy requirements specifications in 𝑆𝑝𝑒𝑐. Below, we refer
to agents 𝑎!, 𝑎! ∈ 𝐴𝑔𝑒𝑛𝑡 and their respective privacy
specifications in TBoxes 𝑇! and 𝑇!.

Definition 1. A service map describes a service
relationship between exactly two agents 𝑎!, 𝑎! ∈ 𝐴𝑔𝑒𝑛𝑡. For
each agent 𝑎!, the map M consists of one or more role pairs
(𝑎! , 𝑟!) ∈ 𝐴𝑔𝑒𝑛𝑡 × 𝐴𝑐𝑡𝑜𝑟 that maps a unique agent 𝑎! to one
or more roles 𝑟! in the service relationship: for agent 𝑎!, the
role 𝑟! is in TBox 𝑇! of the other agent. For example, the role
pair (𝑎!, 𝑠𝑜𝑐𝑖𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘) maps the agent 𝑎! to the actor
concept 𝑠𝑜𝑐𝑖𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ∈ 𝑇! which defines agent 𝑎!’s
terminology. Each agent may have more than one role in a
service relationship for some 𝑗 = 1… 𝑛, but each of these roles
is defined in the other agent’s terminology. These roles are
used to determine which transfer requirements to analyze
based on the collecting agent’s role, and vice versa.

Definition 2. Each service map contains a single
dictionary D that maps terminology from one agent’s TBox 𝑇!
to a second agent’s TBox 𝑇!. This mapping is used to compare
actor, datum, and purpose descriptions in agent 𝑎!’s source
actions to corresponding descriptions in agent 𝑎!’s target
actions. The dictionary is expressed as a collection of axioms
over concepts 𝑡! 𝜑 𝑡! wherein (𝑡! , 𝑡!) ∈ 𝐴𝑐𝑡𝑜𝑟 × 𝐴𝑐𝑡𝑜𝑟,
𝐷𝑎𝑡𝑢𝑚 × 𝐷𝑎𝑡𝑢𝑚, 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 × 𝑃𝑢𝑟𝑝𝑜𝑠𝑒, and 𝑡! ∈ 𝑇!, 𝑡! ∈ 𝑇!,
and 𝜑 is a DL equivalence operator (≡) or a subsumption
operator (⊑,⊒).

For example, Waze’s specification defines the concepts
“unique device id” to refer to the mobile device identifier for
Android or iOS devices, and “list of friends” refers to the list
of contacts obtained from the Waze user’s social networking
service. To align the concepts with “device id” and “end user
information” used in the Flurry specification, we construct a
new TBox 𝑇′ = 𝑇! ∪ 𝑇! ∪ 𝐷 such that (5) and (6) are true:

(5) 𝑇′ ⊨ 𝑢𝑛𝑖𝑞𝑢𝑒_𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑 ≡ 𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑
(6) 𝑇′ ⊨ 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑓𝑟𝑖𝑒𝑛𝑑𝑠 ⊑ 𝑒𝑛𝑑_𝑢𝑠𝑒𝑟_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

Definition 3. A multi-party trace is a subset of
requirements pairs 𝑟𝑒𝑞𝑡, 𝑟𝑒𝑞𝑐 ∈ 𝑅𝑒𝑞!× 𝑅𝑒𝑞! that map from
a transfer requirement 𝑟𝑒𝑞𝑡 ∈ 𝑇! to a collection requirement
𝑟𝑒𝑞𝑐 ∈ 𝑇!. For example, we may trace from permitted data
transfers defined in first-party agent 𝑎!’s TBox 𝑇! to permitted
data collections in the counterparty agent 𝑎!’s TBox 𝑇!. To
find multi-party traces from a first-party agent 𝑎! to their
counterparty 𝑎! with respect to a service map M, we must
identify all data transfers from 𝑎! to data recipient roles that
the counterparty 𝑎! is expected to fill. We first express the DL
union of counterparty 𝑎! roles 𝑟𝑜𝑙𝑒𝑠! = 𝑟!,!⨆𝑟!,! … 𝑟!,! for

FP15%

FP24%

P TRANSFER device-id
FROM anyone FOR anything

P COLLECT device-id, ip-address, …
FROM end-user FOR anything

hasSource
hasPurpose

hasObject
Legend:

Red: underflow
Blue: overflow

Black: exact flow

FP17%

P COLLECT device-id, location, …
FROM application FOR anything

168

all role pairs (𝑎!, 𝑟!,!), … (𝑎!, 𝑟!,!) ∈ M. Next, we identify
candidate transfer requirements 𝑟𝑒𝑞𝑡! ∈ 𝑅𝑒𝑞! where the
recipient ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑟 in the transfer requirement is an actor
in the union of counterparty roles 𝑟 ⊑ 𝑟𝑜𝑙𝑒𝑠!. The set 𝐶!"#$
contains these candidate transfer requirements that are written
in the form 𝑟𝑒𝑞𝑡! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑟 ⊓
∃𝑅!",!.𝐹!",! ⊓ … ⊓ ∃𝑅!",!.𝐹!",! such that 𝑅!",!,… ,𝑅!",! ∈
𝑅𝑜𝑙𝑒𝑠!, 𝐹!",!,…𝐹!",! are fillers for those roles, and 𝑟 ⊑ 𝑟𝑜𝑙𝑒𝑠!.
Conversely, we define the DL union of first-party roles
𝑟𝑜𝑙𝑒𝑠! = 𝑟!,!⨆𝑟!,! … 𝑟!,! for all role pairs (𝑎!, 𝑟!,!), …
(𝑎!, 𝑟!,!) ∈ M. The set of candidate collection requirements
𝐶!"#$ ⊆ 𝑅𝑒𝑞! consists of collection requirements written as
𝑟𝑒𝑞𝑐! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑠 ⊓ ∃𝑅!",!.𝐹!",! ⊓ … ⊓
∃𝑅!",!.𝐹!",!, such that 𝑅!",!,… ,𝑅!",! ∈ 𝑅𝑜𝑙𝑒𝑠!, 𝐹!",!,…𝐹!",!
are fillers for those roles, and 𝑠 ⊑ 𝑟𝑜𝑙𝑒𝑠!.

The candidate transfer requirements 𝐶!"#$ and collection
requirements 𝐶!"#$ are only candidate members to multi-party
traces, because the corresponding hasTarget and hasSource
role fillers 𝑟 and 𝑠 are constrained by the corresponding agent
roles in the service map. To identify the actual multi-party
traces, however, we compare the remaining roles filers in
candidate requirements pairs 𝑟𝑒𝑞𝑡! , 𝑟𝑒𝑞𝑐! ∈ 𝐶! × 𝐶! by
constructing a new TBox 𝑇!! = 𝑇! ∪ 𝑇! ∪ 𝐷. We compare the
corresponding fillers 𝐹!,!,…𝐹!,! and 𝐹!,!,…𝐹!,! from
requirements 𝑟𝑒𝑞𝑡! , 𝑟𝑒𝑞𝑐!, such that roles 𝑅!,! = 𝑅!,!. For our
study, we are particularly interested in the roles hasObject and
hasPurpose, but other roles may be included to constrain these
traces. These comparisons yield one of the four exclusive
modes (underflow, overflow, exact flow or no flow) described
in Section 3A. For example, if 𝑇′ ⊨ ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝐹!! ⊑
ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝐹!! for all interpretations 𝔗′ that satisfy the TBox
𝑇′, then there is an underflow in the ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡 role across
requirements 𝑟𝑒𝑞𝑡! and 𝑟𝑒𝑞𝑐!.

In Fig. 3, we present a multi-party trace from our case
study. Within the Waze specification, the permitted collection
WP6 was traced to the permitted transfer WP46; in particular,
the Waze specification (and their privacy policy, for that
matter) defines a Waze user’s unique mobile device identifier
to be a kind of personal information. Because formula (5)
defines an equivalence axiom between the concepts unique-
device-id and device-id, and Flurry is in the actor concept ad-
network, WP46 is traced to Flurry’s permitted collection FP1.

Definition 2 defines multi-party traces from transfers to
collections, which can be generalized for any source and target
actions in a specification, such as from uses to transfers, etc.
2) Verifying the Limitation Principle. The act of repurposing
occurs when data that was collected for one purpose is used
for a different purpose. Repurposing is a violation of the use
limitation principle. The act of over-collection occurs when
too much data is collected or when data is collected for more
purposes than are needed. This is a violation of the collection
limitation principle. We formalize these two principles into a
general limitation principle; the purposes of all target
permissions must be no greater than purposes for all source
permissions with respect to the data of interest.

Fig. 3. Example multi-party data flow trace: solid lines represent data,

dashed lines represent data sources, and dotted lines represent purposes; also
shown are overflows (blue), underflows (red); and exact flows (black)

Definition 4. The limitation principle is verified in a
specification 𝐾𝐵 by first defining a set of limiting permissions
𝐿! and a new TBox 𝑇′′ = 𝑇 ∪ 𝐿! for a conflict-free TBox 𝑇,
and then proving that for all target permissions 𝑡 ∈ 𝑇! there
exists a limiting permission 𝑙 ∈ 𝐿! such that 𝑇!! ⊨ 𝑡 ⊑ 𝑙 for all
interpretations 𝔗′′ that satisfy the Tbox 𝑇!!. The limiting
permissions 𝐿! are derived from the set of source permissions
𝑆! by copying each source permission and replacing the
source action 𝑎! with the target action 𝑎!. We say the new
TBox 𝑇!! is 𝑡!-limited, if and only if, for any target permission
𝑡 ∈ 𝑇!, there exists a limiting permission 𝑙 ∈ 𝐿! such that
𝑇!! ⊨ 𝑡 ⊑ 𝑙; otherwise, the target permission 𝑡 violates the 𝑡!-
limitation principle, for some target action
𝑡! ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑈𝑆𝐸,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅}.

For example, we can define a TRANSFER-limitation
principle, with the sets of permitted collections 𝑆! = 𝑠 𝑠 ∈
𝑅𝑒𝑞 ∧ 𝑇 ⊨ 𝑠 ⊑ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛} and transfers
𝑇! = 𝑡 𝑡 ∈ 𝑅𝑒𝑞 ∧ 𝑇 ⊨ 𝑡 ⊑ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛}. The
limiting permissions 𝐿! = 𝑙 𝑠 ∈ 𝑆! ∧ 𝑇 ⊨ 𝑠 ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓
∃𝑅!.𝐹! ⊓ … ⊓ ∃𝑅!.𝐹! → (𝑇′′ ⊨ 𝑙 ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓
∃𝑅!.𝐹! ⊓ … ⊓ ∃𝑅!.𝐹!)}. Consider the collection permission
WP6 from Figure 3, which appears in formula (7), below.

(7) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙_𝑖𝑛𝑓𝑜
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑒𝑛ℎ𝑎𝑛𝑐𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

(8) 𝑇′′ ⊨ 𝑙! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙_𝑖𝑛𝑓𝑜
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑧𝑒_𝑢𝑠𝑒𝑟 ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡.𝐴𝑐𝑡𝑜𝑟
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑒𝑛ℎ𝑎𝑛𝑐𝑖𝑛𝑔_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

(9) 𝑇 ⊨ 𝑝!" ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑢𝑛𝑖𝑞𝑢𝑒_𝑑𝑒𝑣𝑖𝑐𝑒_𝑖𝑑
⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟 ⊓ ∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑎𝑑_𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠

⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝐴𝑛𝑦𝑡ℎ𝑖𝑛𝑔

From formula (7), we derive the limiting permission 𝑙! in
formula (8) by replacing the source action COLLECT with the
target action TRANSFER and by completing the missing
role/value pair for hasTarget. The transfer permission WP46
from Figure 3 appears in formula (9), above. While we know
that unique-device-id is a kind of personal-information in
Waze’s specification, we cannot show that 𝑇!! ⊨ 𝑝!" ⊑ 𝑙!,
because the transfer purpose in 𝑝!" exceeds the limiting
purpose in 𝑙!, e.g., “any purpose” subsumes “enhancing
service experience”. Assuming there is no other limiting
permission that subsumes 𝑝!", this transfer permission violates
the TRANSFER-limitation principle.

hasObject
hasSource
hasPurpose
Waze/Flurry system
boundary

FP1$

P COLLECT personal-information
FROM waze-user FOR enhancing-service-
experience

Legend:
Blue: overflow
Red: underflow
Black: exact
flow

P COLLECT device-id, device-os, mac-
address
FROM anyone FOR anything

WP6$

P TRANSFER unique-device-id
FROM anyone FOR anything TO ad-networks WP46$

W
az

e
Fl

ur
ry

169

IV. CASE STUDY DESIGN
We evaluated the Eddy language extensions for multi-

party tracing in an empirical case study [11, 25] using coding
theory to increase construct and internal validity [19]. Coding
is an interpretative, qualitative method in which multiple
analysts assign codes from a coding frame to data. The coded
data is statistically measured for agreement above chance,
whereby sources of disagreement are used to disambiguate the
coding frame. We examined the following five policies (the
policies with asterisks were not formalized, explained below):

• Waze Privacy Policy, modified 30 May 2013
• Facebook API Developer Guidelines, revised 28 June 2013
• Amazon AWS Customer Agreement*, updated 15 March 2012
• Amazon AWS Privacy Policy*, acquired on 16 August 2013
• Amazon Privacy Policy*, updated 6 April 2012
• Flurry Privacy Policy, updated 9 July 2013

We removed Amazon’s policies from the dataset because
Amazon’s contract language does not clearly cover end user
data in their cloud services. We discussed this “gap” with a
legal expert, who read all three policies and suggested that the
absence of a specific privacy policy for end user data in
Amazon’s cloud services effectively allows Amazon to use the
data as they wish within the confines of national or provincial
laws. Therefore, we focused our analysis on Waze, Facebook
and Flurry policies.

We sought to answer three research questions within the
limits of our formalization of the three selected policies:
RQ1: What multi-party data flows exist across the selected

policies?
RQ2: Does data repurposing or over collection occur within

any of the policies, or across policies?
To answer these questions, we coded the three parties’

policies using the coding methodology adapted from Saldana
[19]. Our coding method has five steps, illustrated in Fig. 4:
(1) we identify the policy statements that are data
requirements, which specifically describe actions performed
by humans or software on data; (2) for each data requirement,
we assign a statement-level code to indicate whether the
statement is either a collection, use or transfer of information
based on a verb, and we assign phrase-level codes to identify
the actors, data types and purposes relevant to each role
(object, source, target and purpose); and (3) if the statement
contains a definition or elaboration of a phrase-level concept,
we code this phrase as either: a refinement, wherein one
concept is refined by a more specific concept; an abstraction,
wherein a list of concepts is described by a more general
concept; or an exclusion, wherein a concept is excluded from
another concept (i.e., assumed to be disjoint with). After each
statement is analyzed, the analyst maps the coded text into
Eddy syntax (step 4), which is compiled into DL using an
automated parser tool (step 5).

In step 5, the parser reads the specification and compiles
DL formulae. The terminology is compiled into equivalence,
subsumption, and disjointness axioms (see formula A-B in
Figure 5), and the requirements are compiled into
requirements DL equivalence axioms (see formula C),

subsumed by an appropriate modality (see formula D). In
addition to the requirements specifications, we introduced
service maps as an inter-lingua that maps concepts from one
specification to another. Fig. 5 illustrates a service map from
the case study between Waze and their advertising network,
Flurry.

Fig. 4. Example policy statement coded as a data requirement

For example, in Fig. 5, Waze is called a “customer” in
Flurry’s specification, and Flurry is called an “ad-network” in
Waze’s specification. Each actor can have more than one role.
Lines 3-12 describe definitions wherein the first actor’s terms
appear on the left-hand side of the definition operator (“<”
means is subsumed by, “>” means subsumes, and “=” means
is equivalent to) and the second actor’s terms appear on the
right-hand side. Some mappings may appear obvious, such as
“age” (see line 7), whereas other terms must be inferred using
domain knowledge: e.g., in advertising, frequency data such as
the number of ads clicked is also called aggregate data (see
line 3). In practice, we envision that requirements analysts
would develop these terminologies with consultation from
their legal departments, or they may reuse industry-wide
terminologies from standards organizations. Similar to
software APIs, we expect service mappings to be maintained
over time, and could become relatively stable for services that
do not frequently evolve their data practices.

1 NS1 http://localhost/waze-pp.owl customer
2 NS2 http://localhost/flurry-pp.owl ad-networks
3 D ads-clicked < aggregated-data
4 D ads-clicked = clicks
5 D ads-posted < aggregated-data
6 D ads-viewed < aggregated-data
7 D age = age
8 D list-of-friends < end-user-data
9 D location = location
10 D personally-identifiable-information < end-user-data
11 D profile-picture < end-user-data
12 D unique-device-id = device-id

Fig. 5. Example service map from Waze to Flurry; lines 1-2 set the
terminological namespace for the first and second actor, followed by datum

(“D”) definitions for terms from the first actor (left side) that map to terms of
the second actor (right side)

For the three coded policies reported in this paper, we
measured inter-rater reliability at between .791 and .921 using

170

Cohen’s Kappa. This is comparable to a separate study [8]
using the same coding frame that yielded between .800 and
.910 for Cohen’s Kappa and also used two independent raters.

V. CASE STUDY RESULTS
We now discuss our case study results. The first and third

authors separately coded the Waze, Flurry and Facebook
policies in three sessions. The average coding times required
135, 88 and 138 minutes, respectively. We coded 26-36% of
the three policies, because large portions did not describe data
actions covered by the coding frame. We computed Cohen’s
Kappa for all three policies and found inter-rater reliability to
be .791, .921 and .925, which is a high degree of agreement
above chance and includes agreement about which statements
were excluded. Table I presents the total number of statements
(Total Stmts) and number of data requirements (Req’ts), which
are divided into the number of permissions (P), obligations
(O), prohibitions (R), collections (C), uses (U) and transfers
(T). Between 92-95% of Waze and Flurry privacy policies
describe permissions; however, the Facebook policy contains
more prohibitions (> 50%). This is because the Facebook
policy regulates practices of connecting apps, such as Waze,
and that includes which practices are not allowed.

TABLE I. OVERVIEW OF PRIVACY SPECIFICATION COMPOSITION

Policy Total
Stmts

Data
Req’ts

Modality Action
P O R C U T

Waze 150 65 60 0 5 13 18 34
Flurry 155 44 42 0 2 15 6 23
Facebook 136 55 24 1 30 13 24 18

Table II presents the number of definitions that were
recorded explicitly from coding the policies (Expl.), and those
that were later inferred to align terminology within
specifications (Infer.). Inferences are needed because policy
authors change terminology across adjacent sentences. All
terms were explicitly stated in the policies, and only the
formal relationships were inferred (e.g., “personal
information” was inferred to be equivalent to “personal
details”). Table II reports definitions by the number of
subsumption (S), disjointness (D), and equivalence (E) axioms
over actors (A), datum (D) and purposes (P).

TABLE II. NUMBER AND TYPES OF DEFINITIONS, EXPLICIT AND INFERRED

Policy
Definitions Axioms Concepts

Expl. Infer. S D E A D P
Waze 41 37 70 2 6 13 46 19
Flurry 45 37 64 4 18 19 93 31
Facebook 45 8 50 0 3 12 73 28

Table III presents the number of alignments obtained by the
coders, who created the service maps (described in Section
3B). Both coders created the service maps separately and then
compared their results to reach consensus.

TABLE III. NUMBER AND TYPES OF MAPPINGS IN SERVICE MAPS

Service Map Alignments Axioms Concepts
S E A D P

Waze-Facebook 519 498 21 14 432 73
Waze-Flurry 318 295 23 44 193 81

We now discuss the conflicts, multi-party data flow traces and
limitation principle violations that we detected in our study.
A. Potential Conflicts within Each Policy

Automated analysis detected potential conflicts within the
Waze and Flurry privacy specifications that we classified into
three categories: ambiguous specifications conflicts arising
when the original policy statement lacks information that may
have prevented the conflict, e.g., not stating a data transfer
purpose implies “any purpose” that exceeds allowable transfer
purposes; electable permissions conflicts that conflict with
prohibitions in the policy prior to election, e.g., a policy may
prohibit a particular collection, unless the user consents to the
collection; and direct conflicts among practices that are
unelectable and complete with respect to the a conflicting role
specification. Developers should consider electable
permissions conflicts as a source of potential conflict: if the
system treats all data as elected for the permitted practice, this
would be a violation of their policy. We now discuss conflicts
due to ambiguous specifications and direct conflicts.

The automated analysis discovered 13 conflicts in Waze’s
policy that included eight ambiguous specification conflicts,
three electable permission conflicts, and two direct conflicts.
Waze’s specification includes a prohibition (WR1) that
prevents transferring personally identifiable information (PII)
to third parties for marketing purposes; this conflicts with
permissions, (such as WP45) below, that allow transfers to
partners and service providers for unspecified purposes. This
ambiguous specification conflict can be removed by
modifying the purpose to explicitly exclude marketing
purposes (see WX45, below, where the disjoint operator “\” is
read “anything except for marketing purposes”).

WR1: R TRANSFER PII TO third-party FOR marketing-purposes

WP45: P TRANSFER PII TO partners, service-providers

Wx45: P TRANSFER PII TO partners, service-providers
FOR anything \ marketing-purposes

These direct conflicts arise because Waze’s specification
prohibits transferring personal information to Waze users
when the user is anonymous (see WR0 below), while a separate
permission allows posting user-uploaded information, along
with other personal information, to be seen by Waze users (see
WP13). Among WR0 and WP13, there is a shared interpretation
in the hasObject role value personal-information that excludes
driving-speed and time-joined-service that is both prohibited
by WR0 and permitted by WP13. Because this is a direct
conflict, the specification author needs to carefully consider
the impact of mitigating the conflict. Removing the
prohibition may permit unintended data sharing, while remove
the permission may break services that depend on this data
flow. Alternatively, the purposes are unrestricted; thus, the
author could introduce a specific class of purposes that are
prohibited, while preserving a class of permitted purposes. If
these two classes are logically disjoint, then the conflict would
be eliminated.

WR0: R TRANSFER personal-information \ driving-speed, time-
joined-service TO waze-user

WP13: P TRANSFER uploaded-information, personal-information
TO waze-user

171

In the Flurry policy, the automated analysis discovered
nine conflicts: eight conflicts due to ambiguous specifications
and one direct conflict. The direct conflict results from Flurry
permitting the transfer of Waze users’ unique device id to
advertisers who want to confirm conversion1 via the Flurry ad
network (see FP27), despite transferring PII to non-affiliates
being prohibited. Advertisers who buy ad space through
Flurry, and who are not owned by Flurry’s parent company,
are not affiliate companies under Flurry’s privacy policy.

FR0: R TRANSFER PII to non-affiliated-companies

FP27: P TRANSFER device-id TO advertisers FOR confirming-
conversion-via-flurry-network

B. Tracing Multi-party Data Flows
Based on Waze and Flurry’s specifications and service

maps, the automated analysis found 416 total traces within and
across both policies, of which 73 traces were multi-party
traces from Waze transfers to Flurry collections. This includes
permissions and prohibitions; if a prohibition is paired with a
permission, then this trace indicates a data supply or demand
that is not reciprocated by the counterparty. Fig. 6 presents a
subset of 12 from 416 traces, four of which are multi-party
traces that cross the vertical dividing line between Waze’s
practices on the left and Flurry’s practices on the right side.

Fig. 6. Example multi-party data flow trace from Waze’s privacy policy to

Flurry’s privacy policy: arrows point in the direction of flows, tracing Waze
user data (blue), user location (orange) and users’ unique device identifier

(red) to Flurry as third-party advertisers

Demonstrated in the flow trace seen in Fig. 6, if a user
connects to Waze via Facebook Login, the user’s social
network information, including their contact information,
profile photo, list of friends, age, etc., may be transferred to
third parties to support Waze services (see WP19 and WP20).
This includes Flurry.com, who specifically collects ad requests
that include end user data at Waze’s discretion (called
customer key/value pairs, see FP20). This end user data is

1 In advertising, a conversion occurs when a consumer observes an ad and
proceeds to make a purchase from the featured seller, including a purchase of
the advertised product. Conversion may be measured by linking the ad-
observation event to the consumer’s location at the seller’s store or to a known
purchase in the consumer’s purchase history.

combined with the user’s location and unique device
identifier, all potentially sent to advertising partners (see FP13).
In addition, the Waze user’s device id and location (collected
and transferred via WP6 and WP46, respectively) are sent to
applicable publishers that participate in Flurry’s AppCircle
mobile app advertising service (see FP1 and FP13). This
uniquely identifying information is collected under the general
purpose of “enhancing personal experience,” and broadly re-
purposed for any purpose by Waze and Flurry. If a Waze
developer had not intended the user’s social network
information (including their list of friends) to be used for
advertising purposes, they could state that intent in their
privacy specification and rerun our analysis to detect a conflict
with Flurry’s policy which permits this data to be shared with
advertisers.
C. Verifying the Three Privacy Principles

We checked the Waze and Flurry specifications for
compliance with the purpose specification principle,
collection-, and use-limitation principles. The purpose
specification principle requires companies to declare their data
use purposes at the time of collection. Thus, collection
requirements should all include stated purposes. The use and
collection limitation principles aim to avoid repurposing and
over-collection, which are two threats to privacy.

Table IV presents the ratio of missing purposes to total
actions for collections, uses, and transfers that we
automatically identified in the coded specifications. These
missing purposes are ambiguities in the policies, which are
preserved by the analyst when writing the policy statement
using the Eddy language. The missing purposes are logically
inferred to mean “any purpose” in the formal specification,
which can lead to violations of limitation principles. In Table
IV, collection and transfer statements were more likely
(>50%) to omit purposes, whereas usage statements were less
likely (<10%) to omit purposes.

TABLE IV. THE RATIO OF MISSING PURPOSES TO TOTAL ACTION TYPE FOR
COLLECTIONS (C), USES (U) AND TRANSFERS (T)

Policy Missing Purposes
Collections Uses Transfers

Waze 6/13 (46%) 1/18 (5%) 23/30 (76%)
Flurry 11/15 (73%) 0/6 (0%) 13/22 (59%)
Facebook 4/8 (50%) 1/10 (10%) 5/7 (71%)

The repurposing analysis examined Waze’s data practices
regarding three categories of user data: location, driving route,
and personal information. The high frequency of missing
purposes for collections and transfers reduces the risk of
repurposing, because collection and transfer purposes that are
omitted are interpreted as unrestricted (i.e., for “any purpose”).
That said, the analysis detected that the Waze user’s driving
route was repurposed. The permitted collection WP4, below.
constrains the collection of route from Waze users for the
purpose of providing services, whereas the specification also
permits the use (WP8) and transfer (WP7) of driving-route for
any purpose. This repurposing from “providing services” to
“any purpose” violates use- and transfer-limitation principles,
and may be corrected by such purposes to be subsumed by
collection purposes.

WP20%WP19%

COLLECT information*
FROM social-network

TRANSFER PII
FROM social-network

FP1%

COLLECT
device-id TRANSFER unique-device-id

TO ad-networks

COLLECT ad requests
FROM customer
FOR selling-inventory-through-
flurry-rtb-marketplace

WP54%

TRANSFER location
TO ad-companies

WP26%

COLLECT location

WP6% WP46%

Waze Collections &
Transfers

Flurry Collections & Transfers

TRANSFER end-user-data
TO advertising-partners

TRANSFER device-id, location
TO applicable-publisher

FP20% FP13%

Legend: User’s social network information, including name, age, gender
User’s mobile device location
User’s mobile device unique identifier

COLLECT personal info
FROM waze-user
FOR enhancing-personal-experience

FP13%

172

Wp4: P COLLECT location, route FROM waze-user FOR providing-
services

Wp7: P TRANSFER avatar, distance, driving-route,…, waze-rank

Wp8: P USE avatar, distance, driving-route,…, waze-rank

Recall that over-collection violates the collection limitation
principle, because more information is collected than needed.
We detect over collection by testing whether collection
purposes are subsumed by use and transfer purposes. When
specifications have a high frequency of unrestricted transfer
purposes (as shown in Table IV), the risk of over collection is
reduced, since developers can argue that broad collection
purposes are needed to support broad transfer purposes,
regardless of use. However, if we focus on use specifications
and omit transfers from analysis, then we find over collection
with respect to explicit uses. For example, WP10 and WP26,
below, permit collection of location for any purpose, whereas
the permitted use WP18 restricts usage to identifying attractions
and shops, presumably for notifying the user. Because there
are no other declared usage purposes for location, this can be
reported as an over-collection in the absence of transfers.

Wp10: P COLLECT location FROM third-party-service, waze-user

Wp26: P COLLECT ads-clicked, ads-viewed, geographic-
location,…, web-pages-visited

Wp18: P USE location, route-information FOR identifying-
attractions, identifying-shops

Our analysis uncovered two privacy specification design
patterns whereby specification authors can bypass the
limitation principles, i.e., they can comply with the principles
by writing policies that violate the general spirit of the
principles. The first purpose hoisting pattern describes
permitted actions with restricted purposes (e.g., using route
information in WP18). These actions comply with purpose
specification, and under the limitation principle serve to
constrain any target actions. Next, the specification author
describes the same permitted action with a broad purpose (e.g.,
WP8 - assuming driving-route is a kind of route-information).
This last action subsumes the other purposes and thus “hoists”
the information from a restricted to a more general purpose,
and thus reduces the risk of limitation principle violations.
Purpose hoisting allows a policy author to be both specific and
flexible in specifying their access to data.

The second unrestricted cross-flows pattern describes the
source and target action purposes in general terms to offer
greater design flexibility and potentially the least privacy. We
identified instances of this pattern in Waze’s specification. For
example, collections and transfers of personal information to
and from social networks are unrestricted by purpose.
Collection of Waze users’ location is unrestricted through
transfers to other Waze users, non-Waze users and advertising
companies. In this regard, Waze has considerable flexibility in
how they share data with social networks, or how they use
location. Such flexibility may benefit companies who evolve
their business models, but it may introduce privacy risks.
D. Tool Support for Scaling Multi-Party Compositions

The Java-based Eddy language parser and compiler
produce specifications expressed in Web Ontology Language

(OWL) DL, which is then analyzed using a theorem prover.
Prior simulations [10] concluded that the HermiT Reasoner
v1.3.4 produces low-coefficient exponential asymptotic
performance with respect to policy size and number of
conflicts when analyzing single party policy specifications.
This suggested some measure of scalability toward policy
specifications involving multiple parties. We replicate and
present these results and asymptotic characteristics in Fig. 7,
in which policies have a fixed number of data elements, and
increasing permission and prohibitions (up to 80).

In our new analysis, we evaluate policies larger than those
in our case study. The generated policies contain: 400
statements (100 collection, use, and transfer permissions and
100 collection prohibitions); a fixed number of actors and
purposes (10 actors and 10 purposes, each with 10 children
subsumed by their parent); and up to 100 data flows between
parties. This policy configuration is more than double the size
of policies seen in Section V. The data element count was
varied from 1-52 in the first layer of each policy’s ontology,
with 4 layers beneath based on our analysis of a combined 26-
policy ontology. Finally, we performed 20 repetitions per
datum and averaged record times. Figure 8 presents the
results, showing the exponential characteristics of the time
complexity for the parsing and analysis. Even with the max 52
data elements, the average time required for parsing and
analysis was under 8 minutes (475 seconds). Tests were
performed on commercial off-the-shelf hardware using 1st
generation Intel i7 quad-core processors running at 2.9GHz
with 6GB of RAM (all dedicated to the Java Virtual Machine),
characteristic of a typical workstation from c. 2010.

Fig. 7. Logarithmic plot of the number of policy statements versus average

20-run automated analysis time (seconds) for conflict detection.

Fig. 8. Logarithmic plot of the number of top-level datum entities in policy
versus average 20-run automated analysis time (seconds) for flow tracing.

We made the Eddy source code, API documentation and an
online demo available to the public.2

2 http://cmu-relab.github.io/eddy

0.001	

0.1	

10	

1000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	

Ti
m
e	

(lo
g(
se
co
nd
s)
)	

Policy	
 Size	

Policy	
 Size	
 versus	
 Analysis	
 Time	

0.001	

0.1	

10	

1000	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	

Ti
m
e	

(lo
g(
se
co
nd
s)
)	

Datum	
 Entities	

Datum	
 Entities	
 versus	
 Analysis	
 Time	

173

VI. THREATS TO VALIDITY
We designed our case study evaluation to reduce threats to

validity. Construct validity concerns whether measures
actually measure the construct of interest [25]. We chose
privacy policies as a data source from which to develop and
evaluate our approach. To increase construct validity, we use
multiple coders to achieve high agreement (Cohen’s Kappa
between .791 and .921) regarding the encoding of the privacy
policies in Eddy. However, we know that policies summarize
numerous data flows across systems as evidenced by the
magnitude of results in prior information flow analysis studies,
and developers may have a more nuanced view of their data
practices due to their familiarity with the system
implementation and architecture.

Internal validity refers to whether the conclusions drawn
from the data are valid [25]. To reduce threats to internal
validity, we extensively documented our encoding method,
employed research notebooks, and replicated steps 1-3 of our
method in a prior study [8] and the study presented herein.

External validity refers to the extent to which the results of
this study can be generalized to other situations [25]. We
examined only three policies that contain data requirements. In
addition, the data actions in our language may not be complete
with respect to developers needs to express their requirements.
Also, our experience shows companies use different policy
formats and levels of detail in their data practice descriptions,
and this can affect the dimensionality of the policies and
service maps. To reduce this threat, we evaluated our approach
in a simulation with policies twice the size of our case study.

VII. RELATED WORK
As the volume of sensitive personal information available

to software developers increases, privacy will receive more
attention in software engineering research. Spiekermann and
Cranor framed privacy as either privacy-by-policy, which
concerns using activities such as privacy notice and consumer
consent to improve privacy, or privacy-by-architecture, which
focuses on data minimization and activities within the control
of software [20]. We now review related work in software
requirements engineering, including findings to characterize
privacy requirements and methods to surface privacy threats
and their mitigations.

Requirements engineering research has demonstrated that
policies and regulations are rich sources of privacy
requirements. Using grounded analysis, Antón et al.
discovered a taxonomy of requirements in privacy policies,
including dichotomous categories for types of privacy
protections and vulnerabilities [2]. Subsequent work by
Breaux et al. has led to formalizing privacy policy goals to
detect conflicts [6]. Based on the earlier work by Wan and
Singh [23], Young and Antón extracted policy commitments
from privacy policies and terms-of-use agreements to find data
collection and use requirements [26]. In addition to different
company policies, Breaux and Antón mined U.S. health
privacy law to discover 300 data access requirements and new
techniques for requirements prioritizing with exceptions [5].
We extended this early work [5, 6] herein to trace data flows.

Early work to model privacy in requirements includes Liu
et al., who extended the i* framework to reason about
attackers and malicious intent [15]. More recently, Omoronyia
et al. describe a method to model adaptive privacy that
incorporates user context and use histories to detect emerging
privacy threats [17]. They show how to compute the utility of
disclosure by comparing the threat severity with the disclosure
benefit. Tun et al. introduce privacy arguments based on
selective disclosure or norms to analyze user privacy
preferences for mobile apps that can change based on context
[21]. The arguments are formalized in Event Calculus to
reason about satisfaction. Salas and Krishnan show how to
generate privacy requirements test cases from models [18].

In security research, privacy models exist to reason about
data access, such as the HIPAA Privacy Rule [4, 17] and
Privacy Act [12]. Barth et al. encoded regulations as messages
passed between actors using norms (e.g., permitted and
prohibited actions) [4], which is similar to Aucher et al. [1].
Hanson et al. introduce data purpose algebra to calculate the
set of restrictions under which data may be used [12], which is
similar to the use limitation principle. May encoded privacy
regulations in Promela and used the Spin model checker to
identify potential conflicts [16]. This prior work includes the
use of Temporal Logics to reason about pre- and post-
conditions on access, but they do not include the concept
hierarchies needed to reason about data and purpose
specifications. The Web Ontology Language (OWL) is used to
express policies as permissions, obligations and prohibitions,
including concept hierarchies [8, 14]. The full OWL, which
these approaches use, is undecidable.3 Work by Uszok et al.
[22], however, uses an unpublished algorithm to identify
conflicts; an approach that may be decidable, but is difficult to
reproduce. Recently, Breaux and Rao extended this prior work
by reducing conflict detection in privacy requirements to
Description Logic (DL) satisfiability, which is decidable and
PSPACE-complete for the ALC family of DL [9].

VIII. DISCUSSION AND SUMMARY
In this paper, we present extensions to the privacy

requirements specification language, called Eddy, to model
multi-party data flows and to verify the purpose specification
and collection and use limitation principles. We
operationalized these principles as a general limitation
principle that can be used to restrict the actionable purposes
from one action to another (e.g., collect-use, use-collect,
collect-transfer, etc.) The principles are intended to provide
strong, well-known guarantees that systems minimize personal
information use and disclosure with respect to stated collection
purposes, which supports engineering privacy [20]. To our
knowledge, our formalization is the first to comprehensively
enforce these principles in data flow specifications. In
addition, we identified several challenges for future work.
First, the Eddy language is aimed at supporting developers
who want to check for conflicts between permitted and
prohibited data practices, while detailing the exact logical
interpretation that leads to the conflict. As shown in our case

3 http://www.w3.org/TR/owl-ref/

174

study results, refining the requirements specification and
removing ambiguity can remove some conflicts and violations
of the limitation principles. Based on these results, we
envision proof assistants that help analysts walk through
potential conflicts and suggest alternative strategies for de-
conflicting specifications. Automated suggestions may include
further restricting permissions, or relaxing prohibitions.

The Eddy language is designed so that developers can
independently state their design intent up to the boundaries of
their system (i.e., what information they collect, use and
transfer), while maintaining limited knowledge of the specific
practices of their third-party service providers. The multi-party
data flow tracing that we introduce in this paper aims to
support developers who subsequently check whether third
party uses conform to use limitations. We recognize the
challenge of proving properties over third-party specifications
while third parties protect their specifications as trade secrets,
e.g., concealing the names of their service providers and
specific internal business purposes. However, they could use a
trusted third party to perform these checks.

We envision scenarios wherein developers realize new
opportunities to use data in support of developing new system
features. Through multi-party data flow traces, developers
could identify data sources available in their system context or
from third-party services and then, check whether existing
usage purposes permit their envisioned data use. If the
purposes do not allow such uses, developers could request that
specifications be altered to support such requests. This may
include allowing some users to elect to participate in the new
feature (i.e., opt-in). By aligning the formal privacy
specifications proposed herein with system feature
exploration, we envision controlled personalization wherein
user privacy preferences are not violated en masse, but are
selectively relaxed for users who are willing to participate by
coordinating developer design intent with user preferences.

Finally, we are studying crowdsourcing as a means to scale
applications of the Eddy language to privacy policies [9].

ACKNOWLEDGEMENTS
We thank Joel Reidenberg for his support and legal analysis
on our early results and drafts of this paper. Supported by NSF
Award #1330596, ONR Award #N002441410028 and the
National Security Agency.

REFERENCES
[1] G. Aucher, G. Boella, L. van der Torre. “Privacy policies with

modal logic: a dynamic turn,” Lect. Notes. Comp. Sci. 6181:
196-213, 2010.

[2] A.I. Antón, J.B. Earp, “A requirements taxonomy for reducing
web site privacy vulnerabilities,” Req’ts Engr. J., 9(3):169-185,
2004.

[3] F. Baader, D. Calvenese, D. McGuiness (eds.), The Description
Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

[4] A. Barth, A. Datta, J.C. Mitchell, H. Nissenbaum, “Privacy and
contextual integrity: framework and applications,” IEEE Symp.
on Sec. & Priv., 2006, pp. 184-198.

[5] T.D. Breaux, A.I. Anton. “Analyzing regulatory rules for
privacy and security requirements,” IEEE Trans. Soft. Engr.,
34(1): 5-20, 2008.

[6] T.D. Breaux, A.I. Antón, J. Doyle, “Semantic parameterization:
a conceptual modeling process for domain descriptions.” ACM
Trans. Soft. Engr. Method., 18(2): Article 5, 2009.

[7] T.D. Breaux, D.L. Baumer, “Legally ‘Reasonable’ Security
Requirements: A 10-year FTC Retrospective.” Computers &
Security, 30(4):178-193. 2011.

[8] T.D. Breaux, H. Hibshi, A. Rao. “Eddy, a formal language for
specifying and analyzing data flow specifications for conflicting
privacy requirements,” Req’ts Engr. J., 19(3): 281-307, 2014.

[9] T.D. Breaux, F. Schaub, “Scaling requirements extraction to the
crowd: experiments on privacy policies.” IEEE 22nd Int’l Req’ts
Engr. Conf. (RE'14), pp. 163-172, 2014.

[10] T.D. Breaux, A. Rao. “Formal analysis of privacy requirements
specifications for multi-tier applications,” IEEE 21st Int’l Req’ts
Engr. Conf., pp. 14-23, Jul. 2013.

[11] J.W. Creswell. Research Design: Qualitative, Quantitative and
Mixed Methods Approaches, 2nd ed. Sage Publications, 2003.

[12] C. Hanson, T. Berners-Lee, L. Kagal, G.J. Sussman, D.
Weitzner, “Data-purpose algebra: modeling data usage policies.”
8th IEEE Work. Pol. Dist. Sys. & Nets., 2007, pp. 173-177.

[13] J.F. Horty. “Deontic logic as founded in non-monotonic logic.”
Annals of Math. & Art. Intel., 9: 69-91, 1993.

[14] M. Kahmer, M. Gilliot, G. Muller, "Automating Privacy
Compliance with ExPDT." IEEE 10th Conf. E-Com. Tech., pp.
87-94, 2008

[15] L. Liu, E. Yu, J. Mylopoulos. "Security and privacy
requirements analysis within a social setting," IEEE 11th Int'l
Req'ts Engr. Conf., pp. 151-161, 2003.

[16] M.J. May, Privacy APIs: Formal Models for Analyzing Legal
and Privacy Requirements, Ph.D. Thesis, U. of Pennsylvania,
2008.

[17] I. Omoronyia, L Cavallaro, M. Salehie, L. Pasquale, B.
Nuseibeh. “Engineering adaptive privacy: on the role of privacy
awareness requirements,” IEEE 35th Int’l Conf. Soft. Engr., pp.
632-641, 2013.

[18] P.P. Salas, P. Krishnan. "Testing privacy policies using models,"
IEEE 6th Int'l Conf. Soft. Engr. Frml. Mthd. pp. 117-126, 2008.

[19] J. Saldaña, The Coding Manual for Qualitative Researchers,
Sage Pubs. 2012.

[20] S. Spiekermann, L.F. Cranor. "Engineering Privacy," IEEE
Trans. Soft. Engr., 35(1): 67-92, 2008.

[21] T.T. Tun, A.K. Bandara, B.A. Price, Y. Yu, C. Haley, I.
Omoronyia, B. Nuseibeh. “Privacy arguments: Analysing
selective disclosure requirements for mobile applications,” IEEE
20th Int'l Req'ts Engr. Conf., pp. 131-140, 2012.

[22] A. Uszok, J.M. Bradshaw, J. Lott, M. Breedy, L. Bunch. “New
developments in ontology-based policy management: increasing
the practicality and comprehensiveness of KAoS.” IEEE Work.
on Pol. Dist. Sys. & Nets., pp. 145-152, 2008.

[23] F. Wan, M.P. Singh. “Formalizing and achieving multiparty
agreements via commitments.” Auto. Agents & Multi-Agent Sys.,
pp. 770–777, 2005.

[24] Y.S. Van Der Sipe, W. Maalej, “On lawful disclosure of
personal user data: What should app developers do?” IEEE 7th
Int’l W’shp on Req’ts Engr. & Law, pp. 25-34, 2014.

[25] R. Yin, Case Study Research: Design and Methods, 4th ed. Sage
Pubs. 2008.

[26] J. Young. “Commitment analysis to operationalize software
requirements from privacy policies.” Req’ts Engr. J., 16:33-46,
2011

175

