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Abstract—Natural language text sources have increasingly 
been used to develop new methods and tools for extracting and 
analyzing requirements. To validate these new approaches, 
researchers rely on a small number of trained experts to perform 
a labor-intensive manual analysis of the text. The time and 
resources needed to conduct manual extraction, however, has 
limited the size of case studies and thus the generalizability of 
results. To begin to address this issue, we conducted three 
experiments to evaluate crowdsourcing a manual requirements 
extraction task to a larger number of untrained workers. In these 
experiments, we carefully balance worker payment and overall 
cost, as well as worker training and data quality to study the 
feasibility of distributing requirements extraction to the crowd. 
The task consists of extracting descriptions of data collection, 
sharing and usage requirements from privacy policies. We 
present results from two pilot studies and a third experiment to 
justify applying a task decomposition approach to requirements 
extraction. Our contributions include the task decomposition 
workflow and three metrics for measuring worker performance. 
The final evaluation shows a 60% reduction in the cost of manual 
extraction with a 16% increase in extraction coverage.  

Index Terms—requirements extraction; natural language; 
crowdsourcing 

I. INTRODUCTION 
Requirements engineering research has long dealt with the 

challenge of processing natural language texts to facilitate 
communication, specify systems and conduct requirements 
validation [34]. Recently, new sources for requirements  
extraction and analysis have come to include project-specific 
mailing lists [22], privacy policies [7, 29] and regulatory codes 
and laws [11, 16], to name a few. The challenge of acquiring 
requirements from such sources, however, is that each medium 
carries a native writing style that proficient readers are 
accustomed to: for example, the style of exchanging e-mails is 
similar to writing professional letters in which actors interact 
through text, defining important terms, critiquing positions and 
adding clarficiation [22]; whereas, the style of law is more 
structured with preambles, definitions, sections based on topic 
and cross-references [5]. 

Requirements researchers have extracted requirements 
from text using a combination of manual and automated 
approaches. Manual approaches may include simple, 
repeatable steps accompanied by a coding frame that are used 
to classify the text [35]. To assess validity, researchers apply 
various forms of inter-rater reliability to coded data sets 
extracted by multiple, trained analysts. The value of manual 

extraction is that, when the method is derived from the dataset, 
called a grounded theory [12], the derivation process surfaces 
complex nuances and boundary cases that are more likely 
addressable using human-interpretable heuristics. Such 
boundary cases are often difficult to address using automated 
approaches. In prior work, for example, Breaux et al. 
discovered heuristics for inferring implied rights and 
obligations from explicitly stated requirements to increase 
requirements coverage [8]. However, the downside of manual 
methods is the challenge of scalability: achieving a two-fold 
increase in the number of documents processed requires 
considerable effort by a small number of expert analysts. 
Moreover, automated approaches, including machine learning, 
rely on large data sets to evaluate performance in cross-
validation studies [3]. Overcoming this challenge of scaling 
manual extraction could lead to new analytics that leverage 
unprecedentedly large datasets.   

Crowdsourcing and human computation provide a middle 
ground between manual extraction by a few experts and natural 
language processing. Crowdsourcing has emerged as a viable 
approach for leveraging human intelligence – often provided 
by non-experts – in the context of problems that remain hard to 
solve with automated methods [33], such as information 
extraction from noisy images [1],  politicial sentiment analysis 
[18], and text translation [4, 38]. In crowdsourcing, tasks are 
typically divided into smaller, more managable microtasks. 
These microtasks are then distributed to the crowd – a large 
number of independent workers who offer their services using  
crowdsourcing platforms, such as Amazon Mechanical Turk1 
(MTurk) or CrowdFlower. 2  Crowdsourcing results are 
subsequently combined to yield  a solution for the larger task. 
Major challenges in crowdsourcing complex tasks include 
designing a task workflow that produces high quality results, 
while keeping per-task costs within budgetary constraints. 

In this paper, we report results from three experiments 
aimed at assessing the potential of crowdsourcing requirements 
extraction to non-experts. We based our experiments on a 
recently published method for manually extracting 
requirements from privacy policies [7] as follows: the first 
experiment assessed the crowd workers’ ability to apply a 
coding frame, and  measured consensus building across 
workers; the second experiment assessed the ability of crowd 
workers to extract complete requirements using multiple 

                                                             
1 https://www.mturk.com 
2 https://crowdflower.com 
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semantic roles, simultaneously; based on the gained insights 
from these two experiments, a third experiment assessed a task 
decomposition approach, in which semantic role labeling was 
devided into separate, interdependent microtasks to minimize 
worker effort and increase data quality. We found that our 
approach yields nearly a 1.5:1 cost decrease and increased 
requirements coverage compared to manual extraction by 
trained experts. The contributions of this approach include a 
validated task decomposition workflow and generalizable 
metrics for worker performance, which we believe can be used 
to crowdsource similar  requirements extraction tasks. 

The remainder of this paper is organized as follows: in 
Section II we review related work on designing workflows for 
crowdsourcing complex tasks; in Section III we introduce the 
manual extraction method for privacy requirements and 
corresponding economics based on two prior case studies; in 
Section IV, we present the results of two preliminary 
crowdsourcing experiments based on the manual extraction 
method; in Section V, we present our task decomposition 
approach, experiment and our main results. A discussion 
follows in Section VI with the conclusion in Section VII.   

II. DESIGNING CROWDSOURCING WORKFLOWS 
Crowdsourcing has been succesfully applied to many 

different tasks and contexts [13]. Snow et al. [36] showed that 
crowdsourced annotations from non-experts reach a high level 
of agreement with expert annotators for different natural 
language annotation tasks, such as word similarity, word sense 
disambiguation and textual entailment recognition. We now 
review related work on data quality and task design. 

A. Data Quality 
Annotation quality is impacted by crowd worker and task 

characteristics [2].   Workers are typically non-experts of the 
task, which may introduce inaccuracies and noise in results. 
Dishonest workers may try to cheat to obtain payment. 
Complexity of tasks and instructions of a task can further 
induce high cognitive demand [15], which may reduce result 
quality [2]. Thus, crowdsourcing annotation tasks should be 
understood as a noisy classification process. A number of 
quality control strategies have been proposed [33] at design or 
runtime to ensure higher quality results [2]. We now discuss 
data quality approaches relevant to requirements extraction [2, 
33]. 

Pre-screening and reputation. Workers can be asked pre-
screening questions to evaluate their suitability before 
assigning tasks [32]. A certain reputation level, e.g., 95% 
accepted submissions, can be used to target high-performing 
workers, which has been shown to signficiantly influence result 
quality for low pay tasks [23]. 

Review and quality control. After tasks have been 
submitted by workers, results can be reviewed before accepting 
them. If a submission is rejected, pay is withheld for that task. 
Expert review is an expensive approach that limits scalability, 
because domain experts must review and judge the quality of 
each submission before accepting them [2]. Multi-level review, 
on the other hand, leverages a second group of crowd workers 
to verify data annotations provided by the first group [33]. 
Automated verification can be used for tasks for which 
verifying result correctness is easier than its computation [33]. 

Incentive structure and economic model. Incentive 
structures can be optimized to obtain higher data quality at 
lower costs [33]. Provided monetary incentives can impact data 
quality. Kazai finds that higher paying tasks lead to good 
worker performance regardless of the qualification [23]. 
However, she also finds evidence for diminishing returns as 
workers  who are paid low wages report to be happier with 
their compensation than highly paid workers. Thus, higher pay 
does not necessarily result in higher quality [2]. Horton et al. 
desribe a labor economics model of crowdsourcing [17]. Their 
model is based on a reservation wage, i.e., the lowest 
compensation a worker is willing to accept for a task. In 
experiments, they determine that the reservation wage is log 
normally distributed with a median wage of $1.38/hour. 

Redundancy and majority consensus. To improve reliability 
with noisy data, the same task can be assigned to multiple 
workers in order to determine output agreement. Output 
agreement can be measured by majority voting or weighted 
voting, which takes into account worker performance [33]. A 
large variety of crowd consensus approaches have been 
proposed [19], which also resulted in benchmarks to compare 
their effectiveness [19, 37]. Redundancy, which is needed in all 
consensus based approaches, may entail higher costs [20]. 

Identification of low performers. Result quality can be 
improved (or redundancy reduced) by detecting low-
performing or potentially dishonest workers. An effective 
approach is ground truth seeding [33], in which microtasks for 
which gold standard data exists are mixed into a worker’s 
assigned task. Failing those tasks can indicate low performance 
and potentially dishonest intent. At the same time, such 
verifiable tasks can be used to provide training to workers 
before they engage in tasks for which no gold standard data 
exists [24]. Signaling to users that responses will be scrutinized 
further encourages honest task completion [24]. Statistical 
filtering can further be employed to determine how far workers 
deviate from the majority [20, 33]. Once low performers are 
identified, their results can be rejected and they can be 
excluded from future assignments, or they can be provided 
with shepherding and real-time support to improve their 
performance [2]. Kamar et al. [21] propose a method for 
routing tasks to workers that optimizes hiring decisions for 
maximium utility. Based on previously collected task 
repsonses as well as knowledge about individual worker 
performance, they estimate what value additional task 
submissions would provide to the result. 

Defensive task design. Carefully phrasing tasks and 
associated instructions can reduce ambiguities and thus 
improve result quality [33]. Kittur et al. [24] note that tasks 
should be designed so that cheating is no easier than 
completing the task honestly, i.e., creating believable invalid 
responses should be as effortful as providing honest responses. 
Careful arrangement of task order can also increase quality. 

While data quality can be mesured by accuracy, i.e., the 
ratio of correct labels to the total number of labels, whether a 
label is correct is often not objectively verifiable. Hsueh et al. 
propose practical aspects to be considered by quality metrics 
[18]: annotator-level noise reflects an annotator’s accumulated 
noise level across tasks, whereby noise is defined as a 
deviation from the majority vote; item-level ambiguity reflects 
that different items are not equally easy to annotate; inherent 
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lexical uncertainty of items can be determined by the 
uncertainty of an automated classifier for the respective item. 
Allahbakhsh et al. [2] further note that the subjective nature of 
quality and the fact that many quality control methods are 
tailored to specific task domains make it difficult to compare 
quality metrics. 

B. Task  Design and Decomposition 
Robust task design is an esstential aspect of crowdsourcing 

complex tasks. Instruction length and complexity can increase 
cognitive demand and thus decrease worker performance [15]. 
Complex payment schemes also increase cognitive demand, 
because workers focus on optimizing their payment in addition 
to completing the task [15]. Thus, task design that channels 
cognitive demand towards the tasks is potentially more 
effective. Repeating tasks also facilitates a learning effect for 
workers which reduces cognitive load and thus potential for 
error [15]. A related aspect is that the usability of the 
crowdsourcing interface impacts result quality [2]. Eickhoff 
and de Vries [14] further find that phrasing tasks in a non-
repetitive manner discourages automation on the worker side 
and yields higher quality results.  

Allahbakhsh et al. [2] note that task granularity affects data 
quality. They distinguish between simple tasks that are self-
contained and require low expertise and complex tasks. 
Complex tasks should be decomposed into simpler microtasks, 
of which the results can be later consolidated to solve the larger 
task. Microtasks can be chained to form iterative and 
parallelized  task workflows [2]. TurKit [28] allows to 
integrate MTurk tasks into program code with the purpose of 
automating human computation with complex workflows. 
Kittur et al. propose CrowdForge as a general purpose 
framework for solving complex and dependent tasks with a 
map-reduce approach [25]. CrowdForge supports dynamic 
multi-level partitioning so that workers themselves can decide 
how to subdivide a task, which then generates new microtasks 
automatically. Result aggregation can be automated or partially 
performed by workers. Turkomatic [26] further aims to 
crowdsource the actual design of a task workflow. Workers 
decompose tasks on their own while the requester can modify 
workflows in realtime. Cascade [10] is an automated workflow 
for creating object taxonimies. Cascade’s task decomposition is 
based on three task primitives: generate label (show multiple 
items, ask to find category), select best label (given a single 
item and multiple labels, select the best fit), and categorize (for 
a single item and multiple categories, vote for each category). 
The motivation is that these primitive tasks can be completed 
in 20 seconds and highly parallelized.  

Zaidan and Callison-Burch [38] find that an optimized task  
workflow results in near-professional quality for natural 
language translations. In their process, statements are first 
translated redundantly, those translations are then redundantly 
edited for fluidity by native speakers, and then those edits are 
again ranked by crowd workers. Based on a quality metric that 
incorporates the ranking score, as well as sentence and worker 
features, best fits are selected automatically. Ambati et al. [4] 
also propose a crowdsourcing workflow for translation tasks in 
which results are enhanced through multiple levels, including 
lexical translation, assistive translation, and monolingual 
synthesis to refine translated sentences. Negri et al. [31] 
employ task decomposition to build a cross-lingual entailment 

corpus with crowdsourcing. Their workflow consists of 
sentence modification, annotation, and translation tasks. They 
find that the resulting workflow can be scaled easily for a large 
set of original sentences.  

C. Crowdsourcing and Requirements Engineering 
Requirements engineering research is beginning to leverage 

crowdsourcing in elicitation. Lim and Finkelstein [27] 
introduce the StakeRare method that employs social networks 
and collaborative filtering to elicit and prioritize user 
requirements. The approach was applied to a 30,000 user 
system with 87 stakeholders and showed improved 
completeness and accuracy in predicting stakeholder priorities. 
Caire et al. [9] employ crowdsourcing to elicit visual notations 
from novices and study their utility. In our work, we 
investigated task decomposition for requirements extraction in 
multiple crowdsourcing experiments with the goal of obtaining 
an optimized and scalable task worflow. Our work centered on 
the extraction of privacy requirements from privacy policies. 

III. MANUAL EXTRACTION METHOD 
Our three experiments are based on a manual method for 
extracting privacy requirments from privacy policies [7]. In the 
manual method, the analyst first classifies statements using a 
statement-level coding frame based on action type (e.g., does it 
refer to collection, use or transfer of personal information). 
Next, the analyst applies a phrase-level coding frame to 
identify the information type, recipients or senders of 
information, and purposes for which information is used. The 
complete coding frame is presented in Appendix A. In Fig. 1, 
we present an example policy statement that has been manually 
coded in a prior case study [7]: phrases are highlighted 
corresponding to codes for words indicating modality, transfer, 
datum, target, etc. In the complete manual method, the 
extracted phrases are mapped to logical formula, which are 
then used to reason about conflicts between permitted and 
prohibited actions [7]. In this paper, we only treat the 
extraction problem, and leave crowdsourcing of translation to 
logic to future work. 

 
Fig. 1. Example coded policy statement: the stateement-level code  

“Transfer” is mapped to the action verb “provide,” the phrase-level 
codes identify the modal phrase, datum, target and list of purposes. 

There are multiple factors to consider when evaluating how 
well crowdsourcing can contribute to scaling this task, 
including the time to extract a requirement, the cost of 
extraction and the proportion of extracted statements to the size 
of the policies. In our prior study [7], our analysts spent 
between 1.4 and 1.8 minutes per policy statement coding the 
policy text. The cost to code the Zynga privacy policy, which 
consisted of 189 statements, at a pay rate of $15 per hour 
would be $86.25 or about $0.46 per statement. To assess 
validity, we use the inter-rater reliability Kappa statistic, which 

Transfer keyword 
Modal phrase “will” indicates an assumed permission 

Datum Target 
Purposes 

We will provide your information to third party companies to perform 

services on our behalf, including payment processing, data analysis, e-

mail delivery, hosting services, customer service and to assist us in our 

marketing efforts. 
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requires multiple analysts and which at least doubles the cost to 
code the Zynga policy to $172.50. This cost and effort includes 
the time to read the policy, identify relevant statements, and 
assign the corresponding codes; it does not include the time to 
translate the coded phrases into logic or a requirements 
specification language. In addition, we found that the analysts 
coded only 28-49% of the policy statements. Many uncoded 
statements reside in specific sections of the policies that can be 
eliminated to reduce the cost of the manual effort as well. 

In the next section, we describe two pilot experiments and 
our results to adapt this method to the MTurk crowdsourcing 
platform. In the third experiment, we discuss how the pilot 
studies and cost of the manual approach factored into our task 
decompostion design choices.  

IV. PRELIMINARY EXPERIMENTS 
The task designs for the first two experiments E1 and E2 

aimed at answering two research questions: how well do crowd 
workers apply the statement-level and phrase-level coding 
frames, and how many crowd workers are needed to reach 
consensus?  We now discuss the two designs and results. 

A. Sentence Classification and Consensus Building 
Experiment E1 evaluates the crowd workers’ ability to 

apply the sentence-level coding frame (see Appendix A) and to 
measure how many crowd workers are needed to reach 
consensus. For this task, we created a stratified sample of nine 
sentences selected from our prior case study [7], which we use 
as a gold standard to evaluate the crowd worker results. We 
selected sentences along the following strata: single-coded, in 
which only a single sentence-level code applies; dual-coded, in 
which exactly two sentence-level codes apply; and none, 
wherein no codes apply. We chose this strata to ensure 
coverage across the coding frame and assess how well workers 
respond to statements with multiple codes. The selected 
sentences, prefixed by the expected codes in bold, are as 
follows: 

1. Collect: “We may collect or receive information from other 
sources including (i) other Zynga users who choose to 
upload their email contacts; and (ii) third party information 
providers.” 

2. Consent, Transfer: “We do not actively share personal 
information with third party advertisers for their direct 
marketing purposes unless you give Us your consent.” 

3. Retain: “Zynga stores information about site visitors and 
players on servers located in the United States.” 

4. Collect, Retain: “We receive and store the information you 
provide, including your telephone number, when you sign 
up to have SMS notifications sent directly to your mobile 
phone.” 

5. Transfer: “To properly credit user accounts and to prevent 
fraud, a unique identifier, in some cases your user ID 
number, will be shared with the offer wall provider.3” 

6. Use: “This information will be used to supplement your 
profile – primarily to help you and your friends connect.” 

                                                             
3 An offer wall is a web page or screen with multiple offers aimed at 

providing users more choices for clicking on ads. 

7. Collect, Use: “The information collected may be used to 
offer you targeted ad-selection and delivery in order to 
personalize your user experience by ensuring that 
advertisements for products and services you see will 
appeal to you, a practice known as behavioral advertising, 
and to undertake web analytics (i.e. to analyze traffic and 
other end user activity to improve your experience).” 

8. None: “Zynga implements reasonable security measures to 
protect the security of your information both online and 
offline, and We are committed to the protection of customer 
information.” 

9. None: “Zynga games or their purchase pages may display 
an ‘offer wall’ that is hosted by an offer wall provider.” 

 Figure 2 shows the task interface for E1, in which the 
variable ${text} would be replaced by one of the statements 
above. The instructions are simple with no examples. Response 
options (use, transfer, etc.) were always presented in random 
order with “none of the above” always appearing last. Workers 
may select as many categories as desired, but they must 
provide phrases to justify their answers. 

 
Fig. 2. User interface to the sentence clasification task; the variable ${text} 

is replaced by one of nine sentences; workers are asked to provide 
matching keywords from the text to justify their responses. 

For E1, we recruited US residents as workers on MTurk, 
who had at least a 95% approval rating for over 5,000 tasks. 
We paid workers $0.15 per sentence classification task and 
allowed up to 20 minutes to complete the task. Results were 
accepted or rejected within 24 hours. On average, workers 
required 66 seconds to complete a single sentence 
classification that resulted in an average hourly rate of $8.18. 

In response to our request, we solicited 50 workers per task 
that resulted in a total of 76 distinct workers participating who 
classified between 1-9 sentences each to yield 448 
classifications (i.e., workers are not required to complete all 
tasks). Table I presents the results as the number of ratings per 
sentence (S#) by category: cells shaded dark blue represent 
majority consensus (i.e., ≥ 25/50 workers assigned the category 
to this sentence) and cells shaded light orange represent near 
majority consensus or NMC (i.e., 13-24 workers assigned the 
category to this sentence). The dark blue-shaded cells match 
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our expected results with 100% precision and recall. After 
inspecting the results, we believe NMC is due to implied 
actions perceived by some workers, e.g., the action of “signing 
up” for a game account (statement 4) implies that the user will 
transfer some personal information to the game website. 

TABLE I.  FREQUENCIES OF CODES PER SENTENCE 

S# Collect Consent Use Retain Transfer None 
1 48 8 9 19 15 0 
2 8 46 21 7 38 0 
3 12 0 2 49 3 0 
4 38 16 13 44 8 0 
5 7 2 22 6 40 3 
6 13 4 42 12 10 1 
7 36 5 44 10 10 0 
8 7 3 5 19 0 25 
9 5 2 8 1 8 31 

 

Due to space limitations, Fig. 3 only presents plots for the 
percentage of crowd workers who classified even sentences 2, 
4, 6, 8: the y-axis shows the percentage of workers who 
assigned the category, and x-axis shows the response from the 
ith worker from the 1st to the 50th in time order. Across all 9 
plots, we observe that percentages converge at between 5-15 
workers per statement, which indicates that higher worker 
numbers are not necessary. We used this information to set the 
number of invited workers to complete experiments E2 and E3.  

 

 
Fig. 3. Percentage of crowd workers who labeled statements by concept; the 

y-axis is the percentage, and the x-axis is the worker number from the 1st 
worker to the 50th worker; the proportions stabilize between 5-15 
workers. 

We evaluated worker performance in E1 by their ability to 
assign ratings within the majority consensus (i.e., of all their 
ratings assigned, what proportion match the majority rating). 
We found for each task that 12/50 workers provided between 
40-50% of their ratings within the majority, and 18/50 workers 
rated with the majority less than 50% of the time. In addition, 
all workers did not complete all tasks: 16/50 workers attempted 
only one sentence classification task, whereas 32/50 workers 
completed all nine tasks. We computed the average number of 
tasks completed by the worker’s quartile ranking with respect 
to majority ratings and found that Q1=1.9, Q2=5.0, Q3=6.6, 
and Q4=7.2, which suggests workers rating in the majority are 
more likely to complete more sentence classification tasks. 

B. Full-frame Extraction 
Experiment E2 is a “full-frame” extraction task that 

combines the sentence-level coding frame with the phrase-level 
frame described in Appendix A. Workers are shown one 
sentence and they are asked to answer up to seven questions by 
completing an online form (see Fig. 4). The questions ask: 
what is the modality (permit, prohibit), what is the action 
(collect, use, transfer, retain), what is the indicative verb for 
this action, what kind of information is acted upon (the datum), 
to whom is information transferred (target), from whom is 
information collected (source), and for what reason or purpose 
is the action performed. Alternatively, the worker can indicate 
that the sentence does not describe any of these actions. We 
further include clickable instructions that expand to show a 
working example. The action names listed by the verb textbox 
are selected from the top three verbs for each action identified 
in our Zynga case study [7]; thus, “transfer, share, send” were 
the three most commonly observed verbs indicative of a 
transfer action. The last four questions appear dynamically 
based on what action has been selected in the drop-down list. 
For this task, we selected 18 new sentences from the Zynga 
case study [7] using the same stratification criteria as in E1: 
single-coded, double-coded and none. 

 
Fig. 4. User interface to the full-frame extraction task. 

We solicited 15 workers per sentence based on E1 results 
that show sentence-level classification consensus converges 
between 5-15 workers. These workers were US residents and 
they had at least a 95% approval rating for over 5,000 tasks. 
We paid workers $0.15 per full-frame extraction and allowed 
up to 10 minutes for workers to complete the task. Results 
were accepted or rejected within 48 hours. For E2, we received 
38 workers who classified between 1-18 sentences yielding 
135 classifications. The average task completion time was 89 
seconds with an average hourly rate of $6.07. 

We believe the E2 task was more challenging for the 
workers than the E1 task. In addition to the longer average time 
required to complete E2 tasks, we saw that individual workers 
completed fewer tasks in E2 than in E1. Furthermore, the data 
quality produced by E2 workers is more varied. Figure 5 
presents the number of perfect responses received along the y-
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axis and the sentence number along the x-axis, respectively. 
For each column, we report the average worker score for each 
sentence, which is computed as a ratio of correct answers per 
total number of possible responses (e.g., for sentence 1, 92% of 
the questions asked about this sentence were correctly 
answered across all 15 respondents; a worker’s response is 
perfect if it has a score of 100%).  

From these results, we drew a few observations. First, the 
darker shaded, blue columns show that more than two-thirds of 
workers produced perfect scores for the respective sentence. In 
most of these cases, the average score is above 90%. Second, 
sentences with medium shaded, red columns exhibit an above 
average score of 77% or greater, but a relatively low number of 
perfect responses. This is because the cumulative number of 
correct answers across all fifteen responses is high, whereas 
few workers could correctly answer all questions. The lighter 
shaded, orange columns correspond to sentences for which 
respondents were equally divided between providing answers 
or selecting the negative response option, which was the 
correct answer. This may indicate acquiesence bias [30], in 
which respondents feel compelled to complete the template, 
despite encountering a sentence that is not clearly classifiable. 

 
Fig. 5. Number of perfect responses for sentences; percentages correspond to 

average worker score for each sentence. 

While the results from E2 are promising, overall, scaling 
this full-frame extraction task would be too costly. Recall, the 
cost for two expert analysts to encode the Zynga policy, which 
contains 189 statements, is $172.50. With respect to E2, hiring 
15 workers to apply the full-frame extraction to the whole 
Zynga policy at $0.15 would cost $425.25. Therefore, we had 
to further reduce the number of workers needed and/or increase 
the quantity of information processed to reduce the overall 
cost. Therefore, we are inclined to separate the questions in the 
full-frame extraction into separate tasks, while increasing the 
quantity of text per task. The idea being that we can recombine 
the answers in a map-reduce style human computation. 

In addition, the E2 results suggest two hypotheses. First, 
one class of sentences yields perfect responses among two-
thirds of respondents (see blue columns in Fig. 5): if we only 
hire five workers, more than half will produce consensus and 
perfect responses. Second, a different class of sentences show 
that only one-third of workers produce perfect responses (see 
red columns in Fig. 5), but three-fourths of aggregate worker 
answers in those responses matched consensus with the one-

third who provided perfect responses. These hypotheses 
informed the experimental design of E3 (see Section V), 
including the development of three metrics to evaluate which 
workers produce higher quality responses. 

V. TASK DECOMPOSITION FOR EXTRACTION 
The results from experiment E2 demonstrate several trade-

offs in using untrained crowd workers: (1) combining multiple, 
hetereogenous microtasks into a larger task increases cognitive 
demand, which necessitates an increased payment to cover the 
additional time spent by the worker; and (2) consensus is 
reached earlier on some microtasks than others. Based on these 
observations, we designed a task workflow in which the full-
frame extraction task from E2 is decomposed by semantic roles 
into microtasks and distributed to multiple workers. The task 
decomposition design is driven by assumptions derived from 
the crowdsourcing literature and our experience as follows:  
A1. Extraction of complete requirements may require the 

context of multiple sentences or regions of text; 
A2. Once a worker understands a simple task, they can more 

effectively perform it repeatedly compared to switching 
between different tasks during the same period [15]; 

A3. Certain steps in the extraction process can be performed 
by automated NLP with acceptable levels of precision and 
recall [36]; 

A4. Certain microtasks depend on the results from other 
microtasks, thus suggesting natural break points and 
ordering of microtasks in a task decomposition; 

A5. The financial cost of a task is directly proportional to the 
task complexity [2, 33] or cognitive demand, thus 
decomposition should coincide with a smaller cost per 
microtask, but not necessarily a smaller overall cost. 

We designed the task workflow for experiment E3 under 
these assumptions as follows. First, we chose to provide 
workers with complete paragraphs, in contrast to E1 and E2 
that presented only single sentences. A paragraph provides 
additional context that may be needed to extract a complete 
requirement (A1) and we can leverage improved worker 
performance by having them repeat the same, smaller task for 
the same duration of 60-90 seconds over larger portions of text 
(A2). Second, we observed that some microtasks can be 
partially solved by automated NLP (A3), thus, reducing the 
workload. Next, some questions need not be answered, if a 
previous microtask provided a negative result (A4), e.g., we do 
not need to ask “from whom” information is collected, if the 
text does not describe collection. These two assumptions A3 
and A4 motivate our expectation that we can reduce the cost by 
skipping portions of policies. The challenge is maintaining 
validity by ensuring each question is answered by a sufficient 
numebr of workers to reach consensus. 

Figure 6 presents our task decomposition that follows this 
line of reasoning. Preliminary microtasks that have not been 
discussed so far, including downloading privacy policies and 
extracting paragraphs, are shown and have been realized as 
semi-automated tasks. The microtask “identify modal verbs,” 
such as may, will, may not, etc. is automated. Microtask 4 
(identify the action verbs) is the lead crowdsourcing task: this 
task is used to evaluate worker performance early based on a 
list of known action verbs.; if actions are detected by workers, 
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microtasks 5-7 are created for those paragraphs. Microtask 6 is 
restricted to paragraphs describing collections or transfers, and 
actions coded by a majority (>2 raters) are highlighted in this 
microtask. The results from microtask 5 and 6 are compared 
with microtask 4 (dotted lines) to assess worker quality. 

 
Fig. 6. An overview of the task decomposition workflow. 

 To effectively support workers in microtask 5, we 
developed a specialized user interface for coding key phrases 
(see Fig. 7). In the interface, users select relevant phrases and 
press “concept” keys to code the phrase with a specific 
concept. Thus, workers can highlight phrases as they read 
through the text, as opposed to copying/pasting or typing 
answers, which can lead to typographic errors that prolong the 
task and potentially reduce workers’ hourly wages.  

 
Fig. 7. Example interface used in task decomposition, step 5. 

In the experiment E3, we ask workers to complete steps 4-7 
of our task workflow for the following five privacy policies: 
Zynga.com, Rovio.com, Amazon.com, Walmart.com, and 
Waze.com. We previously studied Zynga’s and Waze’s 
privacy policies, which provides a gold standard by which to 
compare crowd worker results with our manual method. We 
selected three additional policies to complement this selection: 
Rovio’s policy covers the popular game Angry Birds, which 
complements Zynga’s Farmville game; Amazon and Walmart 
are both large retail companies, wherein Walmart specializes in 
brick-and-mortar sales and Amazon specializes in online sales.  

In preparation, we downloaded the policies from their 
websites, itemized the paragraphs and removed sections 
describing the following content: the introduction, “contact 
us,” security, U.S. Safe Harbor, policy changes, and California 
citizen rights. This content is often separated by section or 
detected with common keywords. In addition, we manually 
split paragraphs to yield text spans less than 120 words, noting 
that we preserved some large spans when anaphora referred 
back to a previous sentence (e.g., when “This information…” 
depends on a prior sentence to understand which information is 
referred to). We approximate the time to divide these policies 
to be about 15 minutes per policy, which adds an incidental 
one-time cost to each workflow instance. Table II summarizes 
the E3 dataset, including the total policy sections, sentences 

count, percent of retained sentences after removing sections, 
and total number of assignments created per policy. Each 
assignment is a separate microtask instance in the workflow. 

TABLE II.  SUMMARY OF POLICIES STUDIED IN EXPERIMENT E3 

Policy Sections Sentences Retained Assign. 
Amazon 16 95 69.5% 18 
Rovio 13 84 83.3% 18 

Walmart 28 169 71.0% 27 
Waze 17 135 85.7% 34 
Zynga 36 195 69.2% 32 

We developed a grading system to evaluate worker 
performance in experiment E3. We cannot use inter-rater 
reliability to evaluate consensus for phrase-level coding 
because the non-coded phrases dominate coded phrases and 
workers generally agree about which phrases not to code, 
which causes Fleiss’ Kappa to converge at 0.99 for all tasks. 
Thus, we compute a worker grade based on the distribution of 
their ratings among rater agreement as follows: 
• Grade 4, if ≥ 50% of their ratings shared by 5 workers  
• Grade 3, if ≥ 50% of their ratings shared by ≥ 4 workers  
• Grade 2, if ≥ 50% of their ratings shared by ≥ 3 workers 
• Grade 1, if ≥ 50% of their ratings shared by ≤ 2 workers 
In addition, we compute a ratings/task measure that describes 
the ratio of total ratings to total tasks completed by workers. 
These two measures balance each other: a worker may submit 
one “safe” rating per assignment that five workers agree with 
to earn a Grade 4, whereas a worker who submits more than 
eight ratings per task may be more likely to yield increased 
coverage with fewer workers in agreement and earn a Grade 1.  

Consider Table III as a sample data set for computing 
worker grades: the Workers column lists a unique index for 
each of three workers W1-W3; the Ratings column lists worker 
ratings in three ranks R1-R3 where a rating is counted in only 
one column depending on how many workers agree with the 
rating (e.g., a rating counted under R3 means exactly three 
workers assigned the same rating to the same item); the Rank 
Proportion columns list the proportion of worker ratings that 
fall into one of the three ranks (e.g., W1 produced 60/90 
ratings in rank R1, so they have proportion P1 = 66%). Finally, 
grades are assigned based on the rank proportions, e.g., worker 
W2 received a grade of 3, since  ≥ 50% of their ratings (50/90 
under R3) are shared by three or more workers (P3 = .556). 

TABLE III.  EXAMPLE RANKING AND GRADING COMPUTATION 

Worker Ranks Rank Proportion Grade R1 R2 R3 P1 P2 P3 
W1 60 20 10 0.667 0.250 0.125 1 
W2 15 25 50 0.167 0.278 0.556 3 
W3 20 40 30 0.250 0.444 0.333 2 

Finally, we compute a sanity measure after microtask 4 to 
check worker performance against our predicted minimum 
level of performance. From our prior case study [7], we 
compiled a list of the 11 most frequently coded action verbs 
and we use these verbs in three tenses (past, present, present 
continuous tense) to predict the classification of actions in each 
paragraph at microtask 4. For each worker who completed this 
microtask, we compute the sanitfy measure as the ratio of 
known actions identified by the worker to known actions 
predicted in the paragraph. Together, these three measures help 
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us identify workers that contribute different kinds of quality to 
the results, which we discuss in Section V-A. 

A. Results of Task Decomposition Experiment 
Table IV presents summary statistics per policy for the four 

microtasks in experiment E3. We recruited workers who are 
US residents and who had at least a 97% approval rating for 
over 5,000 tasks. We paid workers $0.10 for microtasks 4-5, 
and we paid $0.08 for microtasks 6-7, due to their lower 
complexity. For all microtasks, workers were allowed up to 10 
minutes to complete each task. Results were accepted or 
rejected within 48 hours. For all microtasks, we rejected 
worker results only if either: (1) the worker produced no codes 
and 4/5 other workers submitted at least one code for the 
assignment, demonstrating viable answers missed by the 
worker; or (2) the worker misunderstood the instructions and 
coded the wrong microtask (e.g., for information types, they 
coded actions). The second condition occurred once in 
microtask 5 and 6, each time with a different worker. When a 
result was rejected, it was sent back to the platform and another 
worker was permitted to complete the assignment. 

TABLE IV.  SUMMARY OF TASKS IN EXPERIMENT E3 

By 
Policy 

Total 
Assigns. 

Total 
Rejects 

Avg.  
Time  

Avg. Pay 
Rate 

Amazon 385 25 63.8s $5.18 
Rovio 381 21 53.8s $6.10 
Walmart 571 31 49.3s $6.59 
Waze 732 52 50.3s $6.54 
Zynga 649 9 63.8s $6.18 

By  
microtask 

Total 
Assigns. 

Total 
Rejects 

Avg. 
Time 

Avg. Pay 
Rate 

4: Actions 655 10 54.0s $6.70 
5: Information 715 70 50.4s $7.25 
6: Sources/Targets 703 58 58.6s $5.04 
7: Purposes 645 0 52.8s $5.49 
Figure 8 presents the total ratings for the six highest-yield 

workers who produced the most action ratings on the Zynga 
policy. The lowest grade worker V1, produced the most ratings 
(i.e., >75) unreported by any other worker. The highest grade 
workers V3-V6 produced fewer ratings, but generally produced 
ratings that many other workers agreed with. Across the entire 
data set, the average ratings per task for grades 1 through 4 
were, respectively: 8.01, 7.74, 5.24, and 4.02. 

 
Fig. 8. The six workers with the highest number of attempted assignments 

for the Zynga policy; workers with more ratings/assignment typically 
have lower grades, because they find phrases coded by fewer workers. 

In the task decomposition, we use a list of known actions 
from our prior case study [7] to evaluate worker performance. 

Table V presents the overall results for predicted responses: 
for each Policy, we show the number of verbs predicted as a 
collection (C), use (U), transfer (T), retention (R), transaction 
(collect or transfer, CT) or access (CUT); the number of verbs 
predicted (Pred.), the Total number of verbs identified by 
workers, and the Ratio of predicted verbs to total verbs. For 
the remaining unpredicted verbs, we rely on worker consensus 
to determine the verbs’ classifications. 
TABLE V.  INFORMATION ACTIONS FILTERED BY KNOWN ACTION LIST 

Policy Verbs matching code priors Pred. Total Ratio C U T R CT CUT 
Amazon 22 9 9 12 14 8 74 174 0.425 
Rovio 11 23 9 8 5 5 61 149 0.409 
Walmart 21 22 15 5 17 4 84 272 0.309 
Waze 3 16 6 4 12 4 45 175 0.257 
Zynga 11 36 25 2 15 2 95 304 0.313 

Based on the predicted verbs, Table VI presents the top six 
workers who completed the most HITs across all five policies: 
the table shows a unique Worker ID, followed by the number 
of Policies they coded, the total number of tasks, the total 
number of Coded Items and Total Expected items from the 
known action list, their Coded/Expected ratio, number of 
Ratings/HIT and their Avg. Grade, which is the average 
worker grade across all of their coded items. Notably, the 
workers with the highest Coded/Expected ratios (V7, V8, and 
V10) have higher Ratings/HIT and relatively lower grades. 
These workers not only identify known verbs, but they also 
identify verbs that few other workers identify. Contrast this 
behavior with workers V4, V6 and V9, who find only half (or 
less) of the known verbs, yield few Ratings per HIT, and 
generally code items that other workers identify (i.e., they 
have above average grades).  
TABLE VI.  MOST PRODUCTIVE WORKERS EVALUATED AGAINST VERBS 

ON THE KNOWN ACTION LIST 

Worker 
ID Policies Tasks Coded 

Items 
Total 

Expect. 
Coded/ 
Expect. 

Ratings/ 
HIT 

Avg. 
Grade 

V4 5 109 228 438 0.521 4.1 3.0 
V6 1 98 241 425 0.567 4.2 3.2 
V7 5 73 248 297 0.835 12.8 1.3 
V8 3 55 186 236 0.788 10.0 1.8 
V9 1 50 70 222 0.315 2.2 4.0 

V10 2 35 97 134 0.724 9.8 1.8 

B. Comparative Evaluation of E3 and RE’13 Case Study 
We compared worker results for the Zynga policy with our 

RE’13 study results [7] to determine whether task 
decomposition produced the desired data quality for extracting 
privacy requirements. Figure 9 presents precision and recall 
for each of the four microtasks. Notably, precision and recall 
are inversely proportional, and precision increases with the 
number of raters in agreement. While all the tasks largely 
track the same curvature, the recall for identifying actors (i.e., 
sources or targets) falls sharply by comparison to actions and 
information types. The hourly rate for the actor identification 
task was also much lower by comparison. While this task may 
be perceivably easier given the consistent use of pronouns to 
describe actors, there are a significant number of such entities 
in the text. Thus, worker motivation may be decreasing over 
time which yields fewer correct answers.  
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Fig. 9. Precision and Recall comparing the Crowd Worker result with our 

RE’13 case study result: Precision (P) and Recall (R) are inversely 
proportional with the number or raters who agree with the ratings. 

In addition, we manually inspected the data at the 2-Rater 
agreement level and found that “false positives” (FP) include 
implied information actions and types that had previously been 
missed by the expert analysts in our case study, because the 
case study was narrowly focused on explicit statements of 
collection, use and transfer. For actions and 2 raters (recall = 
0.811), we found 34/48 FP verbs that could have been 
reasonably included in our previous case study. This includes 
verbs, such as provide, deliver, notify and record in reference 
to a kind of information. Among these verbs, 11 described 
implied information uses and transfers, including signing up 
(for an account), inviting (friends) and remembering (your last 
visit). For information types (recall = 0.823), we found 99/119 
FP phrases that could be reasonably included in the case study. 
This includes technology devices, such as mobile devices and 
browsers, that contain personal information. In experiment E3, 
however, we instructed workers to report actions performed on 
any information. Thus, we believe the crowdsourcing result 
yields a desired increase in extraction coverage. 

Table VII presents the total cost for distributing the 
decomposed task to MTurk for the five policies: at the time of 
this experiment, the four microtasks cost a combined $0.36 
and were each distributed to 5 workers to yield a $1.80 unit-
cost per task for 5 raters; Amazon charges 10% in MTurk 
Fees, which is added to the Total Cost; the last column shows 
the total Worker Compensation that a worker receives for 
completing all assignments, which we believe motivates 
workers to participate.  

Recall from Section III that the cost for two trained 
analysts to code the Zynga policy is $172.50. In addition to 
the MTurk total cost, there is a one-time cost for sub-dividing 
the policies (approx. $5). Based on our task decomposition, 
we reduced the manual cost by 60% for the Zynga policy and 
with 2-rater agreement we increased action coverage by 16% 
with a false positive rate of 3.6%. Based on our average cost 
of $0.46 per statement coded by a single trained analyst, and a 
combined 522 statements for the five policies in our study, the 
projected cost to have two trained experts code the same five 
policies would be $480.24. The task decomposition approach 
only cost $305.42, which is a scaling improvement of 1.5:1. 
As we discuss in Section VI, we discovered additional 
prospects for improving this scaling factor in the future. 

 

TABLE VII.  COST TO CROWDSOURCE THE TASK DECOMPOSITION 

Policy Tasks* MTurk 
Fees 

Total 
Cost 

Worker 
Comp. 

Amazon 18 $3.24 $40.64 $6.48 
Rovio 18 $3.24 $40.64 $6.48 
Walmart 27 $4.86 $58.46 $9.72 
Waze 34 $6.12 $72.32 $12.24 
Zynga 32 $5.76 $68.36 $11.52 

* Assumed a $1.80 unit-cost per task for 5 raters. 

VI. DISCUSSION AND SUMMARY 
We now discuss our results from the decomposed task 

workflow and potential for future work. The three experiments 
show complimentary results: experiment E1 demonstrates the 
feasibility of sentence-level coding and the 5-15 worker 
threshold at which worker agreement stabilizes; in experiment 
E2, we tasked workers to apply both sentence- and phrase-level 
codes on a per statement-basis, wherein we discovered that the 
aggregate of workers’ partial responses scored better for most 
sentences than what workers produced as complete responses; 
and in experiment E3, we leveraged this insight to create a task 
decomposition that uses fewer workers and simpler phrase-
level coding tasks on larger portions of text to yield an 
acceptable aggregate response at a reduced overall cost. 

Our results show that for a 1.5:1 cost reduction, we can use 
crowdsourcing to scale requirements extraction for privacy 
policies. This ability to scale could enable more efficient data 
flow research in  larger data ecosystems [7], as well as 
comparative studies that contrast practices across business 
types (e.g., advertisers, social networking sites, etc.) In 
addition, while trained analysts may fatigue due to the rote task 
of coding large policies, the task decomposition approach may 
avoid this fatigue by leveraging a larger population of coders 
over much smaller tasks (2-3 sentences at a time). 

We envision augmenting our crowdsourcing approach with 
advanced NLP-based techniques that leverage the worker-
supplied data. This includes dependency parsers that can help 
identify actors in the source and target microtask, as well as 
relevant verbs covering worker-supplied information types. To 
improve these automated techniques, we plan to build an 
information type ontology based on these results after 
conducting additional worker processing to identify synonyms 
and subsumption relationships. Finally, for machine-learning 
based NLP, we believe our crowdsourced approach may 
produce the large training sets needed to train classifiers. 

The results show that requirements analysts and researchers 
can scale requirements extraction using task decomposition and 
untrained crowd workers, wherein a worker is untrained if they 
are untested against a training regime prior to performing the 
task. With appropriate pilot studies, we discovered the 
minimum number of workers, work quality metrics, task size 
and payment amount for this kind of work (coding text). We 
envision that other requirements acquisition or analysis tasks 
will require similar pilot testing to arrive at respective task-
specific numbers and can benefit from our approach. 
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APPENDIX A. 

A. Statement-level Coding Frame 
The statement-level coding frame was established in a case 

study to extract data flow requirements from privacy policies 
[7]. In this study, relevant statements in a policy were classified 
as one of the following (irrelevant statements were not coded): 

Collect – any act by a first party to access, collect, obtain, 
receive or acquire data from another party; 

Consent – any act by a party to consent to, or control the use 
of, their personal information; 

Use – any act by a first party to use data in any way for 
their own purpose; 

Retain – any act by a first part to retain data for a particular 
period of time or in a particular location; and 

Transfer – any act by a first party to transfer, move, send or 
relocate data to another party. 

B. Phrase-level Coding Frame 
After the statement-level code is assigned, the analyst 

would then apply a phrase-level coding frame corresponding to 
semantic roles [6]. These roles consist of the following codes: 

Modality – whether the action is a permission, obligation or 
prohibition; 

Subject – the actor who performs the action on the datum; 
Datum – the information on which the action is performed;  
Purpose – the purpose for which the action is performed; 

this role applies to any action, but is especially 
necessary to describe use of the datum. 

Source – the source from which  information is collected; 
Target – for transfer actions, the recipient to whom the 

information is transferred. 
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