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Abstract—Companies require data from multiple sources to 
develop new information systems, such as social networking, e-
commerce and location-based services. Systems rely on complex, 
multi-stakeholder data supply-chains to deliver value. These data 
supply-chains have complex privacy requirements: privacy 
policies affecting multiple stakeholders (e.g. user, developer, 
company, government) regulate the collection, use and sharing of 
data over multiple jurisdictions (e.g. California, United States, 
Europe). Increasingly, regulators expect companies to ensure 
consistency between company privacy policies and company data 
practices. To address this problem, we propose a methodology to 
map policy requirements in natural language to a formal 
representation in Description Logic. Using the formal 
representation, we reason about conflicting requirements within 
a single policy and among multiple policies in a data supply 
chain. Further, we enable tracing data flows within the supply-
chain. We derive our methodology from an exploratory case 
study of Facebook platform policy. We demonstrate the 
feasibility of our approach in an evaluation involving Facebook, 
Zynga and AOL-Advertising policies. Our results identify three 
conflicts that exist between Facebook and Zynga policies, and one 
conflict within the AOL Advertising policy.      

Index Terms—Privacy, requirements, standardization, 
description logic, formal analysis.      

I.  INTRODUCTION  
Increasingly, web and mobile information systems are 

leveraging user data collected from multiple sources without a 
clear understanding of data provenance or the privacy 
requirements that should follow this data. These emerging 
systems are based on multi-tier platforms in which the “tiers” 
may be owned and operated by different parties, such as 
cellular and wireless network providers, mobile and desktop 
operating system manufacturers, and mobile or web application 
developers. In addition, user services developed on these tiers 
are abstracted into platforms to be extensible by other 
developers, such as Google Maps, Facebook and LinkedIn. 
Application marketplaces, such as Amazon Appstore, Google 
Play and iTunes, have emerged to provide small developers 
increased access to customers, thus lowering the barrier to 
entry and increasing the risk of misusing personal information 
by inexperienced developers or small companies. Thus, 
platform and application developers bear increased, shared 
responsibility to protect user data as they integrate into these 
multi-tier ecosystems. 

In Canada, Europe and the United States, privacy policies 
have served as contracts between users and their service 
providers and, in the U.S., these policies are often the sole 
means to enforce accountability [9]. In particular, Google has 

been found to re-purpose user data across their services in ways 
that violated earlier versions of their privacy policy [11], and 
Facebook’s third-party apps were found to transfer Facebook 
user data to advertisers in violation of Facebook’s Platform 
Policies [20]. The challenge for these companies is ensuring 
that software developer intentions at different tiers are 
consistent with privacy requirements across the entire 
ecosystem. To this end, we conducted a case study to formalize 
a subset of privacy-relevant requirements from these policies. 
We believe such formalism could be used to verify that privacy 
requirements are consistent across this ecosystem: “app” 
developers could express their intentions, formally, and then 
check whether these intentions conflict with the requirements 
of third parties. Furthermore, platform developers could verify 
that their platform policy requirements are consistent with app 
developer requirements. 

Contributions: Our main contributions are as follows: (1) 
we systematically identify a subset of privacy-relevant 
requirements from privacy policies using a case study method; 
(2) we formalize data requirements subset in a privacy 
requirements specification language expressed using 
Description Logic (DL); the language supports modeling 
actors, data and data use purpose hierarchies within data 
requirements; (3) we model requirements conflict checking 
using DL concept satisfiability, while ensuring decidability and 
computational bounds; and (4) we model tracing of data flows 
within a privacy policy.  

The remainder of the paper is organized as follows: in 
Section II, we introduce a running example based on our case 
study; in Section III, we introduce our formal language that we 
derived from our exploratory case study; in Section IV, we 
report our method for deriving the language; in Section V, we 
report our extended case study findings to evaluate the 
language across three privacy-related policies; in Section VI, 
we consider threats to validity; in Section VII, we review 
related work; and in Section VIII, we conclude with discussion 
and summary. 

II. RUNNING EXAMPLE 
We illustrate the problem and motivate our approach using 

a running example: in Figure 1, we present privacy policy 
excerpts from the Facebook Platform Policy that governs 
Zynga, the company that produces the depicted Farmville 
game. The solid colored arrows trace from the visual elements 
that the user sees in their web browser on the right-hand side to 
governing policy excerpts on the left-hand side. The dotted 
black lines along the left-hand side show how data flows across 
these application layers. Zynga has a third-party relationship 
with Advertising.com, a subsidiary of AOL Advertising that 
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serves the online ad, “Buying Razors Sucks” in this game. 
Zynga also produces a version of this game for the Android and 
iPhone mobile devices, which would be available through the 
Google Play and iTunes marketplaces, which have their own 
platform developer policies that are not depicted, here.  

 
Figure 1.  Privacy policy excerpts and data flows mapped to web content that 

the user sees in their browser 

As the platform provider, Facebook manages basic user 
account information, including user IDs, friend lists, and other 
data that may be made available to Zynga under the
Facebook’s platform policy. The Facebook policy excerpt in 
Figure 1 prohibits the developer (Zynga) from transferring any 
data to advertisers, regardless of whether users consent to the 
transfer. Zynga’s privacy policy also prohibits such transfers, 
unless the user consents (an apparent conflict). Furthermore, 
AOL Advertising (the advertiser) retains the right to use 
collected information to better target advertising to users across 
multiple platforms, for which Farmville is just one example. 
Because this ad is placed by Zynga, AOL Advertising is a 
third-party advertiser and Facebook expects Zynga to ensure 
that AOL adheres to the rules governing access to Facebook’s
user data. At the time of this writing, Farmville was the top 
Facebook App with over 41.8 million active users per month1 
and Facebook reports over 9 million apps2 exist for their 
platform, in general. Thus, this simple scenario has many 
potential variations.  

In Figure 2, we illustrate a data supply chain between a 
user, Facebook, Zynga and AOL. The arrows denote data flows 
among the four actors, and the policies regulate these flows. 
Under the Facebook privacy policy, Facebook is permitted to 
collect and use the user’s age and gender. Facebook may 
transfer that information to its developers’ apps, such as 
Farmville developed by Zynga. However, the Facebook 
platform policy prohibits Zynga from transferring any 
Facebook user information, including aggregate data, to an 
advertiser, such as AOL. For a user, it is clear that she has 
privacy policy agreements with Facebook and Zynga, because 
these are first-party services. However, it is unlikely the user is 
aware of AOL’s privacy agreement or that data flows to AOL. 
To identify the advertiser supplying the ad in Figure 1, “buying 
razors sucks,” we had to collect TCP/IP network traffic using a 
traffic analyzer (Wireshark). The network traffic revealed the 
domain r1.ace.advertising.com as the server serving the ad into 
Farmville. Upon visiting the r1.ace.advertising.com website, 
the link to their privacy policy at 
http://www.advertising.com/privacy_policy.php contains an 

                                                             
1 See http://www.appdata.com on January 12, 2013 

2 Facebook SEC Amendment No. 4 to Form S-1, April 23, 2012 

error message. Scrolling to the bottom of the webpage, the user 
can then click a "privacy" hyperlink to visit AOL’s privacy 
policy that describes Advertising.com’s privacy practices at 
http://advertising.aol.com/privacy. 

This example illustrates how different parties reuse content 
from other parties to build more complex systems, and how 
developers need tools to ensure consistency between privacy 
requirements across different parties. However, at present, 
policies expressed in natural language remain disconnected and 
hence software can freely deviate from the coordination 
required and expected across these different parties. To address 
this problem we propose to develop a formal language as an 
interlingua to describe requirements that map natural language 
policy to formal statements that can eventually be traced to 
software.  

Figure 2.  Example data supply chain through Facebook, Zynga  
and AOL Advertising 

III. APPROACH 
We aim to improve privacy by introducing a privacy 

requirements specification that serves to align multi-party 
expectations across multi-tier applications. This specification 
would express a critical subset of policy statements in a 
formalism that we can check for requirements conflicts. This 
includes conflicts within a party’s specification, and conflicts 
between two or more specifications of different parties. We 
base our approach on semantic parameterization, wherein 
natural language requirements phrases are mapped to actions 
and roles in Description Logic (DL) [8]. This format was 
validated using 100 privacy policy goals [6] and over 300 data 
requirements governing health information [7]. We now 
introduce DL, followed by our precise definition of the privacy 
requirements specification. 

A. Introduction to Description Logic 
Description Logic (DL) is a subset of first-order logic for 

expressing knowledge. A DL knowledge base KB is 
comprised of intensional knowledge, which consists of 
concepts and roles (terminology) in the TBox, and extensional 
knowledge, which consists of properties, objects and 
individuals (assertions) in the ABox [4]. In this paper, we use 
the DL family ALC, which includes logical constructors for 
union, intersection, negation, and full existential qualifiers 
over roles. The reasoning tasks of concept satisfiability, 
concept subsumption and ABox consistency in ALC are 
PSPACE-complete [4]. 

Reasoning in DL begins with an interpretation 𝔗𝔗  that 
consists of a nonempty set Δ𝔗𝔗 , called the domain of 
interpretation, and the interpretation function .𝔗𝔗  that maps 
concepts and roles to subsets as follows: every atomic concept 

AOL Advertising uses the 
information collected on Network 
Participating Sites to better target 
advertisements to people across 
different websites 

Zynga: We do not actively share 
personal information with third 
party advertisers for their direct 
marketing purposes unless you 
give us your consent 

Facebook: You will not directly 
or indirectly transfer any data 
you receive from us to any ad 
network, even if a user consents 
to such transfer 
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C is assigned a subset 𝐶𝐶𝔗𝔗 ⊆ Δ𝔗𝔗 and every role 𝑅𝑅 is assigned 
the subset 𝑅𝑅𝔗𝔗 ⊆ Δ𝔗𝔗×Δ𝔗𝔗. For each a, b ∈ R𝔗𝔗, b is called the 
filler. Description Logic defines two special concepts: ⊤ (top) 
with the interpretation ⊤𝔗𝔗 =   Δ𝔗𝔗 and ⊥  (bottom) with 
interpretation ⊥𝔗𝔗=⊘. In addition to constructors for union, 
intersection and negation, DL provides a constructor to 
constrain role values, written R.C, which means the filler for 
the role R belongs to the concept C. The interpretation 
function is extended to concept definitions in the DL family 
ALC as follows, where C and D are concepts, R is a role in the 
TBox and a and b are individuals in the ABox: 

  

(¬C)𝔗𝔗 =   ∆𝔗𝔗 ∖   C𝔗𝔗  
(C ⊓ D )𝔗𝔗 =   C𝔗𝔗 ∩ D𝔗𝔗      
(C ⊔ D )𝔗𝔗 =   C𝔗𝔗 ∪ D𝔗𝔗      
(∀R.C)𝔗𝔗 = 𝑎𝑎   ∈ ∆𝔗𝔗     ∀b. a, b ∈ R𝔗𝔗 → 𝑏𝑏 ∈ C𝔗𝔗}  
(∃R.C)𝔗𝔗 = 𝑎𝑎   ∈ ∆𝔗𝔗     ∃b. a, b ∈ R𝔗𝔗 ∧ 𝑏𝑏 ∈ C𝔗𝔗} 

 

Description Logic includes axioms for subsumption, 
disjointness and equivalence with respect to a TBox. 
Subsumption is used to describe individuals using generalities, 
and we say a concept C subsumes a concept D, written 
𝑇𝑇 ⊨ 𝐷𝐷 ⊑ 𝐶𝐶 , if D𝔗𝔗 ⊆ C𝔗𝔗  for all interpretations 𝔗𝔗 that satisfy 
the TBox T. The concept C is disjoint from a concept D, 
written 𝑇𝑇 ⊨ 𝐷𝐷 ⊓ 𝐶𝐶 →⊥, if D𝔗𝔗 ∩ C𝔗𝔗 =⊘  for all interpretations 
𝔗𝔗 that satisfy the TBox T. The concept C is equivalent to a 
concept D, written 𝑇𝑇 ⊨ C ≡ D , if C𝔗𝔗 = D𝔗𝔗   for all 
interpretations 𝔗𝔗 that satisfy the TBox T. 

B. Privacy Requirements Specifications 
We define a privacy requirements specification to be a DL 

knowledgebase KB. The universe of discourse consists of 
concepts in the TBox T, including the set Req of data 
requirements, the set Actor of actors with whom data is shared, 
the set Action of actions that are performed on the data, the set 
Datum of data elements on which actions are performed, and 
the set Purpose of purposes for which data may be acted upon. 
The following definitions precisely define the specification. 
The concepts for actor, datum and purpose can be organized 
into a hierarchy using DL subsumption. Figure 3 illustrates 
three hierarchies from our case study for datum, purposes and 
actors: inner bullets indicate when a concept is subsumed by 
the outer bullet concept (e.g., information subsumes public-
information under Datum). 

 
Figure 3.  Example datum, purpose and actor hierarchy from Zynga privacy 
policy expressable in Description Logic; inner bullet concepts are subsumed 

by (contained within) outer-bullet concepts; italicised red text denotes 
branches that were inferred to structure orphaned concepts 

Definition 1. Each action concept 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 has assigned 
roles that relate the action to actors, data elements and 
purposes. We begin with three default actions: COLLECT, 
which describes any act by a first party to access, collect, 
obtain, receive or acquire data from another party; 
TRANSFER, which describes any act by a first party to 
transfer, move, send or relocate data to another party; and 
USE, which describes any act by a first party to use data in any 
way for their own purpose. In the future, we may extend these 
actions, e.g., with aggregation, analysis, storage, and so on, as 
needed. Actions are further described by DL roles in the set of 
Roles as follows: 
 hasObject.Datum denotes a binary relationship between an 
action and the data element on which the action is 
performed; 

 hasSource.Actor denotes a binary relationship between an 
action and the source actor from whom the data was 
collected; 

 hasPurpose.Purpose denotes a binary relationship between 
an action and the purpose for which the action is performed; 
and 

 hasTarget.Actor denotes a binary relationship between a 
TRANSFER and the target actor to whom data was 
transferred 

Each action has role hasObject, hasSource and hasPurpose, 
but only the TRANSFER action has the role hasTarget. The 
hasObject and hasSource roles are to trace data elements from 
any action back to the original source from which that data 
was collected, as we discuss in Section III.B.2. 
Definition 2. A requirement is a DL equivalence axiom 
𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 that is comprised of the DL intersection of an action 
concept 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and a role expression that consists of the 
DL intersection of roles ∃𝑅𝑅 ⊓ …∃𝑅𝑅 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 . Consider 
requirement 𝑝𝑝  for 𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , and 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 in the TBox T, such that it is true 
that: 
 

(1) 𝑇𝑇 ⊨ 𝑝𝑝 ≡ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⊓ ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑖𝑖𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   ⊓  
                            ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ⊓ 
                            ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎 

 

Figure 4 illustrates two requirements wherein concepts in the 
Actor, Datum and Purpose hierarchies (circles) are linked to 
each requirement via roles (colored arrows): p5 describes the 
act to collect IP addresses from anyone for a range of 
advertising-related purposes; and r7 describes the collecting IP 
addresses from advertisers for any purpose. 

In addition, each requirement is contained within exactly 
one modality, which is a concept in the TBox T as follows: 
Permission contains all actions that an actor is permitted to 
perform; Obligation contains all actions that an actor is 
required to perform; and Prohibition contains all actions that 
an actor is prohibited from performing. We adapted the 
axioms of Deontic Logic, wherein a required action is 
necessarily permitted [13]; hence it is true that 
𝑇𝑇 ⊨ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ⊑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , wherein each required 
action is necessarily permitted. Thus, if our collection 
requirement 𝑝𝑝  is required such that 𝑇𝑇 ⊨ 𝑝𝑝 ⊑ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 , 

Purpose 
  payment-processing 
  communicating-with-user 
  notifying-game-activity 
  customer-support 
  technical-support 
  … 

  delivering-advertisement 
  marketing-zynga 
  marketing-third-party 
  target-advertising 

…  

Datum 
  information 
  public-information 
  zynga-user-id 
  user-name 
  … 

  personal-information 
  billing-information 
  user-age 
  … 

  technical-information 
  ip-address 

… 

Actor 
  zynga 
  zynga-inc 
  affiliate 
  subsidiary 
  joint-venture 
  … 

  service-provider 
  google-analytics 

  third-party-advertiser 
  user 
… 
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then it is also true that 𝑇𝑇 ⊨ 𝑝𝑝 ⊑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . Using this 
formulation, we can compare the interpretations of two 
requirements based on the role fillers to precisely infer any 
conflicts, a topic considered next in Section III.B.1. 

1) Requirements Conflicts: Our formalism enables conflict 
detection between what is permitted and what is prohibited. A 
conflict in predicate logic is expressed as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 ∧
𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) ↔ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) , in which x is a DL 
individual in the ABox A. To implement these techniques, we 
compute an extension of the TBox that itemizes individual 
interpretations of the actors, data and purposes. 

 

 
Figure 4.  Diagram to illustrate itemized interpretations wherein permission 

p5 and prohibition r7 are conflicting but do not subsume one another 

The itemized interpretations allow us to identify conflicts 
within the intersection of complex descriptions that cannot be 
identified using DL intersection, alone. In Figure 4, the 
requirement  p5 is a permission, whereas the requirement  r7 is 
a prohibition. We cannot infer a direct subsumption 
relationship between these two requirements, because each 
requirement contains an interpretation that exists outside the 
other (e.g., Zynga is a permitted source for collecting IP 
addresses, and payment processing is a prohibited purpose). 
However, there is a conflict between these two requirements: 
it is both permitted and prohibited for a third-party to collect 
IP addresses for advertising-related purposes. To detect these 
conflicts, we define an extended specification 𝐾𝐾𝐾𝐾 = 𝑇𝑇 ∪ 𝐴𝐴  
that consists of an extended TBox 𝑇𝑇  = 𝑇𝑇 ∪ 𝐸𝐸 containing the 
original terminology T and axioms 𝑒𝑒 ∈ 𝐸𝐸  that itemize 
interpretations for requirements 𝑟𝑟 ∈ 𝑇𝑇, such that 𝑇𝑇 ⊨ 𝑒𝑒 ⊑ 𝑟𝑟. 
The ABox 𝐴𝐴  contains individuals assigned to these 
interpretations.  
Definition 3. The extension is a set of axioms E that itemize 
the interpretations for each requirement. An itemized 
interpretation of an arbitrary description X is written 
(𝑋𝑋)𝔗𝔗 =    (𝐶𝐶)𝔗𝔗\  (𝐷𝐷)𝔗𝔗  for a concept C that subsumes a concept 
D. By itemizing interpretations in a requirement’s role fillers, 
we can precisely realize a specific conflicting interpretation 
across a permission and a prohibition. 

For each requirement written in the form 𝑟𝑟 ≡ 𝑎𝑎 ⊓
∃𝑅𝑅 . 𝐹𝐹 ⊓ ∃𝑅𝑅 . 𝐹𝐹 ⊓ …  ⊓ ∃𝑅𝑅 . 𝐹𝐹  in the TBox T, such that 
𝑎𝑎 ∈ {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑈𝑈𝑈𝑈𝑈𝑈} and 𝑅𝑅 …𝑅𝑅 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, we 
derive an itemized interpretation 𝑒𝑒  in the TBox 𝑇𝑇 that is 
written in the form 𝑒𝑒 ≡ 𝑎𝑎 ⊓ ∃𝑅𝑅 . 𝐻𝐻 ⊓ ∃𝑅𝑅 . 𝐻𝐻 ⊓ …  ⊓
∃𝑅𝑅 . 𝐻𝐻   by replacing each role filler 𝐹𝐹  with a new role filler 
𝐻𝐻 , which is computed to exclude all sub-concepts 𝐺𝐺 ⊏ 𝐹𝐹  in 
the TBox T as follows: (𝐻𝐻 )𝔗𝔗 = (𝐹𝐹 )𝔗𝔗\ (𝐺𝐺 )𝔗𝔗  |  (𝐺𝐺 )𝔗𝔗 ⊂
(𝐹𝐹 )𝔗𝔗  for an interpretation 𝔗𝔗 that satisfies the TBox 𝑇𝑇 . To 
realize the itemized interpretation and later report the conflict 

to an analyst, we assign a unique individual 𝑥𝑥 to the assertion 
𝑒𝑒(𝑥𝑥) ∈ 𝐴𝐴 . 
Definition 4. A conflict is an interpretation that is both 
permitted and required and that satisfies the TBox 𝑇𝑇 , such 
that it is true that 
𝑇𝑇 ⊨ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≡ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⊓ 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . For an 
individual 𝑥𝑥 in the extended ABox 𝐴𝐴 , each conflict is realized 
with respect to two or more conflicting requirements 
𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 , such that it is true that 𝐴𝐴 ⊨ 𝑟𝑟 𝑥𝑥 ∧ 𝑟𝑟 𝑥𝑥 ∧
𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥  for 𝑖𝑖 ≠ 𝑗𝑗 and an interpretation 𝔗𝔗 that satisfies the 
ABox 𝐴𝐴 . If there exists no individual 𝑥𝑥 ∈ 𝐴𝐴 such that 
𝐴𝐴 ⊨ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 , then a privacy specification KB is conflict-
free. 

   

2) Tracing Data Flows Within a Single Specification: 
Conflict-free privacy requirements specifications describe 
permitted collections, transfers and uses of personal 
information. Using these specifications, we can trace any data 
element from collection requirements to requirements that 
permit the use or transfer of that data. This is important 
because organizations often need to ensure that policies 
covering collected data are implemented across their 
organization. Moreover, the actions to use and transfer data 
may be performed by separate information systems from those 
where the data is collected, and thus we can use these 
specifications to discover which systems data is required or 
permitted to flow to. To trace data across a specification, we 
introduce the following definitions. 
Definition 5. A trace is a subset of requirements pairs 
𝑟𝑟 , 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅  ×  𝑅𝑅𝑅𝑅𝑅𝑅 that map from a permitted source action 
𝑟𝑟  to a permitted target action 𝑟𝑟  for an interpretation 𝔗𝔗 that 
satisfies the TBox 𝑇𝑇. For example, we can trace permitted data 
collections (source action) to permitted data uses and data 
transfers (target actions) when the role values for the source 
actor, datum and purpose entail a shared interpretation. For 
each requirement written in the form 𝑟𝑟 ≡ 𝑎𝑎 ⊓ ∃𝑅𝑅 , . 𝐹𝐹 , ⊓
∃𝑅𝑅 , . 𝐹𝐹 , ⊓ …  ⊓ ∃𝑅𝑅 , . 𝐹𝐹 ,  in the TBox 𝑇𝑇 , such that 
𝑎𝑎 ∈ {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑈𝑈𝑈𝑈𝑈𝑈}  and 𝑅𝑅 , … 𝑅𝑅 , ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 
we compare role fillers 𝐹𝐹 , … 𝐹𝐹 ,  between the source and 
target permissions to yield one of four exclusive Modes as 
follows: 
 U: Underflow, occurs when the data target subsumes the 
source, if and only if, 𝑇𝑇 ⊨ 𝐹𝐹 , ⊑ 𝐹𝐹 ,  

 O: Overflow, occurs when the data source subsumes the 
target, if and only if, 𝑇𝑇 ⊨ 𝐹𝐹 , ⊑ 𝐹𝐹 ,  

 E: Exact flow, occurs when the data source and target are 
equivalent, if and only if, 𝑇𝑇 ⊨ 𝐹𝐹 , ≡ 𝐹𝐹 ,  

 N: No flow, otherwise 
Figure 5 presents an example data flow trace from our case 

study. The collection requirements AOL-16 and AOL-14 trace 
to the transfer requirement AOL-48. The transfer requirement 
does not specify a purpose, which we interpret to mean “any 
purpose.” Thus, the collection purposes “business purposes” 
and “contacting you to discuss our products and services” are 
more specific than the transfer purpose “any purpose,” which 

Purpose Datum 
Actor 

Delivering advertisement 

Payment processing 
Marketing third-party 
Target advertising 

ip-address 

Zynga 

Third-party 
advertiser 

Permitted Collection = p5 r7 = Prohibited Collection 
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the red links illustrate as underflows. The data elements in 
AOL-16 are similarly more specific than the transfer data 
elements.  

 

 
Figure 5.  Example data flow trace: thick red lines represent underflows 

 and thinner black lines represent exact flows. 

Below, the collection requirement p1 in formula (3) 
encodes part of AOL-16 in Figure 5, and p2 in formula (4) 
encodes the corresponding transfer requirement for AOL-48. 
In formula (2), contact information is subsumed by personally 
identifiable information (PII); thus, it is true that: 
 

(2) 𝑇𝑇 ⊨ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⊑ 𝑃𝑃𝑃𝑃𝑃𝑃 
(3)     𝑇𝑇 ⊨ 𝑝𝑝 ≡ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⊓ ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

⊓ ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  
⊓ ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(4) 𝑇𝑇 ⊨ 𝑝𝑝 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ⊓ ∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑃𝑃𝐼𝐼𝐼𝐼 ⊓
∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   ⊓
∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑘𝑘𝑘𝑘𝑘𝑘_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   ⊓
∃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 

Based on the subsumption axiom entailed in formula (2), we 
can map the trace (𝑝𝑝 , 𝑝𝑝 ) ⟶ (𝑈𝑈, 𝑈𝑈, 𝑈𝑈) onto the three Modes 
for the roles hasObject, hasSource and hasPurpose, 
respectively. In general, tracing data flows allows an analyst to 
visualize dependencies between collection, use and transfer 
requirements. In this paper, we only formalize traces within a 
single policy. In future work, we will present tracing data 
flows across multiple policies in a data supply chain. This 
cross-policy tracing extends our notion of a trace, but requires 
a shared lexicon or dictionary to unify terminology across two 
or more policies. In our evaluation, we present select findings 
from cross-policy tracing. 

IV. EXPLORATORY CASE STUDY 
We conducted an exploratory case study on the Facebook 

Platform Policy by systematically coding policy statements for 
formalization in the privacy requirements specification 
language. We mapped statements into one of the two 
categories: policy statements describe an action outside the 
scope of the application such as “You must not violate any law 
or the rights of any individual or entity.” They also include 
non-data requirements that describe the app, but are not 
concerned with handling data, for example, “You will include 
your privacy policy URL in the App Dashboard.” Separately, 
data requirements describe actions performed on data, such as 
“You must not include functionality that proxies, requests or 
collects Facebook usernames or passwords.” We developed our 
formal language to express privacy requirements from the 
formative study results and further validated this language in a 
summative study on two additional policies from Zynga and 
AOL using this same process. We were particularly interested 

in boundary cases that describe the limitations of our proposed 
language. 

Figure 6 presents an example data requirement from the 
Zynga privacy policy. The identifier Z-92 indicates this is the 
92nd statement in Zynga policy. In step 1, we identify the action 
using phrase heuristics (e.g., “provide” indicates a TRANSFER 
action), the modality permission from the modal keyword 
“will,” the datum “information,” the target to whom the data is 
transferred “third party companies” and the purpose “to 
perform services on our behalf…” Purposes and other values 
may appear in comma-separate lists, which we interpret as 
disjunctions. In Figure 6, this purpose includes examples, 
which we separately translate into a purpose hierarchy similar 
to that shown in Figure 3. While this policy statement refers to 
“your information,” it is unclear where this information was 
collected. User data can be collected from the user, data 
brokers or advertisers. 

 
Figure 6.  Steps to map data requirement from natural language to DL; step 1 

shows data requirement in Zynga privacy policy; step 2 shows requirement 
expressed in language syntax; step 3 shows statement expressed in DL 

semantics 

After we identify the values to assign to the roles, in step 2 
we write these values into a privacy requirements specification 
language that uses an SQL-like syntax and our DL semantics 
described in Section III. The letter “P” indicates that this is a 
permission, followed by the action verb, the object, and 
keywords to indicate the source (“FROM”), target (“TO”) and 
the purpose (“FOR”). Once translated into the language, we use 
a tool to parse the language and generate OWL DL that we 
reason over using open source DL theorem provers (e.g., 
HermiT and Fact++). 

During the case study, we traced all the keywords to 
indicate when an action was a collection, use or transfer; these 
appear in Table I. Among the keywords, many overlap across 
actions (e.g., access, use, share) while others are more 
exclusive (e.g., collect, disclose, transfer). The reason for this 
ambiguity is due to policies that include multiple viewpoints: a 
policy may describe access to a user’s data by the app, which is 
a collection, or it may describe a third-party’s access, which 
assumes a transfer. In these cases, the analyst should identify 
the viewpoint to correctly formalize the policy statement and 
consider reviewing their formalization for keywords that are 
known to be ambiguous.

 
 
 

AOL-14: Collect personally identifiable  
information for contacting you to  
discuss our products and services 

AOL-16: Collect name, contact 
information, payment method from 

site visitor for business purposes 

AOL-48: Transfer personally identifiable 
information to key partners 

AOL$16'

AOL$48'

AOL$14'

hasSource 
hasPurpose 
hasObject 

Legend: 

P TRANSFER information TO third-party-companies FOR performing-services 

Transfer keyword 
Modal phrase “will” indicates an assumed permission 

Datum Target 
Purposes 

Step 1: Annotate policy text 

Step 2: Write expression in specification language (P = Permission) 

Step 3: Compile language into Description Logic (OWL) 
Z-92 ≡ TRANSFER ⊓ ∃hasObject.information ⊓  

 ∃hasTarget.third-party-companies ⊓ ∃hasPurpose.performing-services 
Z-92 ⊑ Permission 

We will provide your information to third party companies to perform 

services on our behalf, including payment processing, data analysis, e-

mail delivery, hosting services, customer service and to assist us in our 

marketing efforts. 
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TABLE I.  PHRASE HEURISTICS USED TO INDICATE WHEN A STATEMENT WAS 
A COLLECTION, USE OR TRANSFER REQUIREMENT 

DL Action Action keywords 
COLLECT Access, assign, collect, collected, collection, collects, 

give you, import, keep, observes, provide, receive, 
record, request, share, use 

USE Access, accessed, communicate, delivering, include, 
matches, send, use, used, uses, using, utilized 

TRANSFER Access, disclose, disclosed, disclosure, give, in 
partnership with, include, make public, on behalf of, 
provide, see, share, shared, transfer, use, used with, 
utilized by 

V. EXTENDED EVALUATION 
We evaluated our approach by extending our exploratory 

case study, and implementing a tool-based performance 
simulation. As a problem domain, we chose the Facebook 
Platform as our starting point, because Facebook has received 
significant attention from privacy advocates and Facebook apps 
are frequently available on mobile device platforms, which 
provides a second context to study this problem in future work. 
From here, we chose the Farmville application, which at the 
time of our study, was the most used Facebook app with over 
40.8 million active users per month. We analyzed the following 
three policies: 

 Facebook Platform Policy, last revised 12 Dec 2012, which 
governs app developer practices in Facebook 

 Zynga Privacy Policy, last updated 30 Sep 2011, which 
governs the user’s privacy while they play Farmville  and use 
other Zynga applications 

 AOL Advertising, last updated 4 May 2011, which governs 
advertising distributed through Farmville and other websites 
and applications  

In Table II, we illustrate the scope of this evaluation, 
including the total number of statements in the policies (S), the 
number of data requirements (D), which we break-down into 
the number of permissions (P), obligations (O), and 
prohibitions (R), including which among these requirements 
concern collection (C), use (U) and transfer (T) of data. 
Between 32-55% of these policies described data requirements 
with generally few obligations. The Zynga and AOL policies 
describe their own practices and focus more on permissible 
data practices, whereas the Facebook policy describes 
developer practices and focuses more on prohibitions. We now 
discuss findings from our formal analysis that includes 
conflicts and opportunities to extend our approach, or 
limitations of the current work. 

TABLE II.  NUMBER OF TYPES OF STATEMENTS FORMALIZED  

Policy S D 
Modality Action 

P O R C U T 
Facebook 105 39 15 4 25 6 15 14 

Zynga 195 64 58 1 8 22 8 15 
AOL 74 41 43 0 4 12 15 10 

A. Example Conflicts Identified Using the Language 
We found conflicts between Facebook and Zynga, and one 

conflict within the AOL policy, which we now discuss. 
1) Conflicts between Facebook and Zynga: The Facebook 

Platform policy governs the data practices of Farmville, which 
is also governed by the developer Zynga’s privacy policy. To 

conduct this conflict analysis, we performed an ontological 
alignment between terms in both policies that we formalized 
in DL using equivalence and subsumption. Using our 
formalization, we detected a conflict between these policies 
regarding the sharing of aggregate or anonymous data. 
Facebook requirement FB-43 prohibits a developer from 
transferring any user data obtained from Facebook to an ad 
network, whereas Zynga requirement Z-107 permits sharing 
aggregate data received from any source with anyone: 
FB-43: R TRANSFER user-data FROM facebook TO ad-network FOR 

anything  

Z-107: P TRANSFER aggregate-information,anonymous-
information FROM anyone TO anyone 

The Zynga permission is inferred from an exclusion, which 
states “Our collection, use, and disclosure of anonymous or 
aggregated information are not subject to any of the 
restrictions in this Privacy Policy.” The Zynga definition of 
aggregate-information means non-personally identifiable 
information, which may include Facebook user data, such as 
gender, Zip code and birthdate, which are often viewed as not 
individually identifiable despite evidence to the contrary [21]. 
Under Facebook, the concept user-data is defined to include 
aggregate and anonymous data as follows: “By any data we 
mean all data obtained through the use of the Facebook 
Platform (API, Social Plugins, etc.), including aggregate, 
anonymous or derivative data,” which we encoded in the 
datum concept hierarchy. 

The second conflict appears where Zynga permits the 
transfer of unique user IDs to third party advertisers that 
advertise on Zynga Offer Wall. The purposes for sharing user 
IDs are crediting user accounts and preventing fraud. 
However, this sharing violates Facebook requirement FB-43, 
above. The Zynga requirement Z-113 describes the permission 
involved in this conflict: the Zynga user-id, which Zynga 
defines as either a unique Zynga user ID or the social 
networking service user ID, can thus be a data element within 
the Facebook user-data, which includes the Facebook user ID.  
Z-113: P TRANSFER unique-id,user-id TO offer-wall-provider 

FOR crediting-user-account,preventing-fraud 

Finally, the Facebook and Zynga policies conflict on sharing 
data for the purposes of merger and acquisition by a third-
party. In case of merger or acquisition, Facebook allows a 
developer to continue using the data within the app, but 
prohibits the transferring of data outside the app. Zynga does 
not put restrictions on data transfer, including personal data, 
for the purpose of merger of acquisition. The Facebook 
statement “If you are acquired by or merge with a third party, 
you can continue to use user data within your application, but 
you cannot transfer data outside your application” (FB-50) and 
the Zynga statement “In the event that Zynga undergoes a 
business transition, such as a merger, acquisition… We may 
transfer all of your information, including personal 
information, to the successor organization in such transition” 
(Z-115) map to these two requirements (information includes 
user data):	
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FB-50: R TRANSFER user-data FROM facebook TO third-party 
FOR merger,acquisition 

Z-115: P TRANSFER information FOR merger,acquisition 

2) Conflict within AOL Advertising: The AOL privacy 
policy contains an apparent conflict regarding collection and 
use of personally identifiable information. Unlike the 
Facebook and Zynga policies, the AOL policy describes data 
practices from multiple stakeholder viewpoints, 
simultaneously, including that of their affiliate 
Advertising.com. The conflict appears from the AOL 
Advertising viewpoint in a statement, “Personal information 
such as name, address and phone number is never accessed for 
[targeted advertising]” (AOL-27). The policy also states, 
“Advertisers utilizing Advertising.com Sponsored Listings 
technology may provide personally-identifiable information to 
Advertising.com Sponsored Listings, which may then be 
combined with information about purchasing patterns of 
Advertising.com Sponsored Listings’ products and services, ... 
and all other information provided by the advertiser” (AOL-
46). In addition, the following statement declares that this 
information may be used for targeted advertising: “this 
information is used to improve the applications provided to 
advertisers, improve the relevancy of ad serving and any other 
use deemed helpful to Advertising.com Sponsored Listings” 
(AOL-47). Note that the advertiser may be collecting the 
personally identifiable information from the user. The 
conflicting statements are:  
AOL-27: R USE personally-identifiable-information FROM 

registration-environment FOR target-ads-that-are 
most-appropriate-for-site-visitor 

AOL-46: P COLLECT personally-identifiable-information FROM 
anyone FOR improving-the-applications-provided-to-
advertisers, improving-the-relevancy-of-ad-serving, 
anything  

B. Opportunities for Extending the Language 
Among the data requirements that we identified, we were 

unable to formalize requirements that describe actions outside 
the scope of collection, use and transfer as defined in 
Definition 1. The un-encoded requirements include how data is 
merged and stored and the policy implications of consent. We 
now discuss these three categories of requirement. 

1) Merging Data from Different Sources: The three 
policies in our study contain 12 requirements that describe 
how data is linked, combined or aggregated from multiple 
sources. For example, the Zynga privacy policy states “some 
of the cookies [that] the service places on your computer are 
linked to your user ID number(s)” (Z-57) and “[information 
from other sources] will be combined with other information 
we collect” (Z-83), and “additionally, we may keep statistics 
regarding toolbar use on an aggregated basis” (Z-62). In each 
of these three examples, data is linked, combined or 
aggregated with different implications. Linking data enables 
companies to derive inferences from correlations (i.e., 
statistical analyses) and to re-identify otherwise anonymized 
data. Combining data with other data raises the question: what 
purpose governs the combined data, and how long should the 

combined data be retained (the minimum or maximum period 
of the previously separate data sets?) Finally, aggregate data 
decreases the level of detail that an organization has on users. 
For example, knowing how many users are aged between 21 
and 25 years old is different than knowing the specific birth 
dates of each user. Thus, aggregation requirements may 
indicate improved user privacy, but they also limit the types of 
linking and combining that can occur later, if needed. 

2) Storing and Deleting Information: We observed 15 data 
storage requirements and 8 data deletion requirements in our 
study. The act of storing, retaining, and deleting data has 
temporal implications: once data is stored, it exists to be acted 
upon for the duration of storage; when data is deleted, it is no 
longer available for use, transfer, etc. For example, the AOL 
Advertising privacy policy states that, “log files, including 
detailed clickstream data used to create behavioral segments, 
are retained… for no longer than 2 years” (AOL-31). While 
DL is suited for reasoning about subsumption, different 
temporal logics exist to reasoning about time. We are looking 
into extensions to DL for temporal reasoning [17] that can be 
used to express these remaining privacy requirements. 

3) Managing the Implications of Consent: In our analysis, 
14 consent requirements were observed that require an 
organization to permit or prohibit a data action unless a user 
provides consent to perform that action. We observed two 
different approaches: opt-in requirements default to data user 
prohibitions in our language, but can be flipped to permissions 
when a user provides their consent; opt-out requirements 
default to data user permissions, but can be flipped to 
prohibitions when a user chooses to revoke consent. For 
example, the Facebook Platform Policy contains the opt-in 
statement, “for all other data obtained through the use of the 
Facebook API, you must obtain explicit consent from the user 
who provided the data to us before using it for any purpose 
other than displaying it back to the user on your application” 
(FB-42). In contrast, the Zynga Privacy Policy contains the 
opt-out statement, “when we offer [user] profiles, we will also 
offer functionality that allows you to opt-out of public 
indexing of your public profile information” (Z-30). Because 
opt-in and opt-out statements can change the interpretation of 
how data may be used and transferred based on the choices of 
the user, these statements can introduce conflicts into a 
previously conflict-free policy after the user has made their 
choice. We plan to further explore how to reason about 
consent in future work.   

C. Challenges Due to Formats and Writing Styles 
We observe different formats and phrasing that affect our 

approach, which we now discuss.  
Embedded policies: A policy may contain hyperlinks to 

other policies. For completeness, it is important to analyze 
these links to assess whether the linked content contains 
relevant data requirements. The additional data requirements 
may reveal further inconsistent statements within a policy or 
across multiple policies. In our case study, the Facebook, 
Zynga and AOL Advertising policies each had 19, 16 and five 
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links, respectively. The links serve different purposes, 
including linking to policies on special topics such as 
advertising policies (Facebook) or user rights and 
responsibilities (Zynga). These special topic policies were 
hosted by the same company and include additional data 
requirements, sometimes from a different stakeholder 
viewpoint. In addition, policies may link to third-party policies, 
such as conduit.com (Zynga), or to additional data definitions 
or specific examples of data requirements (Facebook). Other 
links, such as “contact us” (AOL) and “change email 
preferences” (Zynga), do not lead to additional data 
requirements. Due to the large number of links that may arise 
across multiple websites, this problem suggests a need for 
additional automation using natural language processing 
techniques to identify relevant policies.   

Separate collection, use and sharing sections: A policy may 
describe data collection, purpose for collection, and data 
sharing requirements in different sections. At the surface, this 
format makes extracting formal specifications easier, because 
each statement is relatively independent. However, the format 
can de-couple the collection requirements from use and transfer 
requirements through the use of ambiguity (e.g., using different 
terms or omitting sources, targets and purposes). The Zynga 
Privacy Policy separately describes the information types 
collected (see “Information We Collect”) from the purposes for 
use (see “How We Use the Information We Collect”). This 
separation yields a many-to-many mapping between 
information types and purposes, because the analyst must 
reasonably assume that any data type maps to any purpose. In 
Figure 7, we present the data flow tracing for the hasObject 
role: the Zynga policy shows numerous requirements (nodes) 
with multiple cross-traces among collections to transfers due to 
the many-to-many mapping. Contrast the Zynga policy with the 
AOL Advertising policy, in which requirements have an 
observably smaller valiancy or edge count. Many-to-many 
tracing is likely an indicator of a less privacy protective policy, 
because it affords companies more opportunities to use data in 
difficult to comprehend or unforeseeable ways. 

 
Figure 7.  Data flow traces inferred from the Zynga policy (left) and AOL 

policy (right): arrows point from collections to transfers, red lines show 
underflows, blue lines show overflows and black lines show exact flows (see 
Definition 5). The Zynga policy defines broad transfer rights as seen by the 

three nodes with multiple incoming arrows. 

Ambiguous and vague terms: Policies may contain vague or 
ambiguously worded purposes. For example, the Zynga privacy 
policy contains a statement, “in some cases, we will associate 
this information with your user ID number for our internal use” 

(Z-74). The purpose, “internal use” is vague, and an analyst can 
interpret this to mean any action performed by the actor, 
excluding perhaps transfers. Other examples include “operate 
our business” (AOL-51) and “data analysis” (Z-92). Further, 
policies may not define data items precisely. For example, the 
Zynga Privacy Policy describes “personal information,” but 
does not define what this category includes, whereas other 
policies will refine this term into sub-categories. In such cases, 
the analyst may need to infer their own subsumption 
relationships that do not map to specific phrases or statements 
within the original policy to test for potential conflicts. 

Multi-stakeholder viewpoints: A single policy can assign 
data requirements to multiple stakeholder viewpoints. For 
example, AOL Advertising describes data practices for sites 
operated by AOL Advertising, affiliates and subsidiaries as 
“AOL Advertising Sites” and on sites operated by publishers 
that participate in the AOL advertising network as “Network 
Participant Sites.” Our approach encodes policies in the first-
person viewpoint of a single stakeholder, thus policies such as 
AOL’s Advertising policy can be decomposed into separate 
policies. In future work, we plan to study ways to analyze data 
requirements across multiple policies. 

D. Simulation Results 
We conducted a performance simulation to evaluate the 

computational practicality of using our language to reason 
about data requirements. While we reduce conflict detection to 
DL satisfiability, which is PSPACE-complete for a-cyclic 
TBoxes and the DL family ALC in which we express our 
language, we recognize that this bound does not ensure that our 
language is practical for reasonable size specifications. 
Therefore, we implemented a prototype parser and compiler for 
our language using three popular theorem provers: the Pellet 
OWL2 Reasoner v2.3.0 from Clark and Parsia; the Fact++ 
Reasoner v1.5.2 from Tsarkov and Horrocks, and the HermiT 
Reasoner v1.3.4 by the Knowledge Representation and 
Reasoning Group at the University of Oxford. 

We generated 32 privacy requirements specifications with 
actor, datum and purpose hierarchies comprised of binary trees 
with 23 concepts; this yields specifications with up to 1280 
itemized interpretations. We conducted several preliminary 
runs and determined that concept tree height had no effect on 
performance. Of the three reasoners, the Pellet Reasoner did 
not respond within 30 minutes when realizing a policy of only 
four requirements. Thus, we only discuss results from the 
Fact++ and HermiT reasoners.  

Figure 8 presents the performance time of the Fact++ and 
HermiT reasoners with respect to the specification size: the 32 
runs are sorted along the x-axis from the fewest to the most 
requirements (from 3 to 72); the y-axis describes the response 
time in tenths of a second (solid red) and number of 
requirements (dotted blue). As the requirements increase to 73, 
we see that Fact++ response time remains constant, whereas 
the HermiT response times appear to increase slightly 
(Pearson’s R = 0.533). To understand this increase, we present 
Figure 9 that compares the Fact++ and HermiT reasoners by 
number of conflicts: the 32 runs are sorted along the x-axis 
from fewest to the most requirements (from 3 to 73); the y-axis 
describes the response time in tenths of a second (solid red) and 
the number of conflicts (dotted blue).  

Zynga AOL 
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Figure 8.  Performance time of Fact++ and HermiT reasoners on privacy 

requirements specifications with respect to number of requirements 

Figure 9 shows, and we confirmed, that the response time 
of the HermiT reasoner is linear in the number of conflicts 
(Pearson’s R = 0.966). The performance of a theorem prover 
depends on what type of inferences that prover is optimized to 
perform: Pellet produces a non-deterministic choice when 
handling general concept inclusion (GCI) axioms [16], which 
we rely on in our formalism; however, Fact++ and HermiT are 
not limited in this way. From this simulation, we believe the 
language is computationally practical for policies within the 
order of 100 requirements; however, we need to do more work 
on usable interfaces to the logic.  

  
Figure 9.  Performance time of Fact++ and HermiT reasoners on privacy 

requirements specifications with respect to number of conflicts 

VI. THREATS TO VALIDITY 
Here we discuss the generalizability of our mapping 

methodology. To address construct validity, we maintained a 
project workbook that contains mappings of natural language 
statements to our language syntax and notes about shortfalls 
and boundary cases in our interpretation. We report on several 
of these shortfalls in Section V.B. as limitations of our 
approach.  

Construct validity reflects whether the construct we propose 
to measure is indeed what we measured [24]. While mapping 
statements to our formalism, we use heuristics to infer that a 
particular statement corresponds to an action in our formalism. 
These heuristics may require additional context outside a given 
statement to identify the action, source, target and purposes. As 
discussed in Section IV, we need to resolve ambiguity in the 
phrase-to-action mappings; for example, does the word 
“access” indicate a collection, use or transfer? Furthermore, as 
discussed in Section V.C., we found that given purposes might 
be described using different grammatical styles. Lastly, we had 
to infer subsumption relationships between extracted terms to 
build our hierarchies for datum, purpose and action when they 
were not explicitly stated. To address this threat to validity, we 
aim to further study how an analysts identifies this context, 
what is the variability among analysts and what demographic 
factors of analyst expertise correlate with better performance 
for resolving ambiguities. 

Internal validity is the extent to which observed causal 
relationships exist within the data and, particularly, whether the 
investigator’s inferences about the data are valid [24]. A 
concern related to documenting analyst interpretations arises 
when we align the policy lexicons to compare formalized 
statements from two different policies and infer the presence of 

conflicts. This alignment requires us to assume answers to such 
questions as, “is customer service equivalent to customer 
support, or does prevent crime include the concept of 
preventing fraud? We documented these assumptions in 
separate files to allow us to revise our findings as new 
information became available. We plan to conduct human 
subject studies and expert surveys to understand the limitations 
of this lexical alignment. If disagreement exists, then our 
approach may be used to show analysts the consequences of 
two separate interpretations. Input from expert surveys and 
interviews, for example legal scholars and privacy officers, can 
help us understand the feasibility of resolving different 
interpretations. We plan to study the effect of user workload 
and human resource requirements on the usability of our 
mapping methodology.  In addition to estimating the time 
required for mapping, these studies will also evaluate human 
effort required to deal with the challenges posed by our 
methodology, for example, resolve ambiguities, infer 
subsumption hierarchies   etc.  

External validity is the extent to which our approach 
generalizes [24]. We observed multiple styles of policy 
construction, as shown in Figure 7, wherein policies may 
describe their data practices at varying levels of detail. These 
styles and others we have yet to encounter may limit our 
analysis techniques. Furthermore, there are data practice 
descriptions in privacy policies that we are not presently 
accounting for, such as user consent, data retention and 
aggregation statements. Therefore, we plan to conduct 
additional studies of more policies to evaluate the 
generalizability of our language and to extend our language to 
account for these other practices. 

VII. RELATED WORK 
We now discuss related work in requirements engineering 

(RE) and formal methods. In RE, Antón et al. analyzed over 40 
privacy policies using goal mining, which is a method to 
extract goals from texts [1, 2]. Results include a clear need to 
standardize privacy policies and evidence to support a frame-
based representation consisting of actors, actions, and 
constraints. Breaux et al. later extended this representation with 
notions of rights, obligations and permissions in a case study 
[6] and then formalized this extension in Description Logic [8]. 
Since, Young introduced a method for mining commitments, 
privileges and rights from privacy policies to identify
requirements [25]. Commitments describe pledges that one 
actor will perform an action and these commitments are 
frequently found throughout privacy policies. Wan and Singh 
formalized commitments in an agent-based system, but had not 
applied this formalism to privacy policy [23]. In this paper, we 
describe a method to formalize specific data-related 
commitments, privileges and rights in privacy policies to 
logically reason about potential conflicts. 

Formal and semi-methods have long been applied to 
privacy policy and privacy law as an application area. Early 
work on semi-formal privacy policy languages includes the 
Platform for Privacy Preferences (P3P), a website XML-based 
policy language aimed to align web browser user privacy 
preferences with website practices [10]. While P3P has 
experienced wide spread adoption, the P3P is a declarative 
language and website operators often make mistakes in how 
they configure these policies [15]. The EPAL is another 
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declarative language that can be used to express data policies 
with constraints on purpose [19]. Unlike declarative languages, 
languages with a formal semantics can be used to reason about 
specification errors and inform website operators and other 
parties who depend on these policies about why a policy is 
erroneous, e.g., by presenting analysts with conflicting policies 
for resolution. 

Several researchers have since formalized privacy-relevant 
regulations, including the HIPAA Privacy Rule [5, 18] and the 
Privacy Act [12]. Barth et al. encoded regulations as messages 
passed between actors using norms (e.g., permitted and 
prohibited actions), which is similar to Aucher et al. [3]. May 
encoded privacy regulations in Promela and used the Spin 
model checker to identify potential conflicts [18]. These prior 
approaches are limited in that they cannot express the 
hierarchical nature of actor roles, data composition, and 
purposes needed to describe privacy policies. Alternatively, 
others have used the Web Ontology Language (OWL) to 
formalize policies using permissions, obligations and 
prohibitions and to address this issue of concept hierarchies 
[14, 22]. The full OWL, which these prior approaches each use 
to express their formalization, is known to be undecidable. 
Work by Uszok et al., however, use algorithms to identify 
conflicts as opposed to theorem proving; an approach that may 
be decidable, but which is difficult to reproduce and generalize 
as the algorithms are not explicitly published. In this paper, we 
extend this prior work by reducing conflict detection to DL 
satisfiability, which is known to be PSPACE-complete for the 
ALC family of DL, and we believe our conflict detection 
technique is generalizable to a larger class of requirements than 
those found in privacy policies. 

VIII. DISCUSSION AND CONCLUSIONS 
In this paper, we presented a formal language to encode 

data requirements from natural language privacy policies so 
that an analyst can reason about these policies by checking for 
conflicts and tracing permissible and prohibited data flows 
within the policies. We applied the language to real-world 
policies from Facebook, Zynga and AOL Advertising in a case 
study. The study demonstrates how to identify conflicts, which 
an analyst can then resolve by modifying their policy and/or 
their privacy practices. We also discuss limitations of the data 
requirements specification language and opportunities for 
improving the language. Finally, we conducted a simulation to 
demonstrate the computational complexity of identifying 
conflicts in policies of similar size. As software increasingly 
leverages platforms and third-party services, we believe 
developers need lightweight formalisms and tools such as this 
to check their intentions against policies in the larger 
ecosystem. This is especially true as developers work with 
compositions of services in which they are not aware of all the 
third parties in their data flow. In future work, we plan to 
consider multi-stakeholder interactions across more complex 
service compositions.  
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