
Managing Security Requirements Patterns 

using Feature Diagram Hierarchies 

Rocky Slavin
1
, Jean-Michel Lehker

1
, Jianwei Niu

1
, Travis D. Breaux

2
 

 

Department of Computer Science1 

University of Texas at San Antonio 
San Antonio, Texas, USA  

rocky.l.slavin@ieee.org, rpl599@my.utsa.edu, 

jianwei.niu@utsa.edu 

Institute for Software Research2 

Carnegie Mellon University 
Pittsburgh, Pennsylvania, USA 

breaux@cs.cmu.edu 

 
Abstract—Security requirements patterns represent reusable 

security practices that software engineers can apply to improve 

security in their system. Reusing best practices that others have 

employed could have a number of benefits, such as decreasing 

the time spent in the requirements elicitation process or 

improving the quality of the product by reducing product failure 

risk.  Pattern selection can be difficult due to the diversity of 

applicable patterns from which an analyst has to choose. The 

challenge is that identifying the most appropriate pattern for a 

situation can be cumbersome and time-consuming. We propose a 

new method that combines an inquiry-cycle based approach with 

the feature diagram notation to review only relevant patterns 

and quickly select the most appropriate patterns for the 

situation. Similar to patterns themselves, our approach captures 

expert knowledge to relate patterns based on decisions made by 

the pattern user. The resulting pattern hierarchies allow users to 

be guided through these decisions by questions, which introduce 

related patterns in order to help the pattern user select the most 

appropriate patterns for their situation, thus resulting in better 

requirement generation. We evaluate our approach using access 

control patterns in a pattern user study.   

Index Terms—Security, requirements, patterns, feature 
diagram. 

I. INTRODUCTION  

A requirements pattern is a structure that engineers can use 
to generate one or more requirements for a recurring situation 
[1]. Based on design patterns [2], each requirements pattern 
describes a recurring problem as well as a core solution which 
can be used repeatedly, but not necessarily in the same way 
every time. Because situations vary, a requirements pattern 
must be parameterized to selectively control for those effects 
that vary across problem spaces. For example, an engineer may 
choose between single sign-on [3], where users need only one 
username and password for logging into different systems, as 
means to maximize usability, where they prefer more complex 
role-based access control (RBAC) [4] requirements to 
maximize confidentiality by compartmentalizing access to 
information. In this example, the engineer perceives constraints 
differently and desires different levels of control: more control 
over different systems to manage logins, or more control over 
classification of resources into roles.  

Requirements patterns incorporate engineering knowledge 
into the solution space of a pattern in order to provide a basis 
for requirements elicitation and generation. For example, 
patterns can itemize pre-conditions to indicate when a pattern 

applies to a given scenario, or questions whose answers direct 
the engineer from one solution to another (e.g., from single 
sign-on to RBAC). Such knowledge reuse allows software 
engineers to solve problems in a more effective manner. That 
is, patterns consist of tried-and-tested solutions that have been 
shown to be effective when applied in the correct context.  
Consequently, patterns serve as a common language for 
software engineers to document their design decisions [5]. 

Security requirements patterns are a special case of 
requirements that address security risks in a system. 
Historically, security is dealt with using a penetrate-and-patch 
approach [6], wherein security problems are identified and 
addressed in response to penetration testing of the fully-
functional system, sometimes in a post-deployment situation. If 
the system failures are intrinsic to the design, then significant 
rework is required [7]. Alternatively, it is more cost effective to 
identify security flaws early in the requirements and design 
stages of development, which is the focus and intent of security 
requirements patterns [8].  

In the wild, security requirements patterns appear mostly in 
isolation, either in small sets of related patterns or repositories 
and related only by a common topic or theme [9, 10]. 
Combined with the lack of guidance for pattern selection [11], 
engineers lack the structure needed to holistically address 
security and balance complex forces or quality attributes (e.g., 
usability and confidentiality). As the number of security 
patterns continues to grow [12], engineers face an increased 
challenge in recognizing what patterns to select [13]. The 
contribution of our approach is as follows: (1) we propose a 
new security requirements pattern format that aims to organize 
requirements knowledge into a canonical form that itemizes 
this knowledge into inter-dependent questions that investigate 
the problem space; (2) we demonstrate that these patterns can 
be linked into a hierarchy to make problem space trade-offs 
more salient and to connect related patterns to comprise 
holistic solution spaces; and (3) we evaluate this new format 
and hierarchy in a user study to measure speed and correctness 
in selecting patterns to apply to example scenarios. 

We evaluate our approach in a user study consisting of 
graduate and undergraduate students at the University of Texas 
at San Antonio (UTSA). The study examined our method’s 
ability to deduce the most appropriate set of patterns by having 
novice users with limited security knowledge and experience 
use a pattern hierarchy to select patterns for a scenario.  We 
then compared the results with selections that experts chose for 

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

193



 

 

the same scenario. Based on our analysis, we found that novice 
users not only were more accurate in their pattern selections, 
but were able to select patterns more quickly than users 
without a hierarchy. From these results and further 
observations we assert that the use of pattern hierarchies can 
improve the usability of security requirements by providing a 
means for easier access and faster selection as well as better 
documentation of related patterns. 

The remainder of this paper is organized as follows: in 
Section II, we review the theoretical foundations and 
background upon which we based our approach; in Section III, 
introduce our requirements pattern template and in Section IV, 
we present our pattern hierarchy; in Section V, we present our 
empirical study design with our results and observations 
presented in Section VI; finally, we present related work in 
Section VII, with future work in Section VIII and our 
conclusion in Section IX. 

II. THEORETICAL FOUNDATIONS 

Our approach is based on prior work in pattern languages, 

feature diagrams and the requirements elicitation, which we 

now discuss.  
A. Pattern Languages 

Alexander et al. introduced the earliest notion of pattern as 

a structured device for reusing knowledge in seminal work on 

building architecture patterns [2]. More recently, there has 

been substantial work on object-oriented design patterns [14], 

requirements patterns [9, 15] and security patterns [10, 12, 
16]. A security requirements pattern provides a software 

engineer with a reusable set of requirements to solve common 

security problems. To be effective, a requirements pattern 

should incorporate an engineer’s knowledge about their 

system context to select the most appropriate requirement. For 

example, many systems use passwords to restrict access to 

sensitive resources (e.g., healthcare data, bank account data, 

and purchase histories) as well as to associate unique 

identifiers with individual users (e.g., forums or social 

networking sites). The risk to individual users of having their 

password retrieved through a security attack is different 
depending on the harms of a data breach. A breach to a bank 

account could be more expensive than the cost of a breach to 

web forum, where the attacker could at best post derogatory 

comments. Therefore, an engineer needs a means to tailor 

reusable knowledge to their situation to yield requirements 

that balance complex and sometimes competing forces (e.g., 

performance, security, usability, etc.). Despite this need, 

current security patterns are not configurable or linkable to 

enable engineers to tailor security requirements to their needs. 

B. Feature Diagrams 

A feature diagram is a graphical notation to describe how 
products can be composed from multiple features [17]. A 
feature is an increment of functionality, usually with a coherent 
purpose [18]. Features may be linked together in a feature 
diagram to describe common and variable requirements in a 
system composition [19]. The links between features may be 
mandatory or optional, and groups of features can be organized 
using logical connectives such as inclusive or exclusive or. 

Figure 1 shows an example including the most common 
notations used in a feature diagram as well as their meanings.  

 Figure 1 describes an example. If we were to describe 
access control requirements, a mandatory feature would be 
authentication [12]. An optional feature could be the inclusion 
of a role-based access control policy. We can further break 
down some features into groups of features. Here, we can make 
a decision between the optional mandatory access control 
(MAC) [20] and discretionary access control (DAC) [21]. We 
could choose one or the other, but not both, denoted by 
exclusive-or. Similarly, we must choose between using 
passwords or biometrics for authentication. In this case, 
inclusive-or, it is possible to have both, but at least one must be 
included. It is important to note that the resulting hierarchy 
does not represent implementation flow. Instead, child nodes 
represent patterns to be considered if the parent is used. 
 We felt that feature diagrams would be a suitable notation 
for visually representing pattern hierarchies because security 
concepts have mandatory and optional features. By breaking 
down the features of security concepts, we can construct a 
diagram using logical connectives which can help a software 
engineer understand which features are most important for 
their specific application.  Once features associated with the 
security concept are identified, requirements generation can be 
customized to the user's specific situation.  

C. Inquiry-Cycle 

The Inquiry Cycle Model (ICM) by Potts et al. [22] is a 
requirements elicitation method for refining requirements by 
generating discussion through questions.  This model is used to 
analyze requirements of a system through questions and 
answers which describe the solutions. We adapt this idea of 
using ICM questions by using the answers to “how”, “why”, 
“what”, and “when” questions to direct users to the 
requirements pattern that will provide them with the resources 
needed to generate complete requirements. If a user was 
applying access control, they would start with the Access 
Control pattern and answer a question about how access to a 
resource is decided.  If the user answers something like “the 
resource’s owner decides who should have access to it,” they 
would find the DAC pattern most suitable.  Their answer to 
this question helped them select the correct type of pattern for 
their needs. This is a very simple example and not all situations 
will be so clearly outlined. 

Fig. 1. Feature diagram notation. 

194



 

 

The ICM assists in the creation of pattern hierarchies to 
help users map their needs to relevant patterns in the context of 
their analysis. Section V describes how we were able to build 
and refine our hierarchy by interviewing security experts with 
the ICM. We encouraged experts to ask questions when 
dealing with hypothetical situations involving security. The 
experts continued to refine the requirements for the scenarios 
by asking questions for clarification. By “forcing” them to use 
an approach similar to the ICM, we were able to elicit the kinds 
of questions that would be used to connect patterns within 
hierarchies. 

III. PATTERN TEMPLATE 

The presentation of pattern content varies depending on the 
pattern author. In requirements engineering formal and semi-
formal methods, such as Tropos [23] and Problem Frames [24], 
structure requirements knowledge into pattern-like 
representations. However, many approaches that principally 
identify themselves as patterns use natural language templates 
(NLT) to illustrate patterns [25, 26]. These NLT approaches 
tend to base their template on the so-called Gang-of-Four 
(GoF) [14] book which outlines the following essential pattern 
elements: 

 Pattern Name – A simple phrase to describe the problem 

 Problem – A description of when to apply the pattern 

 Solution  - A general arrangement of the elements used to 
solve the problem 

 Consequence – The results and trade-offs of applying the 
pattern 
Our approach includes two additional important features: 

forces, which determine quality attributes that are impacted 
(maximized, minimized, etc.) by the pattern, and relations or 
links to other patterns using an inquiry-based approach. For 
example, the access control requirements pattern may contain 
such forces as generalizability, flexibility, and modifiability 
since they would be particularly relevant to its application and 
a question such as, “How are authorization privileges bound to 
actors and resources?” may lead to an authentication pattern. 

By balancing forces using questions which invoke 
discussion and refinement of security requirements, we aim to 
minimize the negative consequences or liabilities of the pattern 
(e.g., access control may require many rules and increase the 
system’s complexity) as well as capture the applicability of the 
pattern. The use of an approach based on the ICM provides a 
way to connect existing security requirements patterns as well 
as refine system requirements themselves through questions 
that surface hidden assumptions about the system and its 
environment.  The approach works on two levels: (Level 1) 
questions relevant to the problem can either draw out specific 
information from the situation which can be applied to generic 
requirements in the template in order to generate specific 
requirements, or (Level 2) they relate the pattern to other 
patterns relevant to the situation as a means to increase 
requirements coverage by identifying dependencies or to 
introduce alternative requirements that balance forces in 
alternative ways that may be better suited to a particular 
problem or stakeholder needs. Pattern hierarchies are 
constructed using the second level, which further supports 
eliminating unnecessary or unfitting requirements to select the 
most appropriate pattern. 

 To catalog patterns, we used a standardized pattern 
template consisting of six elements. The template we used is an 
elaboration of ideas devised at RePa’12 and our previous work 
on the Standardized Pattern Format for deriving 
characterizations and boundaries of patterns [27]. Using this 
pattern template is what enables us to construct a pattern 
hierarchy. To illustrate the different aspects of the template, we 
use access control as an example.  
 The template consists of the following elements: 

 Name – a unique name that is limited to the scope of the 
pattern 

 Problem – a statement of the problem to be addressed or a 
high-level goal to be achieved 

 Context – domain assumptions that must be true in 
conjunction with the generated requirements  

 Forces – the non-functional quality attributes that create 
trade-offs for the application of the pattern 

 Solution – a set of questions which refine requirements and 
guide the pattern user to related patterns 

 Management – additional information related to the pattern 
including examples and known uses 

 We now describe the use of each of the attributes using 
access control. 

A. Name 

For our running example, we name the pattern "Access 
Control" to describe what the pattern covers. In addition, it can   
be uniquely incorporated into the pattern hierarchy.   

B. Problem 

The problem shall be expressed either as the security 

objectives that need to be achieved or the threats that must be 

mitigated. For our example, we define the problem as “the 

confidentiality and integrity of resources shall be protected by 

regulating access to the resources based on different factors.” 

Here, confidentiality and integrity, [28], two fundamental 

security attributes, are addressed. 

C. Context 

A pattern addresses a generic problem in a specific context 

[12], which shall describe the nature of the situation. This 

includes any domain assumptions as well as expectations of 

the system and its environment. For access control we 

describe the context as "any computer-driven environment in 

which the access to the resources needs to be regulated” and 
we list the following assumptions: 

 The administrator involved in implementing the 

authorization system shall be trusted. 

 The actors involved in granting or denying authorization 

shall have the ability to restrict access to the resources 

being protected. 

 Actors shall not assume the identity of other actors with 

different rights. 

We also include one expectation:  

 Actors will not circumvent the system to gain access to 

resources. 

195



 

 

D. Forces 

Lists of forces are useful for identifying and balancing 

potentially conflicting or complementary aspects of a system 

that are imposed by the environment or the requirements [29].  

For access control we list three forces: 

 Generalizability – The authorization structure must be 

independent of the type of resources.  

 Flexibility – The authorization structure shall be flexible 

enough to accommodate different types of principals 

(users or subsystems), objects, and rights.   

 Modifiability – It should be easy to modify the rights of a 

principal in response to changes in his or her or its duties 
or responsibilities. 

E. Solution 

To solve the problem and balance the forces, the solution 

includes a series of ICM-inspired questions that help elicit 

responses from a user or a subject matter expert. A set of 
requirements templates with variable parts may be configured 

by the developer and may correspond directly to the questions. 

Answers to questions may be pre-conditions to additional 

questions, pieces to fill in the requirements templates, or 

guides to other patterns.  The questions for our example are: 

 Which entities (principals) exist in the system and what 

resources do they need to access? 

 Can two entities access the same resource at the same 

time? 

 How are the resources intended to be accessible? 

 Can users of the system be categorized into roles that will 
have different access privileges? See Role-Based Access 

Control pattern. 

 Can resources be assigned labels by the system so users 

can be given clearance to access resources based on levels 

of clearance? See Mandatory Access Control pattern. 

 Can access to resources be regulated by the owner of the 

resource? See Discretionary Access Control pattern.   

 How are entities to be authenticated in order to gain 

access to the system? See Authentication pattern. 

The requirements template for our example consists of: 

 <list of entities> shall <be permitted | not be permitted> 
to access <resource> simultaneously. 

 <list of entities> shall access <resource> through the use 

of <action>. 

 An entity shall be granted or denied privileges to 

<resource> based on <authorization criteria> 

Italicized text refers a pattern-user to a corresponding 

pattern for the question (as seen in Figure 1). The template 

also lists generic requirements which can be customized based 

on the answers to some of the questions. For these 

requirements, words surrounded by “<” and “>” are 

mandatory and words surrounded by “[” and “]” are optional. 

In some cases, a choice of possible answers are provided 
separated by the “|” character. 

F. Management 

Finally, a pattern should include any information regarding 
the source of the pattern, the version, known uses, or any 

information relating to how the pattern was derived. For this 
pattern we note that it was adapted from the security design 
pattern from [12] and modified for requirements based on 
Withall’s work on access control requirements [9]. 

IV. PATTERN HIERARCHY 

Pattern relations are managed with the use of feature 
diagrams, which connect patterns in places where a question 
might lead a user to another pattern. The resulting hierarchy 
partitions a larger problem or security area into smaller 
problems (i.e. patterns). We believe such a hierarchical 
structure would reduce the time and difficulty needed to select 
an appropriate pattern and security requirements for a complex 
situation. Furthermore, the hierarchy enables users to easily 
discover related patterns which could be implemented to 
enhance their system security. Feature diagrams are not 
necessary for the end use of pattern hierarchies, as apparent in 
our user study. The diagrams serve as a means for visualizing 
and managing the structure. When knowledge of the feature 
diagram notation is not present, users can simply be guided 
with the pattern questions as long as the hierarchy has been 
constructed correctly. 

Based on the solution space of the template, a pattern 
hierarchy can be derived as seen in Figure 1. The hierarchical 
relations between patterns appear within each pattern template 
as the questions that help the pattern user make decisions on 
which pattern to include. For the Access Control pattern in 
Section III, the question, “how are entities to be authenticated 
in order to gain access to the system?” is associated with the 
Authentication pattern. Figure 1 shows this connection with a 
link between the Access Control and Authentication patterns. 
Our approach uses inquiry-based discussion between 
stakeholders in order to revise previous iterations of 
requirements and introduce relevant patterns. Our approach 
begins by highlighting existing challenges for the problem (i.e. 
the forces) and uses questions to elicit security requirements 
as responses to those challenges.  

We continue to use access control as an example to 
illustrate a hierarchy due to its large amount of related work 
including various aspects and specialized models [30, 31, 32]. 
Not only is it a commonly understood aspect of security, but it 
also includes many facets which allow us to demonstrate the 
different benefits of using feature diagrams. In Section III we 
described a single Access Control pattern from which we 
extend our example hierarchy as seen in Figure 1. The 
following subsections describe the use of each notation for our 
hierarchy design using the same example. 

A. Optional 

The notation for optional components is denoted by an 
unfilled circle on the end of the connection closest to the 
optional pattern. Such components are directly related to the 
inquiry-based approach. In Section III-E, our example 
included the question, “Can users of the system be categorized 
into roles that will have different access privileges?” which 
related the Access Control pattern to the Role-Based Access 
Control pattern.  For such an instance where the answer to the 
question determines whether or not the related pattern is 
relevant, an optional connection would be made.  

196



 

 

B. Mandatory 

Mandatory components are denoted by a filled circle on 
the end of a connection closest to the mandatory pattern. In 
Figure 1, the Access Control pattern includes the 
Authentication pattern which is commonly viewed as a 
necessary component of access control [9] as a mandatory 
feature. Mandatory components do not stem from “yes” or 
“no” questions as such questions would imply a non-
compulsory relation. Instead, such relations are made through 
“how” questions. For instance, we asked, “How are actors to 
be authenticated in order to gain access to the system?” Here, 
the word “how” poses the question so that it requires an 
answer. On the contrary, if the question were posed, “Are 
actors to be authenticated in order to gain access to the 
system?”, one could simply answer “no”, thus avoiding the 
mandatory component. Here, the phrasing requires that there 
must be a way for the actors to be authenticated. This question 
includes a reference to the Authentication pattern and is 
connected within the diagram as a mandatory component.  

C. Inclusive-Or 

Some questions may require a child pattern to be included, 
but allow for multiple children to be included simultaneously. 
Our example includes two forms of credential verification 
patterns: Password and Biometric. These patterns are included 
as an inclusive-or decision since it is acceptable to use 
multiple credential verification mechanisms and at least one is 
required. These relations have a filled triangle spanning the 
edges between the nodes in the decision. Cardinality is 
represented with brackets in the form [n, m] where n is the 
lower bound and m is the upper bound. A single number 
implies an exact amount.  

D. Exlusive-Or 

Similarly to the inclusive-or case, the exclusive-or relation 

allows for decisions between different patterns. However, this 

relation is used when only one choice may be made. These 

relations have an unfilled triangle spanning the edges between 

the nodes in the decision. The Access Control node illustrates 

the use of an exclusive-or decision between the MAC and 

DAC patterns. An unfilled triangle joins their edges to signify 

that only one can be chosen if this optional branch is selected. 

V. EMPIRICAL STUDY DESIGN 

We believe that pattern hierarchies can improve users’ 
ability to select appropriate patterns and requirements faster 
and more effectively than unassisted pattern selection. 
Furthermore, the use of pattern hierarchies should allow 
novice software engineers with limited experience to benefit 
from expert knowledge embedded in such patterns and 
hierarchies. 

To evaluate our approach we conducted a study to 
compare the pattern selection of two groups: one with a 
pattern hierarchy and one without a pattern hierarchy. The first 
step was to gather existing security patterns into a repository 
[33]. This assessment included design, architectural, and 
requirements patterns so we could better understand how 
different security concerns were addressed at different 
development stages among the pattern landscape. Sources 
included a literature review of textbooks and scientific 

publications on security patterns. A total of 143 security 
patterns, 30 of which we classified as security requirement 
patterns, were collected. We then gathered a set of patterns 
relating to access control from the repository and mapped 
them to the template described in Section III in order to create 
an initial draft of a pattern hierarchy.  

Next, we reached out to security experts from the local 
security community with the intention of revising our 
hierarchy and preparing for the evaluation of the hierarchy 
with novice users. Two banking scenarios [37] regarding 
access control were presented to these experts and used as a 
means to gather more information and possible patterns for 
our existing hierarchy example. From transcriptions of expert 
interviews conducted using the ICM and feedback directly 
from the experts, we further refined the Access Control 
hierarchy. For each of the two scenarios we were also able to 
assemble a subset of patterns in the hierarchy which were 
most applicable. These subsets were used later in evaluation 
with novice users. 

Finally, we evaluated the Access Control hierarchy 
comprised of patterns chosen by the experts by observing 
what patterns novices selected from it. This evaluation 
consisted of a comparison of novices both with and without 
the use of the hierarchy so as to test our hypothesis that the 
hierarchy would improve users’ ability over unassisted pattern 
selection. 

A. Scenarios 

The two scenarios used in our study involved access 
control in some way due to the common use of access control 
as an example for security [32]. This allowed for less time to 
be taken in training since it would be more likely for both 
experts and novices alike to have some background 
knowledge in the domain. The scenarios involved a fictional 
credit union and bank which were partnering with each other. 
This partnership required new software to be implemented to 
accommodate shared data. Our description of the entities 
described the number of employees, their jobs, and features 
from each of the entities’ existing software infrastructures 
(e.g., instant messaging system and administrative tools).  

Scenario 1 described the ATM system currently in place 
for both institutions and gave the new requirements for the 
partnership. These requirements outlined the location, hours of 
operation, and usage fees for customers of each institution. A 
general set of auditing requirements were provided as well as 
the stipulation that only a subset of the bank’s ATMs would 
be accessible to credit union customers.  

Scenario 2 described a computerized banking system with 
online banking. The system would need to be implemented 
only for the credit union, but with possibility for relevant data 
to be transferred to the bank. Specifications pertaining to user 
access, financial transaction services, customer services, and 
browser support were described.  

These scenario descriptions were intended to include only 
high-level descriptions of the institutions’ requirements so as 
to elicit questions and discussion from the experts. This would 
allow us to infer more about the thought process of the experts 
interviewed. For situations where clarification on the scenarios 
was requested, a third-party trained as a domain expert 
representing the financial institutions was provided. The 
domain expert explained the different features required for 

197



 

 

employees based on their roles. For any other questions, we 
required that the domain expert be consistent with his 
responses so as to provide a constant experience.  

B. Sampling 

We gathered expert participants with experience relating to 
computer security from academia and industry. We were able 
to recruit two members of a local security forum in San 
Antonio. Members of this forum were industry security 
specialists in the financial, utility, and local government 
sectors. We also enlisted participation from a member of a 
local application security consulting firm, a researcher and 
professor in the area of access control UTSA, a senior security 
staff member at a multinational computer technology 
corporation, and two post-doctoral researchers in the areas of 
privacy and security policies. In total, we interviewed seven 
industry and academic experts. Our goal was not to provide a 
complete representation of the security community’s opinion, 
but instead to create an example to test the use of a hierarchy. 
For this reason, the representation given by our small 
sampling of security experts would be sufficient. 

The second group consisted of university students with 
computer science backgrounds. We recruited participants in 
three undergraduate (junior and senior level) and one 
graduate-level computer science course. For each class, we 
gave a three minute explanation of what participants would be 
asked to do for our study and offered a $15 gift card as 
compensation for time. We were able to recruit 34 participants 
in this way. Due to the course requirements of the department, 
these students also had some knowledge of computer security. 
We chose students as subjects due to their fresh entry-level 
knowledge in access control with little industry experience. 
This would allow us to see whether pattern hierarchies are 
useful in relaying expert experience in order to make better 
and faster decisions.  

C. Expert Interviews 

We interviewed each expert with an existing hierarchy 
already created from patterns gathered from textbooks and our 
pattern repository [9, 12, 33, 35, 36]. Our goal was to see 
where our hierarchy needed expansion or revision as well as to 
find a unique subset of the patterns in the hierarchy that would 
apply to each scenario based on expert opinion. Such patterns 
subsets would be treated as the gold standard or “correct” set 
of patterns for evaluating novice performance. Furthermore, 
by interviewing experts, we sought to better understand how 
experts decide what security concepts are relevant to a 
particular system context. This information is fundamental to 
refining our pattern hierarchy. 

The two banking scenarios were presented to each expert 
at the beginning of the interviews. We asked the participant to 
assume the role of a software analyst with the task of creating 
security requirements for the system. The actor playing the 
domain expert was introduced and the facilitator explained 
that he would be available for any questions or clarification 
that may be needed. The same domain expert was present 
during each interview to answer questions. 

Interview questions were planned out according to a script 
[34] based on the ICM. We used this model as a means to 
encourage the expert to ask questions that could be used as the 
pattern-linking questions fundamental to the hierarchy. For 
example, when expert participants began to consider an access 
control policy they would ask the domain expert questions 
such as, “What kinds of users are there?” or “When do you 
want users to be able to access the system?”. We looked for 
these kinds of cues to construct a hierarchy using the method 
described in Section IV. 

After the interview was completed, we asked the 
participant to go through the existing list of security 
requirements patterns in the hierarchy and affirm whether or 
not the pattern should be regarded for the scenario along with 
an explanation for inclusion or exclusion. Experts were also 
encouraged to add anything else they thought was relevant. 
Transcriptions of the interviews were analyzed along with any 
notes the experts provided in order to create a final Access 
Control hierarchy as seen in Figure 2. This resulted in the 
Authorization pattern [9] being placed at the root of the 
hierarchy above Access Control. We continue to refer to the 
hierarchy as an Access Control hierarchy due to our scenarios 
being focused on access control as well as consistency.  

A subset of the patterns in the final Access Control 
hierarchy was also compiled for each scenario based on expert 
responses to be used in the novice interviews. To do this, we 
tallied the selections made by the experts resulting in Figures 
3 and 4. If at least five of the seven agreed on a pattern, we 
included it in the subset of correct patterns for the scenario. 
This resulted in 12 of 17 patterns for scenario 1 and 13 of 17 
for Scenario 2.  

D. Novice Interviews 

Novice participants were interviewed individually and 

randomly placed into either a control or an intervention group. 

Members of both groups were asked to consider the same two 

scenarios given to the experts and were provided with the 

same domain expert present during the expert interviews. 

Participants for both groups were placed into the role of a 

Fig. 2. Access control requirements hierarchy. 

198



 

 

software analyst and asked to select the most relevant patterns 

for each scenario from a list of the patterns from the Access 

Control hierarchy. Participants were informed that any 

information they provided would be made anonymous so as to 

encourage them to proceed naturally. The time to complete 
both scenarios was also recorded. 

For the control group, only the list was given with no 

relations between the patterns as in the hierarchy. This group 

was provided with access to the Internet and asked to make 

the selections to the best of their ability. This gave us a 

baseline description of how well novices could do in pattern 

selection on their own. 

The intervention group was presented with a questionnaire 

[34] representing the hierarchy. A questionnaire was used in 

order to forgo any confusion involving training novices in the 

use of feature diagrams. The questionnaire was created by 

organizing the pattern hierarchy questions so that they could 
correspond to the same checklist of patterns given to the 

control group. Instructions placed after each question both 

directed the participants to appropriate consecutive questions 

and had the participant check off appropriate patterns for the 

scenario based on the hierarchy.  

E. Threats to Validity 

Here we discuss both internal and external validity [37]. 

In order to make statistical comparisons between the two 

groups, we had to provide the control group with the same set 

of patterns to choose from as the intervention group. In the 

wild, it would be up to the user to select from all available 

patterns. By providing the control group with a list, we were 

forced to provide them with much of the work that would have 

been done by the hierarchy. Regarding external validity, we 

believe that the control group would have performed more 

poorly in both selection and speed without the provided list. 

This would actually further validate the use of pattern 
hierarchies. 

We chose not to use the feature diagram representation of 

the hierarchy for our study due to the time constraints 

involved for training. This presented a risk to internal validity. 

Even with the feature diagram notation, the same questions 

must be answered as in the questionnaire. The feature diagram 

itself is useful for visualizing the flow between patterns; 

however the user must be familiar with the notation. We felt 

that the questions alone were enough for the user to gain the 
guidance provided by the hierarchy, and a properly-trained 

user would have only performed better. By providing the 

feature diagram representation to participants unfamiliar with 

it, we would have risked user error due to misunderstanding of 

the notation. 

VI. RESULTS AND OBSERVATIONS 

Here we discuss the knowledge we were able to extract 

from the experts as well as how our hierarchy affected novice 

decisions. 

A. Expert Knowledge Goes Beyond Patterns 

An important contribution of patterns is the reuse of expert 
knowledge. Our research asks if expert knowledge could go 
beyond individual patterns and expand to pattern organization 
and selection through the use of pattern hierarchies. Based on 
our interaction with experts and what we were able to produce 
with that knowledge, we found that expert knowledge can be 
applied in a larger scale through such hierarchies. 

We used 14 patterns from textbooks and research papers 
prior to our interaction with experts [9, 12]. From the seven 
interviews we were able to expand that number to 17 from the 
additions the experts included to our checklist of patterns. The 
additions (auditing, time-based access control (TBAC), 
location-based access control (LBAC), and security question) 
were not in the form of explicit patterns, but fit into the 
hierarchy as supplemental security topics [34] related to the 
existing patterns. We assert that this implies the potential for 
yet-to-be-created patterns. 

The links between patterns which formed the pattern 
hierarchy were produced by integrating information already 
present in patterns (e.g., “Related Patterns” sections) and 
information gained from expert interviews. Generally, as 
experts described what kind of security requirements were 
important for the scenarios they would ask the domain expert 
questions for clarification. For example, when discussing 
attribute-based access control (ABAC) [38], the ICM urged us 
to pose the follow-on question: “when should users have 
access to the system?” Experts would often respond by asking 
the domain expert if there would be times when employees 
would not be at work and if they should have access during 
those times. Depending on the answers to these questions, a 

Fig. 3. Scenario 1 expert pattern selection. Fig. 4. Scenario 2 expert pattern selection. 

199



 

 

need for a corresponding requirements pattern would be 
necessary. For this example, the domain expert indicated that 
there are parts of the day when no employees are at work and 
thus should not be able to access the system. This triggered the 
expert to begin considering requirements that would be part of 
a TBAC pattern. The resulting relation between ABAC and 
TBAC could now be represented with the question: “are there 
times when users should not have access to the system?” This 
is represented in Figure 2 by the optional connection between 
these two patterns. The question itself would become part of 
the solution space of the ABAC pattern. 

B. Pattern Hierarchies are Efficient and Usable 

Novice results were measured by correct pattern choice 
and time to completion. In both cases, the intervention group 
performed better than the control group. 

Regarding correct pattern choice, novices were graded 
depending on if they made the same decision to include or 
exclude a particular pattern as defined by the gold standard 
pattern sets derived from expert decisions described in Section 
V-C. Points were not deducted for incorrect answers. A 
majority of the experts expressed the need for two-factor 
authentication [39] for both scenarios. To accommodate this, a 
correct choice of authentication patterns (password, biometric, 
access card, and security question) consisted of any two. If a 
participant chose only one of those patterns, they were not 
awarded points. This selection scheme is apparent in Figure 2 
with the range of necessary patterns denoted within the 
exclusive-or arc with “[2]”. 

Before computing the results of our study, we removed 
outliers by using Iglewicz and Hoaglin’s modified Z-score 
with median absolute deviation method (   ) [40].  The 
    for each group was calculated with:   

 

                     

Modified Z-scores (  ) for each score were calculated with:  
 

   
               

   
 

Where    represents individual scores and    is the median. 
0.6755 is the multiplier used for outlier detection 
recommended by Iglewicz and Hoaglin for samples of our 
size. For this method, values of    greater than           
were removed as statistical outliers. This resulted in the 
removal of two participants. 

Table I describes the quantitative results of the study 
regarding successful pattern choice by novice users. For both 
Scenario 1 and Scenario 2 novices were more successful at 
making the same choices as experts when using the pattern 
hierarchy with a success rate increase over the control group 
of 22.13% and 10.66% respectively. Regarding the lower 
increase for Scenario 2, we found that fewer users asked the 
domain expert questions for that scenario. We took this as an 
implication of misappropriated familiarity with the situation.  

We used a standard t-test to measure the significance of 
our results. We tested the null hypothesis (  ) that the mean 
population success rates for users without the hierarchy (  ) 
and users with the hierarchy (  ) were equal: 

 

             

The p-values produced by the t-tests indicate that the null 
hypothesis could be rejected for both scenarios and that the 
results of our study were statistically significant.  

As an indicator of the strength of our sample size, we 
calculated effect size using Cohen’s d [41]. This was done by 
taking the difference between the mean sample success rate 
for the control group (  ) and the mean sample success rate 
for the intervention group (    divided by the average standard 
deviation for both groups,    : 

 

   
       

   
 

While the p-values explained in the previous paragraph give 
us indications of whether or not our null hypothesis can be 
rejected, and thus our hypothesis be accepted, effect size is an 
indicator of whether the result of our experiment is 
meaningful regardless of our sample size. Based on Cohen’s 
conventions [41], the values for both Scenario 1 and Scenario 
2 indicated a large effect size. This implied meaningful results 
regardless of our sample size. 

Efficiency in terms of completion time was recorded as a 
total for both groups due to the design of our study. Table II 
shows an average decrease in selection time of more than 80% 
for the group using the pattern hierarchy. We attribute this 
increase in selection speed to the guidance the hierarchy 
provided. Without the hierarchy, the control group was forced 
to use their previous knowledge and the Internet to make 
decisions. Participants were able to make decisions faster 
while covering the same amount of patterns with the aid of the 
straightforward questions provided by the hierarchy. We 
calculated statistical significance and effect size with the same 
methods used for success rates. Both values implied statistical 
significance and meaningful results. 

VII. RELATED WORK 

Researchers have been documenting security patterns for 
decades, and there have been similar efforts to increase the 

usability of patterns [16]. We now review and discuss the 

similarities of related efforts in the security pattern domain, 

and how they differ from our own work. 

Romanosky extends the work done by Yoder and Barcalow 

[42] by introducing an additional eight security patterns [43]. 

Romanosky adopts the standardized pattern template 

originally developed by the GoF, which includes: Problem, 

Forces, Solution, and Consequences.  Their template also uses 

the following additional elements not included in our 

approach: Alias, Motivation, Example, and Related Patterns.  

TABLE I.  STATISTICAL RESULTS 

 

200



 

 

Although many of the element titles are identical in both 

templates, we assign slightly different meanings.  For 

example, Romanosky’s Solution section is a textual 

description of a step or series of steps that, when applied, can 
mitigate the problem. In contrast, our Solution is represented 

as a series of questions derived using the ICM, to guide users 

to other patterns and to generate requirements based on 

answers to these questions as described in Section III. 

Additionally, questions in Romanosky’s approach do not 

direct readers to related patterns nor do they provide a 

customized solution based on their answers.  Moreover, our 

Forces section is used to influence the types of questions 

contained within the Solution, by surfacing trade-offs that 

arise from other quality attributes. 

Based on the analysis of 220 security patterns, Heyman et 
al. investigate possible improvements that can be made to 

increase their usability [44].  Their major conclusions include 

that the quality of patterns would greatly benefit by the 

adoption of a common documentation template, and that the 

construction of a “pattern inventory” would make pattern 

selection a less daunting task. As opposed to having a general 

inventory, our approach aims to contextualize each pattern in 

relation to other relevant patterns through the ICM and Forces. 

In this way, the pattern user discovers these other patterns as 

they become relevant and while the pattern user iterates to 

build a solution from each pattern. 

Kienzle and Elder address some of the same problems we 
address with the security patterns landscape that Heyman et al. 

documented [45].  Specifically, they address the creation of a 

common pattern template and pattern repository.  Like our 

template, their common pattern template was derived from the 

GoF template. Kienzle and Elder augmented the GoF template 

by including additional security-specific elements.  These 

additions make the patterns somewhat lengthy and, as 

discussed in the previous paragraph, our Solution section 

provides more than just a textual description of a procedure.  

Using their template, they have documented a total of 26 

security patterns in a patterns repository. 
Hafiz et al. introduce an approach for organizing and 

describing the relationship between patterns using directed 

acyclic graphs [16]. Their approach uses a hierarchical scheme 

based on threat models in order to classify security patterns.  

Patterns which target similar problems are grouped together 

similarly to our hierarchical approach.  With these grouped 

patterns, the researchers analyzed the order in which they 

would be applied to describe their relationships and position in 

the hierarchy. Dotted line arrows and solid line arrows show 

relationships between patterns for preventing ‘tampering and 

DoS (denial of service)’ and ‘Escalation of Privilege’, 

respectively. The authors admit that their pattern language is 
still a work in progress, is hard to read, and can be “large and 

intimidating.” Based on the results from our empirical study, 

we believe that the use of feature diagrams provides a more 

usable method of pattern selection for novice users.  

Nonfunctional requirements (NFRs) are an important part 

of requirement specification. Existing work on NFRs defines 
them as attributes of or constraints on a system [46]. We 

include forces as a representation of quality attributes in our 

pattern template. This provides a means for NFRs to be 

incorporated into the pattern selection process. 

The representation and organization of requirements exists 

in other forms besides feature diagrams. Giorgini et al. use 

goal models to qualitatively relate goals with other goals [47]. 

This is done with “+” and “-” relationships which signify 

positive and negative contributions between goals. Similarly 

to feature diagrams, goal models also incorporate AND and 

OR compositions. We chose to use feature diagrams due to 
their expressiveness compared to other goal-oriented modeling 

techniques which do not allow for the representation of 

cardinality [48]. Furthermore, the distinction between 

positively and negatively relating patterns is not necessary for 

the goal of pattern hierarchies. Hierarchical relationships are 

strictly positive. Goal models also use binary relations 

meaning associative compositions are required to create n-ary 

relations. Feature diagrams include n-ary operations in their 

most fundamental form. 

VIII. CONCLUSION AND FUTURE WORK 

Security requirements patterns can greatly reduce the time 
spent in the requirements elicitation phase of software design 
as long as the pattern user identifies the correct pattern. Our 
comparison of pattern selection with and without the hierarchy 
showed statistically significant and meaningful results. This 
upholds our hypothesis that pattern hierarchies can be created 
to allow engineers to make more expert-like decisions in 
efficient time.  Using this method, software engineers can be 
more confident in the completeness of their requirements 
specifications. We feel that, based on our results, incorporation 
of pattern hierarchies with existing patterns can better facilitate 
knowledge transfer in the requirements engineering domain.  

In the future, we plan to modify our digital repository of 
security patterns to incorporate pattern hierarchies and provide 
public access in order to both benefit software engineers and 
gain feedback to further our research. We will also work to 
mine new patterns for the instances where experts in our case 
study indicated yet unimplemented patterns (e.g., Auditing and 
TBAC). Finally, we will work to formalize a method for 
hierarchy creation including an outline for generating questions 
used in the hierarchy. In doing so, we hope to provide a means 
for the creation of more hierarchies in different domains. 

ACKNOWLEDGMENT 

We thank Daniel Sass for his contribution to the design of 
our user study and Hanan Hibshi, Maria Riaz, and Laurie 
Williams for their insightful comments. We thank Daniel 
Amyot, Xavier Franch and other RePa’12 participants for their 

TABLE II.  EFFICIENCY 

 

201



 

 

contributions in the initial brainstorming on requirements 
patterns. This research was funded by Army Research Office 
(Award #W911NF-09-1-0273). Jianwei Niu and Rocky Slavin 
have been supported in part by NSF award CNS-0964710. 

REFERENCES 

[1] S. Konrad and B. H. Cheng, “Requirements patterns for 
embedded systems,” RE’02, pp. 127-136, 2002. 

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. 
Fiksdahl-King, and S. Angel, A pattern language, Oxford 
University Press, 1977. 

[3] M. Lin and H. Guo, “Present situation and development of 
single sign-on tehnology,” Journal of Computer Applications, 
pp. 248-250, 2001. 

[4] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based 
Access Control Models. IEEE Compute 29(2), pp. 38-47, 1996. 

[5] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, 
and L. Dominick, “Industrial experience with design patterns,” 
ICSE’96, pp. 103-114, 1996. 

[6] G. McGraw, "Testing for security during development: why we 
should scrap penetrate-and-patch," IEEE T. Aero. Elec. Sys. 
13(4), 1998. 

[7] B. Boehm, “Software engineering economics,” TSE10, pp. 4-21, 
1984. 

[8] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on 
security patterns,” Progress in Informatics, No.5, pp. 35-47, 
2008. 

[9] S. Withall, Software Requirements patterns, Microsoft Press, 
2007. 

[10] D. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt, 
“Security patterns repository version 1.0,” DARPA, Washington 
DC, 2002. 

[11] M. A. Jalil and S. A. M. Noah, "The difficulties of using design 
patterns among novices: an exploratory study," ICCSA'07, 2007. 

[12] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. 
Buschmann, and P. Sommerlad, Security patterns: integrating 
security and systems engineering, John Wiley & Sons, 2006. 

[13] M. Weiss and H. Mouratidis, "Selecting security patterns that 
fulfill security requirements," 16th ICSE’08, pp. 169-172, 2008.  

[14] E. Gamma, R. Helm, R. Johnnson, and J. Vlissides, Design 
patterns: elements of reusable object-oriented software, 
Addison-Wesley, 1994. 

[15] T. D. Breaux, H. Hibshi, A. Rao, and J-M. Lehker. “Towards a 
framework for pattern experimentation: understanding empirical 
validity in requirements engineering patterns.” RePa'12, pp. 41-
47, 2012. 

[16] M. Hafiz , P. Adamczyk , R. E. Johnson, “Growing a pattern 
language (for security),” Onward!’12 pp.139-158, 2012. 

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, 
“Feature-oriented domain analysis (FODA) feasibility study,” 
Carnegie Mellon Univ., CMU/SEI-90-TR-021, 1990. 

[18] P. Zave. (2004). FAQ sheet on feature interactions [Online]. 
Available: www.research.att.com/~pamela/faq.html 

[19] D. Batory, “Feature models, grammars, and propositional 
formulas,” 9th International Conference on Software Product 
Lines, pp. 7-20, 2005. 

[20] D. Bell and L. LaPadula. Computer Security Model: Unified 
Exposition and Multics Interpretation, MITRE Corp., ESD-TR-
75-306, 1975. 

[21] G. Graham and P. Denning. “Protection-principles and 
practice,” AFIPS Spring Joint Computer Conference, pp. 417–
429, 1972. 

[22] C. Potts, K. Takahashi, and A. I. Antón, “Inquiry-based 
requirements analysis,”  IEEE Software, pp. 21-32, 1994. 

[23] J. Mylopoulos and J. Castro, “Tropos: a framework for 
requirements-driven software development,” Information 
Systems Engineering: State of the Art and Research Themes, pp. 
261-273, 2000. 

[24] M. Jackson, Problem frames; analyzing and structuring software 
develoment problems, Addison-Wesley, 2001. 

[25] C. Palomares, C. Quer, X. Franch, C. Guerlain, and S. Renault, 
“A catalogue of non-technical requirement patterns,” RePa'12, 
pp. 1-6, 2012. 

[26] D. Dietrich and J. M. Atlee, “A pattern for structuring the 
behavioral requirements of features of an embedded system,”  
RePa'12,  pp. 1-7, 2012. 

[27] R. Slavin, H. Shen, and J. Niu, “Characterization and 
Boundaries of Security Requirements patterns,”  RePa'12,pp. 
48-53, 2012. 

[28] J. Anderson, "Information security in a multi-user computer 
environment," in Advances in Computers (12),  pp. 1-35, 1973. 

[29] S. Lauesen, Software Requirements: Styles and Techniques, 
Pearson Education Limited, 2002. 

[30] R. Crook, D. Ince, and B. Nuseibeh, “On modelling access 
policies: relating roles to their organisational context,” RE’05, 
pp. 157-166, 2005. 

[31] M. Koch, F. Parisi-Presicce, “Formal access control analysis in 
the software development process,” FMSE’03, pp. 67-76, 2003. 

[32] H. Hibshi, R. Slavin, J. Niu, and T.D. Breaux, “Rethinking 
security requirements in RE research,” Tech. Rep. Report CS-
TR-2014-001, Univ. Texas at San Antonio, 2014. 

[33] J-M. Lehker. (2014). Security Pattern Repository [Online]. 
Available: http://sefm.cs.utsa.edu/repository/patterns/ 

[34] R. Slavin, J-M Lehker, J. Niu, and T. D. Breaux, “Managing 
security requirements patterns using feature diagram 
hierarchies,” Tech. Rep. CS-TR-2014-002, Univ. Texas at San 
Antonio, 2014. 

[35] S. S. Council. Payment Card Industry (PCI) Data Security 
Standard, 2nd ed., 2010. 

[36] D. Kim, P Mehta, and P Gokhale. “Describing access control 
models as design patterns using roles,”PLoP’06. 2006. 

[37] R. K. Yin. Case study research, 4th ed. In Applied Social 
Research Methods Series, V.5. Sage Publications, 2009. 

[38] L. Wang, D. Wijesekera, S. Jajodia, “A logic-based framework 
for attribute based access control,”  FMSE’04, pp. 45-55, 2004. 

[39] M.L. Das, “Two-factor user authentication in wireless sensor 
networks,” TWC’09, pp. 1086-1090, 2009. 

[40] B. Iglewicz and D. C.  Hoaglin (1993), "How to detect and 
handle outliers", in The ASQC Basic References in Quality 
Control: Statistical Techniques, vol. 16, ASQC Quality Press, 
1993. 

[41] J. Cohen, “A power primer,” Psychological Bulletin, 1992, pp. 
155-159, 1992. 

[42] J. Yoder and J. Barcalow, “Architectural patterns for enabling 
application security,”  PLoP’97, pp. 1–37, 1997. 

[43] S. Romanosky. Security design patterns part 1. 
http://citeseer.ist.psu.edu/575199.html, Nov 2001. 

[44] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, "An 
analysis of the security patterns landscape," SESS '07. p. 3, 
2007. 

[45] D. M. Kienzle and M. C. Elder, “Security patterns for web 
application development, final technical report”, 2003. 

[46] M. Glinz, “On non-functional requirements,” RE’07, pp. 21-26, 
2007. 

[47] P. Giorgini, J. Mylopoulos, and E. Nicchiarelli, “Reasoning with 
goal models,” ER’02, pp. 167-181, 2002. 

[48] C. Borba and C. Silva. “A comparison of goal-oriented 
approaches to model SPLs variability,” ER Workshops ’09, pp. 
244-253, 2009. 

202


