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ABSTRACT
We present a randomized approach for wait-free locks with strong

bounds on time and fairness in a context in which any process can

be arbitrarily delayed. Our approach supports a tryLock operation

that is given a set of locks, and code to run when all the locks

are acquired. A tryLock operation, or attempt, may fail if there is

contention on the locks, in which case the code is not run. Given

an upper bound κ known to the algorithm on the point contention

of any lock, and an upper bound L on the number of locks in a try-

Lock’s set, a tryLock will succeed in acquiring its locks and running

the code with probability at least 1/(κL). It is thus fair. Furthermore,

if the maximum step complexity for the code in any lock is T , the
attempt will takeO(κ2L2T ) steps, regardless of whether it succeeds
or fails. The attempts are independent, thus if the tryLock is repeat-

edly retried on failure, it will succeed in O(κ3L3T ) expected steps,

and with high probability in not much more.

CCS CONCEPTS
• Theory of computation → Concurrent algorithms.
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1 INTRODUCTION
In concurrent programs, locks allow executing a ‘critical section’ of
code atomically, so that it appears to happen in isolation. Locks are
likely the most important primitives in concurrent and distributed
computing; they give the illusion of a sequential setting, thereby
simplifying program design. However, locks can also become scala-
bility bottlenecks for concurrent systems.

To illustrate these concepts, we use the classic dining philoso-
phers problem as a running example. In the dining philosophers
problem, first introduced by Dijkstra, n philosophers sit around a
table, with one chopstick between each pair of philosophers. Each
philosopher is in one of three states – thinking, hungry or eating
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– when hungry, they need to pick up both adjacent chopsticks to

be able to eat. When done eating, they put down the chopstick

and think for an unpredictable amount of time before next being

hungry. In the asynchronous setting, a scheduler decides when each

philosopher takes a step, and can delay a philosopher arbitrarily.

What should philosophers do to minimize the number of steps they

take from becoming hungry until they are done eating? To avoid

having the philosophers starve, we make two assumptions: firstly,

once a philosopher acquires the chopsticks, the number of steps

taken eating is bounded by a constant, and secondly, others can

help a philosopher eat by taking steps on their behalf. Without the

first, a philosopher could starve their neighbor by eating forever,

and without the second, the scheduler could starve a philosopher

by never letting its chopstick-holding neighbor take a step.

In this paper we present the first algorithm for this setting that

ensures that each philosopher will acquire their chopsticks and eat

in O(1) steps in expectation. Clearly, our algorithm thus ensures

progress is made quickly (at least in the asymptotic sense), and

ensures fairness in the sense that everyonewho is hungry gets to eat.

Our algorithm is randomized, and assumes an oblivious adversarial

scheduler (i.e., one that decides the interleaving of the philosopher’s

steps ahead of time), but adaptive adversarial philosophers who can

choose how long to think knowing everything about the system.

We are not just interested in the dining habits of philosophers,

but more generally in fine-grained locks. The chopsticks repre-

sent the locks, the philosophers processes, and eating represents a

critical section of code. By allowing arbitrary code in the critical

section, more than two locks per critical section, and arbitrary con-

flicts among the locks (not just neighbors on a cycle), the setting

covers a wide variety of applications of fine-grained locks. For ex-

ample, it captures operations on linked lists, trees, or graphs that

require taking a lock on a node and its neighbors for the purpose of

making a local update. Indeed, such local updates with fine-grained

locks are the basis of a large number of concurrent data struc-

tures [10, 15, 21, 28, 32, 37, 40, 41], and of graph processing systems

such as GraphLab [38]. Note that in many of these applications, the

number of locks that need to be taken is still a small constant.

Our approach relies on light-weight tryLock attempts, which

may fail and then be retried. Specifically, a tryLock specifies a set of

locks to acquire, and code to run in the critical section. If a tryLock

attempt by a process successfully acquires the locks, the given

code is run. In this paper, critical sections can contain arbitrary

code involving private steps along with reads, writes and CAS

operations on shared memory.
1
We do not allow nesting of locks—

i.e., the critical code cannot contain another tryLock. The critical

section ends with a call to release, which releases all the process’s

locks. For mutual exclusion, we assume that if two processes have

1
While most locks do not allow critical sections to experience races, we allow such

scenarios, for more general group-locking mechanisms.
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acquired the same lock, it must appear (based on updates to shared

memory) that their critical sections did not overlap in time.
2

Our main contribution is the following result.

Theorem 1.1 (Informal). Let κ be the maximum number of
tryLock attempts on any lock at any given time, let L be the maximum
number of locks per tryLock attempt, and let T be the maximum
number of steps taken by a critical section. There exists an algorithm
for wait-free fine-granularity locks against an oblivious scheduler
with the following properties.

• Step Bound. Each tryLock attempt takes O(κ2L2T ) steps.
• Fairness Bound. Each tryLock attempt of a process p suc-
ceeds with probability at least 1

κL independently of p’s other
attempts, and allowing for a adaptive adversary to decide when
to attempt the tryLock.

Since attempts by a process p are independent, a direct corollary

of this result is a wait-free fine-grained lock algorithm that succeeds

in expected O(κ3L3T ) steps; simply retry upon failure. This is the

first result that achieves any step complexity bounds that rely only

on these parameters. As a special case, our results imply an O(1)
step solution to the dining philosophers problem; that is, assuming

it takes constant steps to eat, each attempt to eat succeeds with

probability 1/4 and takes O(1) steps to complete (here, κ = L = 2).

We first describe an algorithm that assumes knowledge of the

boundsκ and L, and then remove this assumption using a guess-and-

double technique at the cost of a logarithmic loss in success probabil-

ity. That is, for a tryLockwith bounded contentionκ that is unknown
to the algorithm, the probability of success is Ω

(
1

κL log(κLT )

)
.

Achieving non-blocking progress requires processes to help each

other complete their critical sections. This may result in several

processes running the same code when helping concurrently. Thus,

to ensure correctness, critical sections must be made idempotent,
that is, regardless of how many times they are run, they appear to

have only executed once. The notion of idempotence in computer

science has been recognized as useful in various contexts [16, 19, 20].

Turek, Shasha and Prakash [48] and Barnes [9], designed lock-free

locks and showed how to make any code based on non-concurrent

reads and writes idempotent with constant overhead. However,

they did not distill this property, and instead present their protocols

as ad-hoc ways to use lock-free locks.

In this paper, we formally define idempotence for concurrent pro-

grams, and present a new and more general construction to achieve

it. In particular, the Turek, Shasha and Prakash’s, and Barnes’ ap-

proaches only supported reads and writes in critical sections, and

only if they did not race. We allow for races and also support CAS.

As with theirs, our approach only has a constant factor overhead.

Thus, our wait-free locks are applicable to general code without any

asymptotic overhead. We believe that the definition of idempotence

and its new construction are of independent interest; indeed our for-

malization of idempotence has recently been used elsewhere [13].

2 ASSUMPTIONS AND APPROACH
For the purpose of outlining the key assumptions, challenges and

approach, and to generalize beyond dining philosophers while still

2
We say “appear” since helping can cause instructions to overlap in time, but those

instructions will have no effect on the shared state.

abstracting away details of the machine model, we consider ac-

quiring locks as a game involving players and competitions. Each

player (tryLock attempt or philosopher) p participates in the game

by specifying a set of competitions (locks or chopsticks) it wants

to participate in. Different players can specify different (but poten-

tially overlapping) sets of competitions. While a player is in the

game, it takes steps to try to win its competitions, and a scheduler

interleaves the steps of the different players. If a player wins all its

competitions (acquires all its locks), it wins the game and celebrates

(executes its critical section or eats). The celebration is itself a se-

quence of steps. It then exits. To ensure mutual exclusion, no two

players can simultaneously have won their game (before exiting) if

they share a competition.

Adversarial assumptions. An adversarial scheduler is often used

to model the inherent asynchrony in concurrent systems; that is,

the order in which processes execute steps (the schedule) is assumed

to be controlled by an adversary. An adaptive adversary is assumed

to see everything that has happened in the execution thus far (the

history), whereas an oblivious adversary is assumed tomake all of its

scheduling decisions before the execution begins. Some separations

are known between adaptive and oblivious scheduler settings [1,

24, 25, 42]. Often, an oblivious adversary is considered to be a

reasonable assumption, since asynchrony in real hardware is not

generally affected by the values written on memory.

In our setting, in addition to the adversarial scheduler, the play-

ers can be adversarial, possibly trying to increase or decrease the

probability of celebrating. In the setting of tryLocks it is unreason-

able to assume that the players are oblivious having pre-decided

when to enter the game and with what competitions. This is be-

cause a player will likely need to try again if it fails on the first

attempt, and possibly on a different set of locks. Therefore for all

but the very simplest protocols the point at which a player requests

to enter a game, and possibly which competitions it requests to

compete on, will depend on what has happened so far. We therefore

assume the player is adaptive and makes decisions knowning the

full history. In summary, we assume two separate adversaries; the

player adversary, which is adaptive and controls the start time and

set of locks of each tryLock attempt, and the scheduler adversary,
which is oblivious and controls the order of player steps.

Random Priorities. In our algorithm, as in other algorithms for

similar problems [22, 36, 39, 42], each player is assigned a random
priority such that higher priorities win over lower priorities. In the

synchronous setting this by itself “solves” our problem. In partic-

ular in a round a set of players play the game by (1) picking their

priority, (2) checking if they are the highest priority on all their

competitions, and (3) celebrating if they are. Assuming independent

and unique priorities, the probability of a player p celebrating is

at least inversely proportional to the number of distinct players

that requested any of the competitions p played on. The game is

therefore fair, and assuming a synchronous scheduler (round-robin),

the number of steps is bounded.

Unfortunately in the asynchronous setting, even with an oblivi-

ous scheduler, the situation is much more difficult. Firstly, bounding

the steps requires having players help others; otherwise, a player

could be blocked waiting for another player to celebrate. We solve

this using idempotent code. Secondly, and much more subtilely,
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keeping the competition fair is challenging against an adaptive

player adversary. Most obviously, if the player adversary wants

a player to loose it could wait for other strong players to be in

shared competitions (recall that it can see the history), and then

start the player. Even if we hide the priorities from the adversary, it

could likely gain knowledge by how the players are doing. Even an

oblivious player adversary could skew the game; if strong players

take more steps than weak players and stay active longer, incoming

players would see a biased field of strong players. There are several

other subtle difficulties with achieving fairness.

Our approach. Our approach to making the game fair is to ensure

the adversary’s choices introduce no bias once a player enters

the game. We prevent the introduction of biased priorities by the

adversaries with two key ideas. Firstly, each player enters the game

in a pending state, before its priority is assigned. Before being

assigned a priority, a playerp must help complete the attempts of all

the competitors that started before it. That is, any player p′ whose
priority was known to the player adversary before player p joined

the game will be forced to finish competing without competing

against p. After completing this helping phase, p is assigned its

priority, in what we call its reveal step; after this step, p is no longer

pending, and is now active.
To implement the reveal step atomically, we model each competi-

tion (lock) as an active set object, which keeps track of membership

(i.e. who is currently competing on this competition/lock). It allows

players to insert and remove themselves, as well as query the ob-

ject to get the set of currently active members. We then model the

system of competitions as a multi active set object, which allows

players to insert themselves into the membership of several com-

petitions at once, i.e., all the competitions they compete on. The

active state is then easy to implement; players are considered active

if they appear in the active set of their locks.

However, helping others before becoming active is not sufficient

to mitigate the bias that the adversary could introduce; the player

adversary can enter a new player p′ after p but while p is still

pending, and the player p′ could overtake p and become active

before p (recall the scheduler adversary can make p′ much faster

than p). Based on steps in the protocol, p′’s priority could affect the
step at which p reaches its reveal step. This allows the adversary to

affect whether p competes with p′ based on the latter’s priority.

To avoid this problem, our second idea is to force the player

to stay in the pending state for a fixed number of its own steps,

before revealing itself and competing. We do so by introducing

delays in which the player simply stalls until it has taken enough

steps since it joined the game. The important aspect of introducing

these fixed delays is that the time a player becomes active (and

thus begins to compete) is unaffected by other players. It therefore

cannot be sucked earlier or pushed later based on the priority of

current competitors.

We note that our approach is robust against strong adversarial

players, but only an oblivious scheduler. A strong scheduler could

still move the point at which a player reveals itself based on known

priorities. We leave handling an adaptive scheduler adversary as

an open question.

3 RELATEDWORK
Randomization in Locks. Using randomization to acquire locks

is a difficult problem that has been studied for many years. The

difficulty arises from the lack of synchronization among processes,

and the ability of the adversary to delay processes based on ob-

servations of the current competition. Rabin [42] first considered

the problem for a single lock, and only for the acquisition (i.e. no

helping). Like ours, his scheme used priorities. Saias [43] showed

the algorithm did not satisfy the claimed fairness bounds due to

information leaks of the sort described in Section 2, and Kushilevitz

and Rabin [34] fixed it with a more involved algorithm. Lehmann

and Rabin also developed an algorithm for the dining philosophers

problem [36]. Lynch, Saias and Segala [39] later proved that with

probability 1/16 within 9 rounds one philosopher would eat. How-

ever, our goal is much stronger, requiring a constant fraction to eat.

Moreover, their model is not fully asynchronous—a round involves

every process taking a step. Duflot, Fribourg, and Picaronny gener-

alized the algorithm to the fully asynchronous setting [22], but at

the cost of a bound that depends on the number of processors.

More recent work has also looked at randomized mutual exclu-

sion for a single lock and without helping [24, 25]. This work has

focused on the Distributed Shared Memory (DSM) model, which

separates local from remote memory accesses. It shows that al-

though the local time is necessarily unbounded (since there is no

helping), the number of remote accesses can be bounded. Most of

the above work has assumed an adversary that knows what instruc-

tions have been run on each process, but not the arguments of those

instructions. This is more powerful than an oblivious adversary, but

less powerful than an adaptive one. None of the work considered

separating the player adversary from the scheduler adversary.

It has been shown that a tenet of concurrent algorithm design,

linearizability [30] does not nicely extend when randomization is

introduced [26]. Linearizability allows operations that take multiple

steps to be treated as if they run atomically in one step. Unfortu-

nately, however, analyzing probability distributions for the single

step case does not generalize to a multistep linearized implemen-

tation, especially when analyzed for a weaker adversary. This is

what lead to some of the difficulties encountered by the previous

work, and some of the challenges we face.

The Need for Randomization. It seems unlikely that acquiring

wait-free fine-granularity locks can be done in O(1) steps deter-
ministically. This is even true in the simpler case of the dining

philosophers, where each philosopher only ever tries to acquire

two locks and each lock only ever has two philosophers contending

on it. Assuming the philosophers do not know their position around

the table, this is even true in a synchronous setting; the best known
solution to the similar two-ruling-set problem, i.e., identifying a

subset of n philosophers who are separated by one or two other

philosophers, takes O(log∗ n) steps [18].
The issue is that there is a symmetry that needs to be broken. In

the randomized synchronous setting, the problem becomes easy

using random priorities as discussed in Section 2—every philopher

will have the highest priority among itself and its two neighbors

with probability 1/3 and will therefore eat with that probability. In

the asynchronous setting, the problem can be solved in O(n) steps
deterministically using, for example, Herlihy’s universal wait-free
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construction [29]. Every philosopher can announce when they are

hungry and then try to help all others in a round robin manner,

using a shared pointer to the philosopher currently being helped. Us-

ing more sophisticated constructions [3], the steps can be reduced,

but the total number of steps still depends on the total number of

concurrently hungry philosophers in the system.

Lock-Free Locks. Turek et al. [48] and independently Barnes [9]

introduced the idea of lock-free locks. They are both based on the

idea of leaving a pointer to code to execute inside the locks, such

that others can help complete it. In the locked code, Turek et al.’s

method supports reads and writes and locks nested inside each

other. As with standard locks, cycles in the inclusion graph must be

avoided to prevent deadlocks. Their approach thus allows arbitrary

static transactions via two-phase locking by ordering the locks,

and acquiring them in that order. It uses recursive (or “altruistic”)

helping in that it recursively helps transactions encountered on a

required lock. It is lock free, uses CAS, and although the authors

do not give time bounds it appears that if all transactions take at

most Tm time in isolation, the amortized time per transaction is

O(pTm ), where p is the number of processes. Barnes’s approach

supports arbitrary dynamic transactions in a lock free manner, and

uses LL/SC. It uses a form of optimistic concurrency [33] allowing

for dynamic transactions. As with the Turek et al. approach, it uses

recursive helping. Neither approach is wait-free—a transaction can

continuously help and then lose to yet another transaction.

To allow our locks to be non-blocking, we present a general

construction for achieving idempotence. A similar construction was

recently presented and used it to implement lock-free locks [13].

Their lock-free locks, while efficient in practice, do not have a

bound on steps per tryLock attempt, as a single attempt can help

arbitrarily many other ongoing attempts (not necessarily only on

the locks in its lock set). They are lock-free, but not wait-free.

Contention Management in Transactions. Shavit and Touitou [46]

introduce the idea of “selfish” helping in the context of transactions.

They argue that if a transaction encounters a lock that is taken, it

should help the occupant release this lock, but not recursively help.

In particular, if while helping another transaction, it encounters

a taken lock, then it aborts the transaction being helped. Their

approach only supports static transactions, as it needs to take locks

in a fixed order. It differs from our helping scheme in that there

are no priorities involved. In our scheme, when a transaction being

helped meets another transaction on a lock, we abort the one with

lower priority and continue with the one being helped if it is not the

one aborted. Shavit and Touitou’s approach is again lock-free but

not wait-free. The worst case time bounds are weaker than Turek

et al. or Barnes since there can be a chain of aborted transactions

as long as the size of memory, where only the last one succeeds.

Fraser and Harris [23] extend Barnes’s approach based on opti-

mistic concurrency and recursive helping. The primary difference

is that they avoid locks for read-only locations by using a vali-

date phase (as originally suggested by Kung and Robinson [33]).

They break cycles between a validating read and a write lock on

the same location, by giving arbitrary (not random) priorities to

the transactions to break this cycle. As with Shavit and Touitou’s

method, operations can take amortized time proportional to the

size of memory. There has been a variety of work on contention

management for transactions under controlled schedulers, some of

it using randomization [8, 27, 44, 45], but it does not apply to the

asynchronous setting we are considering.

Efficient Wait-Freedom. Starting with Herlihy [29], many re-

searchers have studied wait-free universal constructions, many of

which can be applied to at least a single lock, but most of these have

anO(P) factor in their time complexity, where P is the total number
of processes in the system, meaning that even under low contention

they are very costly. Afek et al. [2] describe an elegant solution for

a universal construction, or single lock in our terminology, that

reduced the time complexity to be proportional to the point con-

tention instead of the number of processors. Attiya and Dagan [7]

describe a technique that should be able to support nested locks,

although described in terms of operations on multiple locations.

They only support accessing two locations (i.e., two locks). Con-

sidering the conflict graph among live transactions, they describe

an algorithm such that when transactions are separated by at least

O(log∗ n) in the graph, they cannot affect each other. The approach

is lock free, but not wait free, and no time bounds are given. Afek et

al. [3] generalize the approach to a constant k locks (locations) and

describe a wait-free variant using a Universal construction. They

show that the step complexity (only counting memory operations)

is bounded by a function of the contention within a neighborhood

of radius O(log∗ n) in the conflict graph. Both approaches are very

complicated due to their use of a derandomization technique for

breaking symmetries [18].

4 MODEL AND PRELIMINARIES
In this paper we use standard operations on memory including

Read, Write, and CAS. Beyond memory operations, processes do

local operations (e.g. register operations, jumps, ...). Whenever we

discuss the execution time for a process, we mean all operations
(i.e., instructions) that run on the process including the local ones.

A procedure is a sequencial procedure with an invocation point

(possibly with arguments), and a response (possibly with return

values). A step is either a memory operation or an invocation or

response of a procedure. We assume all steps are annotated with

their arguments and return values, and we say two steps are equiv-
alent if these are the same. We say a memory operation has no
effect if it does not change the memory (e.g. a read, a failed CAS or

a write of the same value). We assume the standard definition of

linearizability [30].

The history of a procedure is the sequence of steps it took, or has

taken so far. The history of a concurrent program is some interleav-

ing of the histories of the individual procedures. A history is valid

if it is consistent with the semantics of the memory operations.

A thunk is a procedure with no arguments [31]. Note that any

code (e.g., the critical section of a lock) can be converted to a thunk

by wrapping it along with its free variables into a closure [47] (e.g.,

using a lambda in most modern programming languages). Here, for

simplicity, we also assume thunks do not return any values—they

can instead write a result into a specified location in memory. A

thunk runs with some local private memory, and accesses the main

memory via a fixed set of memory operations.

A lock object ℓ provides a tryLockℓ operation, which returns a

boolean value; if false, we say the tryLockℓ fails, and if it returns
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true, then we say that the tryLockℓ succeeded. We also define a

general tryLock procedure whose arguments are a lock set, i.e., a
set of lock and a thunk. We call the execution of a trylock a tryLock
attempt. A tryLock calls tryLockℓ on each of the locks in its set,

and succeeds if and only if all of them succeed. A tryLock attempt

p returns a boolean value indicating whether it succeeded or failed,

and satisfies mutual exclusion as defined in Definition 4.3.

In this paper, we aim to construct randomized wait-free locks,
and furthermore bound running time and success probabilities in

terms of the point contention on the locks in the system. We say

an algorithm is randomized wait-free if each process takes a finite

expected number of steps until its operation succeeds (see Chor et

al [17] for a more formal definition). In this paper, the operations

of processes are tryLock attempts. We say a tryLock attempt is

live on a lock ℓ from its invocation to its response (inclusive) if

ℓ is in its lock set. The point contention of lock ℓ at time t is the
number of live tryLock attempts at time t that contain ℓ in their lock
set. The maximum point contention, kℓ of lock ℓ is the maximum

point contention ℓ can have at any point in time across all possible

executions. We let κ be an upper bound on kℓ for all locks ℓ in

the system. The contention of a tryLock attempt p, Cp , is the sum
across all of p’s locks of kℓ . That is, Cp =

∑
ℓ∈p .lockList kℓ .

We assume two adversaries; an adaptive player adversary and an

oblivious scheduler adversary. Formally, the scheduler adversary is a

function from a time step to the process that runs an instruction on

that time step, which produces a schedule. Our algorithms do not

know this function, and the scheduler can delay any given process

for an arbitrary length of time. The player adversary is a function

from the history of an execution and a given process to a boolean

indicating whether the given process starts a new tryLock at its

next step, and if so with which locks.

4.1 Idempotence
To allow processes to help each other complete their thunks (critical

sections) on a lock, we must ensure that regardless of how many

processes execute a thunk, it only appears to execute once. For this,

we use the notion of idempotence, which roughly means that a piece

of code that is applied multiple times appears as if was run once [12,

16, 19, 20]. We define the notion of idempotence here, and show

how to make any thunk involving Read, Write and compare-and-

swap (CAS) instructions into one that is idempotent with constant

overhead in the full version of the paper [11]. Barnes [9] and Turek

et al. [48] do not extract the notion of idempotence, but do describe

a way to make code based on non-concurrent reads and writes

idempotent under our definition (below).

A run of a thunk T is the sequence of steps taken by a single
process to execute or help execute T . The runs for a thunk can be

interleaved. A run is finished if it reached the end of T . We say

a sequence of steps S is consistent with a run r of T if, ignoring

process ids, S contains the exact same steps as r . We use E | T to

denote the result of starting from an execution E and removing any

step that does not belong to a run of the thunk T .

Definition 4.1 (Idempotence). A thunk T is idempotent if in any

valid execution E consisting of runs of T interleaved with arbitrary

other steps on shared memory, there exists a subsequence E ′ of E |T
such that:

(1) if there is a finished run of T , then the last step of the first

such finished run must be the end of E ′,
(2) removing all ofT ’s steps from E other than those in E ′ leaves

a valid history consistent with a single run of T .

The definition essentially states that the combination of all runs

of a thunk T is equivalent to having run T once, and finishing at

the response of the first run.

In the full version of the paper [11] we describe a simulation/-

translation that converts thunks involving Read, Write and CAS
instructions into one that is idempotent, proving the following

result.

Theorem 4.2. Any thunk using only Read, Write and CAS opera-
tions on shared memory can be simulated using Reads, Writes and
CASes as primitive operations such that (1) it is idempotent, (2) every
simulated memory operation takes constant time, (3) the simulated
operations are linearizable.

We note that recent concurrent work proved a similar result [13],

but our simulation technique is different and we believe it is of

independent interest.

4.2 Mutual Exclusion with Idempotence
We say the interval of an idempotent thunk is from the first step

of any run of the thunk until the last step of the first run that

completes. When implementing a tryLock, the safety property we

require is as follows.

Definition 4.3 (Mutual Exclusion with Idempotence). If a tryLock
attempt A with thunk T and lock set L succeeds, then there is a

run of T that executed to completion. Furthermore, T ′s interval
does not overlap the interval of any other thunk whose lock set

overlaps L. If A fails, there is no run of T .

5 A MULTI ACTIVE SET ALGORITHM
Wenow define themulti active set problem and present an algorithm

that solves it using an active set object. Multi active sets will be

useful in implementing our locking scheme; in Section 6, we show

how to implement fast and fair locks by representing them as a

multi active set object.

The active set object was first introduced by Afek et al. [4]. It

has three operations; insert, remove, and getSet. A getSet operation

returns the set of elements that have been inserted but not yet

removed. Insert and remove operations simply return ‘ack’, and

processes must alternate insert and remove calls.

The multi active set problem is a generalization of the active set

problem to multiple sets. Instead of an insert, the data structure

supports a multiInsert that inserts an item into a collection of sets.

The multiRemove operation is with respect to the previous multiIn-

sert operation, and removes the item from the sets it was inserted

into. The getSet operation takes a set as an argument, and behaves

the same as for the active set, returning all items in the given set.

5.1 Active Set Algorithm
We now present a novel linearizable active set algorithm. Its pseu-

docode appears in Algorithm 1. In the full version of the paper [11],

we prove it correct and show that its step complexity is adaptive to
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the size of the set; insert and remove operations takeO(k) steps for
a set with k elements, and the getSet operation takes constant time.

An announcements array of C slots is maintained, where C is

the maximum number of elements that can be in the set at any

given time. Each slot has an owner element and a set, which is a

pointer to a linked-list of elements. To insert an element, a process

traverses the announcements array from the beginning, looking for

a slot whose owner field is empty. It then takes ownership of this

slot by CASing in its new element into the slot’s owner field. To

remove an element from slot i , a process simply changes the owner

of slot i to null. We assume that a process maintains the index of

the slot that it successfully owned in its last insert, and uses this

index in its next call to remove. Intuitively, the owner fields of all

the slots make up the current active set. An insert operation can

always find a slot without an owner, since there are C slots.

To help implement an efficient linearizable getSet function, the

insert and remove operations propagate the changed ownership of

their slot to the top of the announcements array by calling the climb
helper function. The climb function works as follows. Starting at

the slot given as an argument, it traverses the announcements

array to the top, replacing the set field of the current slot i with
the set of the previous slot i + 1, plus the owner of slot i . That
is, the climb function intuitively collects all owners of the slots

and propagates all of them to the set field of slot 0. The getSet

function can then simply read the set of announcements[0] to

get the current active set.

This algorithm is similar to the universal construction presented

by Afek et al. in STOC’95 [2], and is adaptive; the step complexity

of the insert and remove operations is proportional to the size of

the active set plus the point contention during the insert operation

in a given execution. This is because the number of slots that an

insert operation traverses before finding one with no owner is at

most the number of elements currently in the active set, plus the

ones in the process of being inserted. We note that when using the

active set object to count membership in a larger context (as was

its original intent and is the way we use it for the lock algorithm),

this translates to the point contention in the larger context.

5.2 Making a Multi Active Set
We now present an implementation of a multi active set that re-

lies on an active set object. However, our multi active set object

is not linearizable. Instead, we require a weaker property, which

will suffice for our use of the multi active set object to implement

locks. In particular, every multiInsert and multiRemove must ap-

pear to happen atomically at some point between the invocation

and response. Any getSet operation that is invoked after that point,

will see the effect of the operation, and any that responds before

that point will not see the effect of the operation. However, any

getSet that overlaps the point might or might-not see the effect.

This property is remeniscent of regularity as defined for registers

by Lamport [35]; we therefore call it set regularity.
We show how to implement a set-regular multi active set from a

linearizable active set object in Algorithm 2. Each item is endowed

with a flag that is initialized to false. To multiInsert an item into a

given collection of sets, the item is first inserted into each of these

sets using an active-set insert, and then its flag is set to true. The

1 struct Slot:
2 T owner
3 T* set
4 Slot[C] announcements

6 climb(int i):
7 for j = i ... 0:
8 for k = 1 ... 2:
9 curSet = announcements[j].set
10 if j == C: newSet = announcements[j].set //corner case
11 else: newSet = announcements[j+1].set
12 newMember = announcements[j].owner
13 if newMember != null:
14 newSet += newMember
15 CAS(announcements[j].set, curSet, newSet)

17 T* getSet():
18 return announcements[0].set

20 int insert(T p):
21 for i = 0... C-1:
22 if CAS(announcements[i].owner, null, p):
23 climb(i)
24 return i

26 remove(int i):
27 announcements[i].owner = null
28 climb(i)

Algorithm 1: Active Set Algorithm

1 type T:
2 void setFlag()
3 void clearFlag()
4 bool getFlag()

6 void multiInsert(T item, ActiveSet* collection):
7 item.clearFlag()
8 for set in collection: set.insert(item)
9 item.setFlag()

11 void multiRemove(T item, ActiveSet* collection):
12 item.clearFlag()
13 for set in collection: set.remove(item)

15 T* getSet(ActiveSet A):
16 T* set = A.getSet()
17 for T in set:
18 if not T.getFlag():
19 remove T from set
20 return set

Algorithm 2: Multi Active Set Algorithm

multiRemove operation first unsets the flag, and then removes the

item from each of the sets. The getSet operation for the multi active

set first calls the active set getSet operation, and then scans the

items, returning the only ones for which it sees the flag is set to true.

The flags can be scanned in any order, which implies the getset

operation is not linearizable. For example, items a and b could be

inserted into a set by two separate multiInserts, and for two getset

operations that overlap the insert, one could return just a and the

other just b.
We prove the following correctness and step complexity theo-

rems in the full version of the paper [11].
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Theorem 5.1. The Multi Active Set algorithm presented in Algo-
rithm 2 satisfies set regularity, assuming it uses a linearizable Active
Set implementation.

Theorem 5.2. In Algorithm 2, each operation takesO(κ) steps per
active set it accesses.

6 THE LOCK ALGORITHM
We now present the lock algorithm, whose pseudocode is shown in

Algorithm 3. Intuitively, each lock is represented by an active set

object that is part of a single multi active set object. Each tryLock

attempt creates a descriptor, which specifies the list of locks to be

acquired, the code to run if the locks are acquired successfully, and

two other metadata fields: the priority assigned to this descriptor,

and its current status. The status is set to active initially, and can

be changed to lost or won later in the execution as the fate of this

attempt is determined. The descriptor is used as the item to be

inserted into the active sets; the priority field doubles as the flag for

the multi active set; initially, it is set to −1, indicating a false flag.

After initializing its descriptor, a process starts its tryLock at-
tempt with that descriptor. In a slight abuse of notation, we some-

times use a descriptor p to refer to the process that initialized p
as it is executing the attempt tied to p. Without loss of generality

we assume that each attempt is tied to a unique descriptor. At a

high level, the algorithm implements each lock as an active set

object, using Algorithm 1 (described in Section 5). A descriptor is

inserted into the active sets of each of its locks via a multiInsert;

to set the descriptor’s flag to true in the multi active set algorithm,

the negative priority is replaced with a uniformly randomly cho-

sen value. The descriptor then calls getSet on each of its locks in

turn, and compares its priority to that of all other descriptors in

the set. Intuitively, if a descriptor p has the maximum priority of

all descriptors on all of its locks, then it wins, and its thunk gets

executed (celebrates).

However, the algorithm is more subtle, as it must block the ad-

versary from skewing the distribution of a given descriptor p’s
competitors. Therefore, upon starting a new tryLock attempt, be-

fore calling the multiInsert, and in particular, before choosing a

random priority, p helps all descriptors on its locks. Intuitively, this

is done to ‘clear the playing field’ by ensuring that any descriptor

whose priority might have affected p’s adversarial start time cannot

compete with p. To help other descriptors, p executes a getSet on

each of its locks in turn, and, for each descriptor p′ in the set, p
helps p′ determine whether it will win or lose. To do so, it calls

the run(p’) function, which serves as the helping function and is

the way that a descriptor competes against other descriptors. We

describe the run function in more detail below; this function is the

core of the lock algorithm. Before describing it, we first explain

what a descriptor p does after helping, and when it calls the run
function to help itself.

After having executed the run function for every competitor, it

is time for p to enter the game itself. First, p calls the multiInsert

with its lock set as the argument. Recall that before returning, the

multiInsert sets p’s priority to a uniformly random value.
3
We call

the time at which p’s priority is written its reveal step, since it

3
In this work, we assume that priorities do not conflict. To enforce this, it suffices to

pick priorities in a range that is polynomial in the total number of processes, P , in

now reveals its priority to all other descriptors, and can now start

receiving help from others. Note that by the set regularity property

of the multi active set and the priority’s use as p’s flag in the multi

active set, any getSet on one of those locks that starts its execution

after p’s reveal step will return a set that includes p. p now calls

run(p) to compete in the game.

After returning from the run(p) call, p is guaranteed to have

a non-active status (either won or lost). That is, it knows the out-
come of its attempt. At this point, p cleans up after itself by calling

multiRemove to remove itself from all active sets it was in.

The run function. The run function forms the core of the lock

algorithm. The run function on a descriptor p checks the active sets

of all of p’s locks, and compares p’s priority to all descriptors q in

those sets such that q’s status is active. On each such comparison,

the descriptor with the lower priority is eliminated. This means

that its status is atomically CASed from active to lost. After com-

paring p’s priority with all descriptors in the active sets of all of its

locks, the run function decides whether p won or lost. This involves

trying to atomically CAS p’s status to won. This will work if and

only if p hasn’t been previously eliminated. Finally, run(p) ‘cele-
brates’ the end of p’s competitions by running its thunk if its status

is won. The celebrationIfWon is also executed for each competitor

that p faced. This ensures that any descriptor that reaches the won
status gets its thunk executed before another descriptor sharing a

lock wins, and ensures mutual exclusion.

Theorem 6.1. Let κ be the maximum point contention any single
lock can experience. Let L be the maximum number of locks in the
lock set of any descriptor. Let T be the maximum length of a thunk.
Algorithm 3 provides fine-grained locks such that the number of steps
per tryLock attempt is O(κ2L2T ).

Proof. It is easy to see this theorem holds by observing the

tryLock and the multi active set algorithms. Each call to getSet

takes an number of steps linear in κ, and each multiInsert and

multiRemove takes O(κL) steps. Each instance of the run method

calls getSetO(L) times, and executesO(T ) steps for each descriptor

in the resulting sets. Since the run method is called O(κL) times in

a tryLock, this leads to the total step complexity of O(κ2L2T ). □

Delays. The algorithm as described thus far captures the essence

of the approach; clear out any competitors whose priorities could

have had an effect on your start time, and then compete by inserting

yourself into the active sets of your locks and comparing your prior-

ity to all others. However, it also has weak points that the adversary

can exploit to skew the priority distribution of the competitors of

certain descriptors. In particular, a descriptor p takes a variable

amount of its own steps to get to its reveal point, and a variable

amount of steps after that to finish its attempt. This variance is

caused by the amount of contention it experiences – how many

descriptors are accessing the active set or are in it when p accesses

the same active set, and what are their priorities. The number of

other descriptors affect the time its insertion into the active sets

takes (as shown in Section 5), as well as the number of descriptors

it must compare its priority to. Furthermore, if p runs a descriptor’s

the system. Conflicts can be handled by considering both processes to have lost, and

would only slightly affect our bounds.
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1 struct Descriptor:
2 ActiveSet* lockList //list of active set objects
3 thunk
4 int priority
5 status = {active, won, lost}

7 bool getFlag():
8 return (priority > 0)
9 void setFlag():
10 Delay until T0 = c · κ2 · L2 · T total steps taken
11 priority = rand //reveal step of p
12 void clearFlag():
13 priority = -1

15 tryLocks(lockList, thunk):
16 p = new Descriptor(lockList, thunk, -1, active)
17 for each lock ℓ in p.lockList:
18 set = getSet(ℓ)
19 for each p' in set:
20 run(p')
21 multiInsert(p, p.lockList)
22 run(p)
23 multiRemove(p, p.lockList)
24 Delay until T1 = c ′ · κ · L · T steps taken since previous delay

26 run(Descriptor p):
27 for each lock ℓ in p.lockList:
28 set = getSet(ℓ)
29 if (p.status == active):
30 for p' in set:
31 if (p'.status == active):
32 if p.priority > p'.priority:
33 eliminate(p')
34 else if (p != p'): eliminate(p)
35 celebrateIfWon(p')
36 decide(p)
37 celebrateIfWon(p)

39 decide(Descriptor p):
40 CAS(p.status, active, won)

42 eliminate(Descriptor p):
43 CAS(p.status, active, lost)

45 celebrateIfWon(Descriptor p):
46 if(p.status == won):
47 execute p.thunk

Algorithm 3: Lock Algorithm

thunk, this could take longer than if it simply eliminated it. The

adversary can use this variance to skew the distribution of priorities

of descriptors that p competes against.

To avoid this, we inject delays at two critical points in the al-

gorithm. The first is immediately before p’s reveal step. The goal
is to ensure that p always takes a fixed number of steps from its

start time until its reveal step. This means that once the adversary

chooses to start p, it has also chosen its reveal time, and cannot

modify this after discovering more information.
4
To achieve this

goal, we choose a fixed number of steps until p’s reveal step that

is an upper bound on the amount of time p can take to arrive at

its reveal step; T0 = c · κ2L2 · T , where κ is the maximum point

contention on any lock, L is the maximum number of locks per

4
For example, after p’s start time, it’s possible that some descriptor that started before

p reaches its reveal time. At this point, the adversary has more information about p’s
competitors. It can attempt to extend p’s time before its reveal step by starting new

descriptors and forcing p to help them. We want to avoid this possibility.

tryLock attempt,T is the maximum number of steps to run a single

thunk, and c is any any sufficiently large constant.

Similarly, we introduce a delay after p’s run to ensure that the

time between its reveal step and termination is also determined

at its invocation. Here, there is no need to square κ and L, since p
only needs to execute run for itself after its reveal step. Therefore,

T1 = c · κLT for some sufficiently large constant c .
It is important to note that delay is in terms of steps for a par-

ticular process. The scheduler can run different processes at very

different rates, so the delay counted in total number of steps across

all processes in the history on one process could be very different

than on another depending on the scheduler.

6.1 Safety and Fairness
We show that Algorithm 3 is correct by showing that it satisfies the

mutual exclusion with idempotence property (Definition 4.3). The

key to its correctness is in the way that the run function works. In

particular, a descriptor’s status can change at most once. Further-

more, celebrateIfWon never actually runs a thunk unless it status
is won (at which point it cannot lose anymore). Since its status can

become won only in Line 36, after it compares its priority to that

of the descriptors on all of its locks, and also celebrates any win-

ners out of these descriptors, by the time it celebrates for itself, the

thunks of any earlier winners on any of its locks have already been

executed. Thus, the placements of the celebrations (once on Line 35

for its competitors, and once on Line 37 for itself) are crucial for

the safety of the algorithm. The full safety proof for the algorithm

is presented in the full version of the paper.

We now focus on proving the fairness guarantees of the algo-

rithm. In essence, we show that the adversary’s power is quite

limited. In particular, the adversary must decide whether or not

two descriptors could threaten each other (i.e. their priorities could

be compared in Line 32) before learning any information on either

of their priorities. Intuitively, this is due to two main reasons.

The first is because of the helpingmechanism. Before a descriptor

p reveals its priority, it puts all descriptors whose priority was

already revealed in a state in which they can no longer threaten it –

their status becomes non-active.

To show this property formally, we begin with establishing some

terminology; we say a descriptorp causes a descriptorp′ to fail ifp′’s
status is changed to lost in the eliminate(p’) call on Line 33 or 34
after comparing p′’s priority with p’s priority. We say a descriptor

p can cause p′ to fail if p and p′’s priorities are compared on Line 33

or 34 during the execution. We can now discuss when descriptors

can and cannot cause each other to fail, in the next two useful

lemmas.

Lemma 6.2. A descriptor p cannot cause a descriptor p′ to fail if
their lock sets do not intersect.

Proof. A descriptor p is only inserted into the sets correspond-

ing to locks in its lock set (Line 21). Furthermore, in run(p), only
the sets of locks in p’s lock sets are compared against. Therefore, a

descriptor p′ will never be compared against and potentially elimi-

nated by a descriptor p if their lock sets do not intersect. □

Lemma 6.3. A descriptor p cannot cause a descriptor p′ to fail if
p’s status stopped being active before p′’s reveal step.
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Proof. First note that before p′’s reveal step, no descriptor will

eliminate p′, since its priority will be negative, and the comparison

with it will be skipped on Line 32. Therefore, p cannot cause p′ to
fail before p′’s reveal step. By Lemma D.1, p’s status will never be
active again after it stops being active. Therefore, in any run(p)
or run(p’) call, the comparison of p with any other descriptor will

be skipped on Line 29 after p becomes inactive. In particular, this

comparison will always be skipped after p′’s reveal step. □

Equipped with the above two lemmas, we can now show that

the helping mechanism has the effect we want; descriptors whose

intervals only overlap before one of their reveal steps cannot cause

each other to fail.

Lemma 6.4. Let p and p′ be descriptors such that p’s tryLock starts
after p′’s reveal step. Neither descriptor can cause the other to fail.

Proof. By Lemma 6.2, if p and p′’s lock sets do not overlap, the

lemma holds. Otherwise, if p′ has already removed itself from the

active set by the time p started its getSet on Line 18, then p′ must

have already won or lost by this time. In particular, p wasn’t in the

active set during p′’s run(p’), and therefore could not have caused
p′ to fail. Furthermore, by Lemma 6.3, p′ cannot cause p to fail.

So, assume that p′ is still in the active set at the time p started

its getSet on Line 18. By the set regularity of the multi active set

algorithm, since p′ must have completed its insertion into the active

set before p started its getSet on Line 18, p must have p′ in the

set it gets. Therefore, p calls run(p’) before its own reveal step,

so by Lemma D.2, p′ wins or fails because of a different descriptor.
Furthermore, again by Lemma 6.3, p′ cannot cause p to fail, since a

run(p’) call completes before p’s reveal step, and therefore p′ is
no longer active by that time. □

That is, in this lemma we show that if p starts after p′’s reveal
step, their priorities can never be compared. We can now introduce

some more terminology to help us reason further about fairness.

We define the interval of a descriptor p as the time between its call-

ing process’s call to tryLock and the time at which its tryLock call

returns. Furthermore, a descriptor’s threat interval is the time be-

tween the beginning of its interval and the time at which its status

stops being active. We define p’s threateners as the set of descrip-
tors that can cause p to fail. We make the following observations

about the relationships between descriptors.

Observation 6.5. The set of descriptors whose intervals overlap a
descriptor p’s reveal step includes all of p’s threateners.

Proof. Every descriptor p’s interval includes a complete call to

run(p). Thus, by Lemma D.2, the status of any descriptor is not

active by the end of its interval. The lemma is therefore immedi-

ately implied from Lemmas 6.3 and 6.4. □

Observation 6.6. At the time at which a descriptor’s interval
starts, none of its threateners have reached their reveal step.

The other property of the algorithm which ensures that the

adversary cannot pit descriptors against one another after knowing

their priorities stems from the delays in the algorithm. In particular,

Observation 6.7. Each descriptor interval takes the same number
of steps by the initiating process between its start and its reveal step,

and between its reveal step and the end of its interval, regardless of
the schedule or randomness.

Together, the helping mechanism and the delays allow us to

prove the main lemma for the fairness the argument. This lemma

relies on the notion of potential threateners. We say that a descriptor

p is a potential threatener of another descriptor p′ if (1) p’s interval
overlaps with p′’s reveal step, and (2) p′ did not execute a run(p).
Note that by Observation 6.5 and Lemma 6.3, the set of potential

threateners of a descriptor is a superset of its actual threateners.

Lemma 6.8. The player adversary has no information on the pri-
orities of p or p′ at the time at which it makes p′ threaten p.

Proof. By Observation 6.7, once a descriptor starts, its reveal

step and last step of its interval are determined. Since these two

steps are what determines whether a descriptor will be a poten-

tial threatener of another descriptor, the start times of the two

descriptors determine whether this event occurs. Furthermore, by

Lemma 6.4 and the definition of potential threateners, if p is a po-

tential threatener of p′ in an execution E, then both p and p′ must

have started their tryLock interval before either of their reveal

steps. Therefore, the player adversary had no information on their

priorities at the time at which it decided to start their intervals. □

The final theorem is easily implied from this lemma by recalling

that the choice of priorities of each descriptor is always done uni-

formly at random and independently of the history so far. Thus, the

adversary can choose whether or not to introduce more threateners

for a descriptor p, but cannot affect their priorities. Since there is a
bound on the amount of contention the adversary can introduce,

we get a bound on p’s chance of success.

Theorem 6.9. Let kℓ be the bound on the maximum point con-
tention possible on lock ℓ, and let Cp =

∑
ℓ∈p .lockList kℓ be the sum

of the bounds on the point contention across all locks in a descriptorp’s
lock list. Algorithm 3 provides wait-free fine-grained locks against an
oblivious scheduler and an adaptive player such that the probability
that p succeeds in its tryLock in A is at least 1

Cp .

Proof. On each lock ℓ in p’s lock list, the adversary can make

at most kℓ descriptors be potential threateners of p. Assume that

all priorities of the descriptors are picked uniformly at random,

but the priority of a given descriptor p′ is hidden until after the

adversary chooses whether or not p′ will be a potential threatener
of p. This is equivalent to our setting since the priorities are always
picked uniformly at random, and, by Lemma 6.8, the adversary has

no information on a descriptor p′’s priority until after it decides

whether it will potentially threaten p. Once the adversary discovers
the priority of a descriptor, it can decide whether the next descriptor

will be a potential threatener of p and then reveal the corresponding
priority. In the worst case, the adversary can reveal up toCp of those

predetermined priorities. Since the set of potential threateners of p
include all actual threateners of p, this makes p threatened by Cp
uniformly chosen random values in the worst case, giving it a

1

Cp
probability of having the maximum priority of all of them. □

Note that the theorem is stated using the point contention bounds

of the specific locks that are in the lock set of tryLock attempt p. In
terms of the general bounds κ on the point contention per lock and

Session 4  PODC ’22, July 25–29, 2022, Salerno, Italy

195



PODC ’22, July 25–29, 2022, Salerno, Italy Naama Ben-David and Guy Blelloch

L on the number of locks in any lock set, the probability of success

can be bounded from below at
1

κL . Theorem 6.9 and Theorem 6.1

together imply Theorem 1.1.

Using the multi active set implementation. We note that as shown

by Golab et al. [26], using implemented rather than atomic objects

in a randomized algorithm can affect the probability distributions

that an adversarial scheduler can produce. This effect can occur

when several operations on the implemented objects are executed

concurrently. Thus, we must be careful when using our set regular

multi active set object in our randomized lock implementation.

However, the way in which our lock algorithm uses the multi active

set, and the way we use it in our analysis, is not subject to this effect.

To see this, note that there is slack in our analysis; we consider the

set of descriptors with potential to compete, where this means that

a getSet executed by one descriptor could see the other descriptor.

That is, any change in priority distributions that the adversary

could try to achieve is already covered by our analysis.

6.2 Handling Unknown Bounds
So far, we’ve been assuming that κ, the upper bound on the point

contention of any lock, and L, the upper bound on the number of

locks per tryLock, are known to the lock algorithm. In this subsec-

tion, we briefly outline how to handle these bounds being known to

the adversary but not the algorithm. The full algorithm and analysis

for this case appear in the full version of this paper.

Algorithm 3 used these bounds in two ways: firstly, the active

set objects were instantiated with arrays of size κ, and secondly, κ
and L were used to determine how many delay steps each tryLock

attempt must take to ensure that each descriptor’s reveal step and

final step of the attempt always happen after the same number of

steps since the attempt’s start time. The first concern is easy to fix by

using more space; instead of setting the size of the announcement

array of the active set object to κ, we set it to P , the total number

of processes in the system. In most applications, this number is

significantly larger than κ. We note that the size of each individual

set pointed at by the array slots is still at most κ, and therefore the

time bounds remain proportional to κ as well.

However, the second problem is more challenging, as the delays

are crucial for the fairness bounds to hold. We make a few key

changes to the algorithm. Firstly, must ensure that the size of the

active set read on line 28 by an attempt p is fixed before the adver-

sary discovers the priority of p. To do so, we split the reveal step

into two parts; the participation-reveal step, and the priority-reveal
step. The participation-reveal step occurs after a descriptor p inserts

itself into the active set object of each of its locks. In this step, it

changes its priority from −1 to a special TBD value, indicating that it
is ready to participate in the lock competition, but not yet revealing

its priority. At this point, all locks are queried to obtain their active

sets, and only then is the priority of p revealed. The key insight

is that after the priority is revealed, the active set objects are no

longer queried, and instead the local copies of the sets, obtained

just before the priority reveal step, are used. Thus, the adversary

does not learn p’s priority until after it can no longer affect the set

of p’s potential threateners.
However, there is still the issue of the steps a descriptor executes

before its participation-reveal step. In the first part of its execution,

a descriptor must help others to complete their run call, and must

then call multiInsert on itself and its lock set. The length of these

tasks vary depending on the number of active descriptors in the

system, and can therefore be controlled by the player adversary. In-

stead of relying on κ and L, we employ a doubling trick; p measures

the number of steps it took until right before its participation-reveal

step, and then employs a delay to bring that number up to the near-

est power of two. In this way, while the adversary still has control

of the number of steps p will take, this number is now guaranteed

to be one of only log(κLT ) values. We arrive at the following result.

Theorem 6.10. Let kℓ be the bound on the maximum point con-
tention possible on lock ℓ, κ be an upper bound on kℓ for all ℓ, and
let Cp =

∑
ℓ∈p .lockList kℓ be the sum of the bounds on the point

contention across all locks in a descriptor p’s lock list. Furthermore, let
L be the maximum number of locks per tryLock attempt, andT be the
maximum length of a critical section. Then there exists an algorithm
A for wait-free fine-grained locks against an oblivious scheduler and
an adaptive player such that (1) the probability that p succeeds in its
tryLock is at least 1

Cp log(κLT ) in A, and (2) A that does not know the
bounds kℓ , κ and L.

7 DISCUSSION
In this paper, we present an algorithm for randomized wait-free

locks that guarantees each lock attempt terminates withinO(κ2L2T )
steps and succeeds with probability 1/κLwhereκ is an upper bound

on the contention on each lock, L is an upper bound on the number

of locks acquired in each lock attempt, and T is an upper bound on

the number of steps in a critical section. We further show a version

of the algorithm that does not require knowledge of κ and L, where
the success probability is reduced by a factor of O(log(κLT )).

There are several interesting directions for further study. In

particular, it is possible that a lock algorithm exists that reduces

the number of steps per attempt to O(κLT ). Furthermore, while

the success probability of each attempt in our algorithm adapts to

the true contention, our step bounds instead depend on the given

upper bounds. It would be interesting to develop a lock algorithm

that adapts its step complexity to the actual contention. To achieve

such adaptiveness, an algorithm would necessarily have to avoid

the delays that we use; our bounds rely on injecting fixed delays in

which processes must stall if they finish an attempt ‘too early’.

It would be interesting to see how well our proposed lock algo-

rithm does in practice. It has recently been shown that lock-free

locks can be practical [13], and we believe that the stronger bounds

that our construction provides may be useful. In real systems, al-

lowing the nesting of locks may be a useful primitive. While our

construction allows acquiring multiple locks, these locks must be

specified in advance and cannot be acquired from within a thunk

(critical section). We believe that our algorithm would maintain

safety if locks were nested, but its proven bounds would not hold. It

would therefore be interesting to develop an algorithm for wait-free

nested locks with strong bounds.
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