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ABSTRACT
In this paper we develop optimal algorithms in the binary-forking

model for a variety of fundamental problems, including sorting,

semisorting, list ranking, tree contraction, range minima, and or-

dered set union, intersection and difference. In the binary-forking

model, tasks can only fork into two child tasks, but can do so recur-

sively and asynchronously. The tasks share memory, supporting

reads, writes and test-and-sets. Costs are measured in terms of

work (total number of instructions), and span (longest dependence

chain).

The binary-forking model is meant to capture both algorithm

performance and algorithm-design considerations onmany existing

multithreaded languages, which are also asynchronous and rely on

binary forks either explicitly or under the covers. In contrast to the

widely studied PRAMmodel, it does not assume arbitrary-way forks

nor synchronous operations, both of which are hard to implement in

modern hardware. While optimal PRAM algorithms are known for

the problems studied herein, it turns out that arbitrary-way forking

and strict synchronization are powerful, if unrealistic, capabilities.

Natural simulations of these PRAMalgorithms in the binary-forking

model (i.e., implementations in existing parallel languages) incur

an Ω(logn) overhead in span. This paper explores techniques for

designing optimal algorithms when limited to binary forking and

assuming asynchrony. All algorithms described in this paper are the

first algorithms with optimal work and span in the binary-forking

model. Most of the algorithms are simple. Many are randomized.
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1 INTRODUCTION
In this paper we present several results on the binary-forking model.

The model assumes a collection of threads that can be created

dynamically and can run asynchronously in parallel. Each thread

acts like a standard random-access machine (RAM), with a constant

number of shared registers and sharing a common main memory.

The model includes a fork instruction that forks an asynchronous

child thread. A computation starts with a single thread and finishes
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when all threads end. In addition to reads and writes to the shared

memory, the model includes a test-and-set (TS) instruction. Costs
are measured in terms of the work (total number of instructions

executed among all threads) and the span (the longest sequence of

dependent instructions).

The binary-forking model is meant to capture the performance

of algorithms on modern multicore shared-memory machines. Vari-

ants of the model have been widely studied [1, 3, 20, 23, 25, 27, 31–

35, 41, 42, 45, 50, 54, 89]. They are also widely used in practice,

and supported by programming systems such as Cilk [60], the Java

fork-join framework [74], X10 [40], Habanero [39], Intel Thread-

ing Building Blocks (TBB) [71], and the Microsoft Task Parallel

Library [91].

The binary forking model and variants are practical on multicore

shared-memory machines in part because they are mostly asynchro-

nous, and in part due to the dynamic binary forking. Asynchrony is

important because the processors (cores) on modern machines are

themselves highly asynchronous, due to varying delays from cache

misses, processor pipelines, branch prediction, hyper-threading,

changing clock speeds, interrupts, the operating system scheduler,

and several other factors. Binary forking is important since it al-

lows for efficient scheduling in both theory and practice, especially

in the asynchronous setting [2, 11, 26, 35]. Efficient scheduling

can be achieved even when the number of available processors

changes over time [11], which often happens in practice due to

shared resources, background jobs, or failed processors.

Due to these considerations, it would seem that these models

are more practical for designing parallel algorithms than the more

traditional PRAM model [86], which assumes strict synchroniza-

tion on each step, and a fixed number of processors. One can also

argue that they are a more convenient model for designing paral-

lel algorithms, allowing, for example, the easy design of parallel

divide-and-conquer algorithms, and avoiding the need to schedule

by hand [19]. The PRAM can be simulated on the binary-forking

model by forking P threads in a tree for each step of the PRAM.

However, this has a O(logn) overhead in span. This means that

algorithms that are optimal on the PRAM are not necessarily op-

timal when mapped to the binary-forking model. For example,

Cole’s ingenious pipelined merge sort on n keys and processors

takes optimal O(logn) parallel time (span) on the PRAM [43], but

requires O(log2 n) span in the binary-forking model due to the

cost of synchronization. On the other hand a O(n logn) work and

O(logn log logn) span algorithms in the binary-forking model is

know [45]. Therefore finding more efficient direct algorithms for

the binary-forking model is an interesting problem. Known results

are outlined in Section 1.1.

The variants of the binary-forking model differ in how they

synchronize. The most common variant is binary fork-join model

where every fork corresponds to a later join, and the fork and
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Problem Work Span

List Contraction Sec 3 O (n) O (logn)∗

Sorting Sec 4 O (n logn)† O (logn)∗

Semisorting Sec 4 O (n)† O (logn)∗

Random Permutation Sec 6 O (n)† O (logn)∗

Range Minimum Query Sec 7 O (n) O (logn)
Tree Contraction Sec 8 O (n) O (logn)∗

Ordered-Set Operations
Sec 5 O (m log( nm + 1)) O (logn)(Union, Intersect, Diff.)

Table 1: The bounds of our new algorithms in the binary-forking
model. For ordered-set operations, n andm ≤ n are sizes of two sets.
∗: with high probability (whp). †: in expectation. Bounds without
superscripts are worst-case bounds. The ordered-set algorithms can
work in binary-forking model only with join supported (either by
using TS or just as a default primitive), and the rest make use of TS.

corresponding joins are properly nested [1, 23, 27, 31, 34, 35, 45, 50].

Other models allow more powerful synchronization primitives [11,

32, 41, 42, 54, 89]. In this paper we allow a test-and-set (TS), which
is a memory operation that atomically checks if a memory location

is zero, returning the result, and sets it to one. This seems to give

some power over the pure fork-join model. We make use of the TS
in many of our algorithms. We justify including a TS instruction by

noting that all modern multicore hardware includes the instruction.

Furthermore all existing theoretical and practical implementations

of the fork-join model require the test-and-set, or equivalently

powerful operation to implement the join.

In this paper we describe several algorithms for fundamental

problems that are optimal in both work and span in the binary-

forking model. In particular, we show the following results.

Theorem 1.1 (Main Theorem). Sorting, semisorting, list/tree
contraction, random permutation, ordered-set operations, and range
minimum queries can be computed in the binary-forking model with
optimal work and span (O(logn)). In many cases the algorithms are
randomized, as summarized in Table 1.

To achieve these bounds, we develop interesting algorithmic

approaches. For some of them, we are inspired by recent results

on identifying dependences in sequential iterative algorithms [22,

28, 87]. This paper discusses a non-trivial approach to convert the

dependence DAG into an algorithm in the binary-forking model

while maintaining the span of the algorithm to be the same as

the longest chain in the DAG. This leads to particularly simple

algorithms, even compared to previous PRAM algorithms whose

span is suboptimal when translated to the binary-forking model.

For some other algorithms, we use the nϵ -way divide-and-conquer

scheme. By splitting the problem into nϵ sub-problems and solving

them in parallel in logarithmic time, we are able to achieveO(logn)
span for the original problem. Our results on ordered sets are the

best known (optimal work in the comparison model and O(logn)
span) even when translated to other models such as the PRAM.

We note that for many of the problems we describe, it remains

open whether the same bounds can be achieved deterministically,

and also whether they can be achieved in the binary fork-join model

without a TS. One could argue that avoiding a TS is more elegant.

1.1 Related Work
There have been many existing parallel algorithms designed based

on variants of the binary-forking model (e.g., [1, 3, 13, 14, 20, 23, 25,

27, 29–33, 41, 42, 45, 52–54, 89]). Many of the results are in the set-

ting of cache-efficient algorithms. This is because binary forking in

conjunction with work-stealing or space-bounded schedulers leads

to strong bounds on the number of cache misses on multiprocessors

with various cache configurations [1, 23, 42, 45].

In the binary fork-join model, Blelloch et al. [27] give work-

efficientO(logn) span algorithms for prefix sums and merging, and

a work-efficient randomized sorting algorithm with O(log3/2 n)
span whp1. Cole and Ramachandran [45] improved this and gave

a deterministic algorithm with span O(logn log logn). This is cur-
rently the best known result for sorting in the binary fork-join

model, without a test-and-set, and also for deterministic sorting

even with a test-and-set.

Allowing for more powerful synchronization, Blelloch et al. [31,

32] discussed how to implement futures using the TS instruction,
which leads to some low-span binary-forking algorithms Tang et

al. [41, 54, 89] described some dynamic programming algorithms, in

the setting of cache efficiency. They also use a TS for synchroniza-

tion. With this they can reduce the span of a variety of algorithms

over fork-join computations without the atomic synchronizations.

Without considering the additional support for cache efficiency, we

believe their model is equivalent to the binary-forking model.

2 MODELS AND SIMULATIONS
Here we describe the binary-forking model and its relationship

to more traditional models of parallel computing, including the

PRAM and circuit models. The binary-forking model falls into the

class of multithreaded models [11, 26, 34, 35, 44]. Multithreaded

computational models assume a collection of threads (sometimes

called processes or tasks) that can be dynamically created, and

generally run asynchronously. Cost is determined in terms of the

total work and the computational span (also called depth or critical

path length). There are several variants on multithreaded models

depending on how many threads can be forked, how they synchro-

nize, and assumptions about how the memory can be accessed. To

be concrete, we define a specific model in this paper.

The binary-forking model. The binary-forking model con-
sists of threads that share a common memory. Each thread acts

like a sequential RAM—it works on a program stored in the shared

memory, has a constant number of registers (including a program

counter), and has standard RAM instructions (including an end
instruction to finish the computation). The binary-forking model

extends the RAMwith a fork instruction, which forks a child thread.
We also employ a special end instruction named endall to indicate
the completion of the whole computation. The fork instruction

sets the first register to zero in the parent (forking) thread and to

one in the child (forked) thread, to distinguish them. Otherwise the

states of the threads are identical, including the program counter to

the next instruction. As is standard with the sequential RAM [90],

1
We use the term O (f (n)) with high probability (whp in n to indicate the bound

O (kf (n)) holds with probability at least 1 − 1/nk for any k ≥ 1. With clear context

we drop “in n”.
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we assume that for input size n, all memory locations and registers

can hold O(logn) bits.
In addition to reads and writes, we include a test-and-set (TS)

instruction in the binary-forking model for accessing memory. The

TS is an atomic instruction that reads a memory location and if

the memory location is zero, sets it to one, returning zero. Oth-
erwise it leaves the value unchanged returning one. We note that

all currently produced processors support the TS instruction in

hardware.

In a binary-forking model, a computation starts with a single

initial thread and finishes when endall is called. The invocation

to an endall can be determined by the algorithm, for example,

through using TS instructions (e.g., to implement join instructions,
see below). A computation in the binary-forking model can there-

fore be viewed as a tree where each node is an instruction with

the next instruction as a child, and where the fork instruction has

two children corresponding to the next instruction of the original

forking thread and the first instruction of the forked thread. The

root of the tree is the first instruction of the initial thread. We define

the work of a computation as the size of the tree (total number of

instructions) and the span as the depth of the tree (longest path of

instructions). We assume the results of memory operations are con-

sistent with some total order (linearization) of the instructions that

preserves the partial order defined by the tree. For example, a read

will return the value of the previous write or TS to the same location

in the total order. The choice of total order can affect the results

of a program since threads can communicate through the shared

memory. In general, therefore, computations are nondeterministic.

To simplify issues of parallel memory allocation we assume

there is an allocate instruction that takes a positive integer n and

allocates a contiguous block of n memory locations, returning a

pointer to the block, and a free instruction that given a pointer to

an allocated block, frees it.

We use BF(W (n), S(n)) to denote the class of algorithms that

require O(W (n)) work and O(S(n)) span for inputs of size n in the

binary-forking model. We use BFk when S(n) = O(logk (n)) and
W (n) is polynomial in n, andBF∗ when the span is polylogarithmic

and the work is polynomial.

The binary-forking model can be extended to support arbitrary-

way forking instead of binary. In particular, the fork instruction
can take an integer specifying the number of threads to fork, and

each forked thread then gets a unique integer identifier in a register.

The focus of this paper, however, is on binary forking since there

are no known optimal scheduling results for arbitrary-way forking

(see below). The model can also be augmented with more powerful

atomic memory operation. For instance, some algorithms [3, 13,

14, 52, 53] use compare-and-swap (CAS) in addition to the above-

mentioned model. We refer to this model as the binary-forking

model with CAS. A TS is sufficient for our algorithms.

Joining. It can be useful to join threads after forking them, and

many models support such joining [11, 26, 35, 44]. This can be

implemented by adding a join instruction to the binary-forking

model. When reaching a join instruction in thread t the forking
thread t must “wait” until its most recently forked child thread tc
ends. Specifically, in the partial order of the tree mentioned above,

it means the partial order is augmented with a dependence from the

end instruction of tc to the join instruction of t . This partial order
is now a series-parallel DAG instead of a tree, and the total order

has to be consistent with it. As before, the work is the total number

of instructions, but now the span is the longest path of instructions

in the DAG instead of tree. We call this the binary fork-join model.
Joining can easily be implemented in the binary-forking model

without a built-in join instruction, but by using the TS instruction.

To implement a join, before each fork we initialize a “synchro-

nization” location to zero. For the forking and the forked threads,

whichever finishes later is responsible for processing the rest of

the computation after the join. This is determined by reaching con-

sensus through the synchronization location. When the forking

thread T reaches a join it saves its registers and then performs a

TS on the corresponding synchronization location. If the TS returns
one, this means that the other thread has already finished and set

it to one first, and T can continue to the next instruction in the

program. Otherwise, it means that the other thread has not finished

yet, and thusT ends because the other thread will take over the rest

of the computation later. When the forked thread reaches its end, it
also performs a TS on the synchronization location. Similarly, if the

TS returns zero it ends, otherwise it loads the registers saved by

the forking thread, and jumps to the stored program counter. This

implementation preserves work and span within a constant factor.

By using fork and join one can also simulate a regular parallel

for-loop of size n using divide-and-conquer, which takes Θ(logn)
span to fork and synchronize.

The simulation implies that the binary-forking model is as least

as powerful as the binary fork-join model (with or without TS).
We note that unlike binary fork-join model, by using a general TS
instead of just a join, the parallelism supported by binary-forking

model is not necessary nested. We point out that to implement a

constant-time join seems to require an operation at least as pow-

erful as TS. In particular reads and writes by themselves are not

powerful enough to get consensus among even just two processes

in a wait-free manner, and TS is the seems to be the least powerful

memory operation that can achieve two process consensus [69].

This suggests a primitive as powerful as TS is necessary to effi-

ciently implement a join on an asynchronous machine since the

two joining threads need to agree (reach consensus) on who will

run the continuation.

PRAM. For background, we give a brief description of the PRAM
model [86]. A PRAM consists of p processors, each a sequential

random access machine (RAM), connected to a common shared

memory of unbounded size. Processors run synchronously in lock-

step. Although processors have their own instruction pointer, in

typical algorithms they all run the same program. There are several

variants of the model depending on how concurrent accesses to

shared memory are handled—e.g., CRCW allows concurrent reads

and writes, and EREW requires exclusive reads and writes. For

concurrent writes, in this paper we assume an arbitrary element is

written (the most standard assumption). A more detailed descrip-

tion of the model and its variants can be found in JáJá’s book on

parallel algorithms [73]. As with the binary-forking model, we as-

sume that for an input of size n, memory locations and registers

contain at most O(logn) bits. We use PRAM(W (n), S(n)) to indi-

cate PRAM algorithms that run in O(W (n)) work (processor-time
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product) and S(n) time, PRAMk
when the time is O(logk n), and

PRAM∗ when it is polylogarithmic (both with polynomial work).

Relationship to the PRAM. There have been many scheduling

results showing how to schedule binary and multiway forking on

various machine models [11, 26, 35]. For example, the following

theorem can bound the runtime for programs in the binary-forking

model on a PRAM.

Theorem 2.1 ([11, 34]). Any computation in the binary-forking
model that does W work and has S span can be simulated on P
processors of a loosely synchronous parallel machine or the CRCW
PRAM in

O

(
W

P
+ S

)
time whp inW .

This is asymptotically optimal (modulo randomization) since the

simulation must require the maximum ofW /P (assuming perfect

balance of work) and S (assuming perfect progress along the critical

path). The result is based on a work-stealing scheduler. A slight

variant of the theorem applies in a more general setting where

individual processors can stop and start [11] and P is the average

number of processors available.

Importantly, in the other direction, simulating a p-processor
PRAM, even the weakest EREW PRAMg requires a Θ(logp) factor
loss in span on the binary-forking model. This is a lower bound

for any simulation that is faithful to the synchronous steps since

just forking p parallel instructions (one step on a PRAM) requires

at least logp steps on the binary-forking model.

Relationship to Circuit Models. Beyond the PRAM we can

ask about the relationship to circuit models and to bounded space.

Here we use NC for Nick’s class, AC when allowing unbounded

in-degree, and L for logspace [36, 75]. We first note that NC =

BF∗. This follows directly from the PRAM simulations since NC =

PRAM∗ [75]. We also have the following more fine-grained results.

We show the proof in the full version of this paper [24].

Theorem 2.2.

NC1 ⊆ L ⊆ BF1 ⊆ AC1 = PRAM1

CRCW ⊆ NC2

3 LIST CONTRACTION
List ranking [9, 12, 46, 72, 73, 75, 83, 84, 93–95] is one of the canon-

ical problems in the study of parallel algorithms. The problem is:

given a set of linked lists, compute for each element its position in

the list to which it belongs. The problem can be solved by list con-
traction, which contracts a list by following the pointers in the list.

After contraction one can rank the list by a second phase that ex-

pands it back out. The problem has received considerable attention

because of: (1) its fundamental nature as a pointer-based algorithm

that seems on the surface to be sequential; and (2) it has many appli-

cations as a subroutine in other algorithms. Wyllie [95] first gave an

O(n logn)work andO(logn) time algorithm for the problem on the

PRAM over 40 years ago. This was later improved to a linear work

algorithm [47]. Although this problem has been extensively studied,

to the best of our knowledge, all existing linear-work algorithms

have Ω(log2 n) span in the binary-forking model because they are

all round-based algorithms and run in Ω(logn) rounds. The main

70 65 24 1 3
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Figure 1: An example of an input list with 8 elements. The num-
ber in each element is the priority drawn from a random permu-
tation. The dependences of the contractions are shown as a binary
tree structure. In a round-based algorithm [87], the execution is in
4 rounds: {0, 1, 2, 3}, {4, 5}, then {6}, and finally {7}. In Algorithm 1,
the execution is asynchronous, and a possible tree-path decomposi-
tion is {0, 4}, {∅}, {∅}, {1}, {∅}, {2, 5, 6, 7}, {∅}, and {3} for all 8
elements from left to right. The length of a tree-path is bounded by
the tree height.

result of this section is a randomized, linear work, logarithmic span

algorithm in the binary-forking model. Then we also describe how

to adapt Wyllie’s algorithm to the binary-forking model to achieve

O(n logn) work and O(logn) span; while not work optimal, this

latter algorithm is deterministic. Both algorithms are the first in

the binary-forking model to achieve O(logn) span.
We now present a simple randomized algorithm (Algorithm 1)

for list contraction that is theoretically optimal (linear work, and

O(logn) span whp) in the binary-forking model. This algorithm is

inspired by the list contraction algorithm in [87], but it improves

the span by Θ(logn), and is quite simple.

The main challenge in designing a work-efficient parallel list

contraction algorithm is to avoid simultaneously trying to splice-

out two consecutive elements. One solution is via assigning each

element a priority from a random permutation. An element can be

spliced out only when it has a smaller priority than its previous

and next elements, so the neighbor elements cannot be spliced

out simultaneously. If the splicing is executed in rounds (namely,

splicing out all possible elements in a round-based manner), Shun

et al. [87] show that the entire algorithm requires Θ(logn) rounds
whp, leading to Θ(log2 n) span whp in the binary-forking model.

The dependence structure of the computation is equivalent to a

randomized binary tree. On each roundwe can remove all leaf nodes

so the full tree is processed in a number of rounds proportional to

the tree depth. An example is illustrated in Figure 1.

After a more careful investigation, we note that the splicing can

proceed asynchronously, and not necessarily based on rounds. For

example, the last spliced node with priority 7 separates the list

into two disjoint sublists, and the contractions on the two sides

are independent and can run asynchronously. Conceptually we can

do this recursively, and the recursion depth is Θ(logn) whp [87].

Unfortunately, we cannot directly apply the divide-and-conquer

approach since L is stored as a linked list and deciding the elements

within sublists is as hard as the list contraction algorithm itself.

We present our algorithm in Algorithm 1. Starting from the

leaves, Algorithm 1 performs equivalent steps to the algorithm

in [87], but its span is Θ(logn) in the binary-forking model; this

improvement is achieved by allowing the splicing in each round

to run asynchronously. The key idea is that, instead of checking

all element for readiness in each round, as long as two children
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Algorithm 1: List-Contraction(L)
Input: A doubly-linked list L of size n. Each element li has a random

priority (li .p), next pointer (li .next), previous pointer (li .prev)
and flag (li .flag).

1 parallel foreach element li in L do
// set flag if zero or one child

2 li .flag ← (pri(li ) < pri(li .prev)) or (pri(li ) < pri(li .next))
3 parallel foreach element li in L do
4 c ← li

// Execute only if c is a leaf node

5 if ((pri(c) < pri(c .prev)) and (pri(c) < pri(c .next))) then
// Stop when list is contracted into one node

6 while not (c .prev = null and c .next = null) do
7 Splice c out

8 Let c′ be c .prev or c .next with a smaller priority

// If c is not the last child of c′, quit

9 if Test-and-Set(c′.flag) then break
10 c ← c′

11 Function pri(v)
12 if v = null then return∞ else return v .p

of a node c finished contracting, we trigger c to start contracting

immediately. The child of c that finished later is responsible for take
over c , and thus can start immediately. In particular, in the algorithm,

a parallel-for loop (Line 3) generates n tasks (threads) each for a

node in the list. The loop can be implemented by binary forking

for log
2
n levels. Only leaf nodes start the execution, and non-leaf

nodes quit immediately (Line 5. These leaves will splice themselves

out (Line 7), and then try to move upward and splice its parent

(Line 8). We note that a node c cannot be contracted until both of

its children have been spliced out. Thus we make the child of c that
finishes its splicing later to take over c . This is achieved by letting

the two children compete through Test-and-Set the flag field in c
(Line 9). Whichever arrives later takes over and contracts the parent

c ′ (Line 10), and the first one simply terminates its computation

(Line 9) and let the second one to take continuation. As an example

in Figure 1, the threads for nodes 1 and 2 will both try to work on

node 5 after they finish their first splicings. They will both attempt

to Test-and-Set the flag of node 5. The one coming first succeeds

and terminates, and the later one will fail and continue splicing

node 5. We initialize the flag for each node to be 0, except for those

with 0 or 1 child (Line 2), for which we set flag directly to 1 (they

do not need to wait for two children).

Theorem 3.1. Algorithm 1 for list contraction does O(n) work
(worst case) and has O(logn) span whp in n in the binary-forking
model.

Proof. The correctness of this algorithm can be shown as it ap-

plies the same operations as the list contraction algorithm in [87],

although Algorithm 1 runs in a much less synchronous manner. The

execution of each thread corresponds to a tree-path in the depen-

dence structure starting from a leaf node and ending on either the

root or when winning a Test-and-Set. A possible decomposition

of the example is shown in the caption of Figure 1. This observation

also indicates that the number of iterations of the while-loop on

line 9 for any task isO(logn) whp, bounded by the tree height. The

span is therefore O(logn) whp. The work is linear because every

time Line 7–9 is executed, one element will be spliced out. �

It is worth noting that, even disregarding the improved span for

the binary-forking model, we believe this algorithm is conceptually

simpler and easier to implement compared to existing linear-work,

logarithmic-time PRAM algorithms [9, 48]. Our algorithm requires

starting with a random permutation (discussed further in Section 6).

We note that it is straightforward to extend the analysis to using

integer priorities instead of randompermutations, where the integer

priorities are chosen independently and uniformly from the range

[1,nk ], for k ≥ 2, with ties broken arbitrarily.

Binary Forking Wyllie. Here we outline a binary forking version

of Wyllie’s algorithm with O(n logn) work and O(logn) span, both
in the worst case. It is useful for our simulation of logspace in

BF1
. The idea is to allocate an array of log

2
n cells per node of

the list, each containing two pointers and a boolean value used for

TS. At the end of the algorithm the two pointers in the i-th cell

(level) will point to the element 2
i
links forward and 2

i
backward

in the list (or a null pointer if fewer than 2
i
before or after). The

algorithm initially forks off a thread for each node at level 1 in the

list. A thread is responsible for splicing out its link at the current

level. It does this by writing a pointer to the other neighbor to the

corresponding pointer cells of its two neighbors (i.e., splicing itself

out), then doing a TS on the boolean flag of each neighbor. For each

flag on which it gets a 1 (i.e., it is the second thread to write the

pointer at this level), it forks a thread to splice out that neighbor

at the next level. Since this fork at the next level only occurs on

the second update to the node, both links at the next level must

already be available. In general, each splicing step may create 0,

1, or 2 child threads, depending on the timing of arrivals at the

neighbors. The first and last element in each list must start with its

flag set and writes a null pointer to its one neighbor. As in Wyllie’s

original algorithm, it is easy to keep counts to generate the ranks

of each node in a list. The total work is proportional to the number

of cells, O(n logn) since each cell gets processed once. Since each

fork corresponds to performing a splice at a strictly higher level,

the span is proportional to the number of levels, i.e., O(logn).

4 SORTING
In this section we discuss optimal parallel algorithms to compar-

ison sort and semisort [92] n elements using O(n logn) and O(n)
expected work respectively, andO(logn) span whp. For comparison

sort, the best previous work-efficient result in the binary-forking

model requiresO(logn log logn) span [45]. In this paper, we discuss
a relatively simple algorithm (Algorithm 2) that sorts n elements in

O(n logn) expected work and O(logn) span whp.
Our algorithm, given in Algorithm 2, is based on sample sort-

ing [59]. It runs recursively. In the base case when the subproblem

size falls below a constant threshold, it sorts sequentially. Other-

wise, for a subproblem of size n, the algorithm selects n1/3 log
2
n

samples uniformly at random, and uses the quadratic-work sorting

algorithms to sort these samples (i.e., by making all pairwise com-

parisons). These two steps can be done in o(n) work and O(logn)
span in the binary-forking model. Then the algorithm subselects
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Algorithm 2: Comparison-Sort(A)

1 Let n = |A |
2 if n is a constant then Sort the base case and return
3 Randomly select n1/3

log
2
n samples

4 Use quadratic sorting algorithm to sort the samples

5 Subsample n1/3
pivots from the samples

6 Distribute all elements in A to n1/3 + 1 buckets based on the samples

(to form a partition of A to A0, A1, . . . , An1/3 ). If failed, restart from

Line 3

7 parallel foreach i ← 0 to n1/3 do Comparison-Sort(Ai )

every log
2
n-th sample to be a pivot, and use these n1/3 pivots to

partition all elements into n1/3 + 1 buckets.

Lemma 4.1. In the distribution step on Line 6 in Algorithm 2, the
number of elements falling into one bucket is no more than c1rn2/3

with probability at least 1 − n−c1 for certain constant r and any
constant c1 > 1.

This follows from Chernoff bound. The algorithm then allocates

n1/3 + 1 arrays, one per bucket, each with size 2c1rn
2/3

. Then in

parallel, each element uses binary search to decide its corresponding

bucket. It then tries to add itself to a random position in the bucket

by using a TS on a flag to reserve it. If the TS fails, it tries again since
the slot is already taken. We limit the number of retries for each

element to be no more than c2 log2 n. If any element cannot find

an available slot in this number of retries, the algorithm restarts

the process from the random-sampling step (Line 3). Otherwise,

after all elements are inserted, the algorithm packs the buckets into

contiguous elements for input to the next recursive calls.

Theorem 4.2. Algorithm 2 sorts n elements inO(n logn) expected
work and O(logn) span whp in the binary-forking model.

To bound span, we need to consider the number of retries and the

cost of each retry along any path to a leaf in the recursion tree. The

number of retries is upper bounded by a geometric distribution since

each retry is independent, but the probability of that distribution

depends on the level of recursion since problem sizes get smaller.

Furthermore the span of a try also depends on the level of recursion

(it is bounded by O(logni ), where ni is the input size of level i). To
help analyze the span, we will use the following Lemma.

Lemma 4.3. Let X1 · · · ,Xm be independent geometric random
variables, and Xi has success probability pi = 1 − 2−k

i
where k > 1

is a constant. Then
∑m
i=1 k

i · Xi ≤ O(ckm ) holds with probability at
least 1 − 2−ck

m
for any given constant c ≥ 1.

Proof. We view the contribution from each term ki · Xi to the

sum based on a series of independent unbiased coin flips. The

term ki · Xi can be considered as the event that we toss ki coins
simultaneously, and if all ki coins are heads we charge ki to the sum
and this process repeats (corresponding to the geometric random

variable with probability pi = 1 − 2−k
i
). However, in this analysis,

we toss one coin at a time until we get a tail, and we charge 1

to the sum for each head before the tail. In this way we can only

overestimate the sum. Hence,

∑m
i=1 k

i · Xi can be upper bounded

by the number of heads when tossing an unbiased coin until we see

m tails. We use Chernoff bound
2
Pr(X ≤ (1−δ )µ) ≤ e−δ

2µ/2
, where

X is the sum of indicator random variables, and µ = E[X ]. Now let’s

consider the probability that we see more than qkm heads before

m tails. Sincem < km , we analyze the probability to see no more

than km tails, which only increases the probability. In this case, we

make (q + 1)km tosses, so µ = (q + 1)km/2 and δ = (q − 1)/(q + 1).
The probability is therefore no more than:

exp

[
−

(
q − 1

q + 1

)
2

·
(q + 1)km

4

]
= exp

[
−
(q − 1)2km

4(q + 1)

]
= exp

[
−
(q2 − 2q + 1)km

4(q + 1)

]
< exp

[
−
(q2 − 3q − 4)km

4(q + 1)

]
= exp

[
−
(q + 1)(q − 4)km

4(q + 1)

]
= e−(

q
4
−1)km < 2

−(
q
4
−1)km

This proves the lemma by setting q = 4(c + 1). �

Proof of Theorem 4.2. The main challenge is to analyze the

work and span for the distribution cost (Line 6), especially to bound

the cost of restarting the distribution step. There are two reasons

that the call return to Line 3: badly chosen pivots such that some

buckets contain too many elements and become overfull (defined

later), or unlucky random number sequences such that the positions

tried by a particular element are all occupied (for more than c2 logn
consecutive slots). We say a bucket is overfull if it has more than

c1rn
2/3

elements (more than half of the allocated space). From

Lemma 4.1, the probability of this event is no more than n−c1 . We

pessimistically assume that the distribution step restarts once a

bucket is overfull. Therefore, for the latter case with a bad random

number sequence, the allocated array is always no more than half-

full, which is useful in analyzing this case.

We now analyze the additional costs for the restarts. For the

latter case, with probability at most n1−c2 , at least one element

retries more than c2 log2 n times. For the first case, the probability

that any bucket is oversize isn1−c1 . By setting c1 and c2 to be at least
2, the expected work including restarts is asymptotically bounded

by the first round of selecting pivots and distributing the elements.

The work of the first round is bounded by O(n logn) since there
are n elements, each doing a binary search and then each trying

at most O(logn) locations. Therefore the expected work for each

distribution is O(ni logni ), where ni is the size of the input.
The total number of elements across any level of recursion is at

most n since every element goes to at most one bucket. Also the size

of each input reduces to at most kn2/3 from level to level, for some

constant k . The total expected work across each level of recursion

therefore decreases geometrically from level to level. Hence the

total work is asymptotically bounded by the work at the root of the

recursion, which is O(n logn) in expectation.

We now focus on the span, and first analyze the case for the

chain of subproblems for one element. The number of recursive

levels is O(log logn). For each level with subproblem size n′, let
c = c1 = c2 ≥ 2. The probability for a restart is less than 2(n′)1−c ,
and the span cost for a restart is c log

2
n. Treating the number of

restarts in each level as a random variable, we can plug in Lemma 4.3

with k = 1.5 andm = log
1.5 log2 n, and show that the span of this

chain isO(ckm ) = O(c logn)with probability at least 1−2−c logn =

2
https://en.wikipedia.org/wiki/Chernoff_bound.
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1−n−c . Then by taking a union bound for the n chains to all leaves

of the recursion, the probability is at least 1 − n1−c . Combining the

analyses of the work and the span proves the theorem. �

Semisorting. Semisorting reorders an input array of n keys such

that equal keys are contiguous but different keys are not necessarily

in sorted order. It can be used to implement integer sort with a

small key range. Semisorting is a widely-used primitive in parallel

algorithms (e.g., the random permutation algorithm in Section 6).

We note that with the new comparison sorting algorithm with

optimal work and span, we can plug it in the semisorting algorithm

by Gu et al. [65] (Step 3 in Algorithm 1). The rest of the algorithm

is similar to the distribution step but just run for one round, so it

naturally fits in the binary-forking model with no additional cost.

Hence, this randomized algorithm is optimal in the binary-forking

model—O(n) expected work and O(logn) span whp.

5 ORDERED SET-SET OPERATIONS
In this section, we show deterministic algorithms for ordered set-

set operations (Union, Intersection and Difference) based on

weight-balanced binary search trees. In particular we prove the

following theorem.

Theorem 5.1. Union, Intersection and Difference of two
ordered sets of size n andm < n can be solved in O

(
m log

( n
m + 1

) )
work and O(logn) span in the binary-forking model. This is optimal
for comparison-based algorithms.

Our approach is based on a (roughly

√
n-way) divide-and-conquer

algorithm with lazy reconstruction-based rebalancing. At a high-

level, for two sets of size n andm (≤ n), we will split both trees with

d − 1 pivots equally distributed among them + n elements, where

d = Θ(
√
m + n) is a power of 2. The algorithm runs recursively until

the base case whenm′ ≤
√
m′ + n′, wherem′ and n′ are the sizes

of the two input trees in the current recursive call, respectively.

For the base cases, we apply a weaker (work-inefficient) algorithm

discussed in the full version of this paper [24]. The work-inefficient

approach will not affect the overall asymptotic bound because of

the criterion at which the base cases are reached. After that, the

d pieces are connected using the pivots. At this time, rebalancing

may occur, but we do not handle it immediately. Instead, we apply

a final step at the end of the algorithm to recursively rebalance the

output tree based on a reconstruction-based algorithm discussed

in Section 5.4. The high-level idea is that, whenever a subtree has

two children imbalanced by more than some constant factor (i.e.,

one subtree is much larger than the other one), the whole subtree

gets flattened and reconstructed. Otherwise, the subtree can be

rebalanced using a constant number of rotations. An illustration

of our algorithm is shown in Figure 2. Due to page limitation, we

put the algorithm description of base case algorithms, and the cost

analysis of the algorithm in the full version of the paper [24], and

only briefly show some intuition in Section 5.5.

5.1 Background and Related Work
Ordered set-set operations Union, Intersection and Difference

are fundamental algorithmic primitives, and there is a rich literature

of efficient algorithms to implement them. For two ordered sets of

size n andm ≤ n, the lower bound on the number of comparisons

(and hence work or sequential time) is Ω
(
m log

( n
m + 1

) )
[70]. The

lower bound on span in the binary-forking model is Ω(logn). Many

sequential and parallel algorithms match the work bound [5, 21,

31, 38]. In the parallel setting, some algorithms achieve O(logn)
span on the PRAM [80, 81]. However, they are not work-efficient,

requiringO(m logn) work. There is also previous work focusing on
I/O efficiency [15] and concurrent operations [37, 57] for parallel

trees, and parallel data structures supporting batches [4, 64, 78].

Some previous algorithms achieve optimal work and polylog-

arithmic span. Blelloch and Reid-Miller proposed algorithms on

treaps with optimal expected work and O(logn) span whp on an

EREW PRAM with scan operations, which translates to O(log2 n)
span in the binary-forking model. Akhremtsev and Sanders [5]

described an algorithm for array-tree Union based on (a,b)-trees
with optimal work and O(logn) span on a CRCW PRAM. Blelloch

et al. [31] proposed ordered set algorithms for a variety of bal-

ancing schemes [21] with optimal work. All the above-mentioned

algorithms have O(logm logn) span in the binary-forking model.

There have also been parallel bulk operations for self-adjusting data

structures [4]. As far as we know, there is no parallel algorithm

for ordered set functions (Union, Intersection and Difference)

with optimal work and O(logn) span in the binary-forking model.

5.2 Preliminaries
Given a totally ordered universeU , the problem is to take the union,

intersection, and difference of two subsets of U . We assume the

comparison model over the elements of U , and require that the

inputs and outputs can be enumerated in-order with no additional

comparison (i.e., no cheating by being lazy).

We assume the two inputs have sizes m and n ≥ m stored

in weight-balanced binary trees [79] with balancing parameter

α (WBB[α] tree). The weight of a subtree is defined as its size plus

one, such that the weight of a tree node is always the sum of the

weights of its two children. WBB[α] trees maintain the invariant

that for any two subtrees of a node, the weights are within a factor

of α (0 < α ≤ 1 − 1/
√
2) of each other. For the two input trees,

we refer to the tree of size n as the large tree, denoted as TL , and
the tree of size m as the smaller tree, denoted as TS . We present

two definitions as follows. Note that these two definitions are more

general than the definitions of ancestors and descendants, since k
may or may not appear in T .

Definition 1. In a tree T , the upper nodes of an element k ∈ U ,
are all the nodes in T on the search path to k (inclusive).

Definition 2. In a tree T , an element k ∈ U falls into a subtree
Tx ∈ T , if the search path to k in T overlaps the subtree Tx .

Persistent Data Structures. In this section, we use underlying

persistent [55] (and actually purely functional) tree structure, which
uses path-copying to update the weight-balanced trees. This means

that when a change is made to a node v in the tree, a copy of the

path to v is made, leaving the old path and old value of v intact.

Figure 3 shows an example of inserting a new element into the tree.

Such a persistent insertion algorithm also copies nodes that are

involved in rotations since their child pointers change.

In particular, our algorithm will use a persistent Split(T ,k) func-
tion on WBB[α] trees as discussed in [21, 88]. This function splits
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𝑠1 𝑠2 𝑠3 𝑠1 𝑠2𝑠3

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒

𝑇1
𝑇2

𝑺𝟏
𝑺𝟐 𝑺𝟑

𝑺𝟒

𝒔𝟏

𝒔𝟐

𝒔𝟑

Connecting 

Rebalancing

𝑻

𝑻 = 𝒔𝒆𝒕_𝒔𝒆𝒕(𝑻𝟏, 𝑻𝟐)

Dividing

Recursively 
Combining

The Sketch 𝑻′

1. Find 𝑑 − 1 splitters 
𝑠1, 𝑠2, … 𝑠𝑑−1, which are the 𝑏-th, 
2𝑏-th, …, elements globally. In this 

example 𝑏 is 
𝑚+𝑛

4
and 𝑑 is 4*. 

4. Connect combined
trees from recursive calls 
using splitters. Some of 
the splitters (in the 
skeleton) can be tombs 
(grey).

5. Rebalance and fill in 
the tombs.

3. When 𝑚 < 𝑚+ 𝑛 (i.e., 𝑚 < 𝑏), base case algorithms are applied.

*: In general both 𝑏 and 𝑑 are 

Θ 𝑚+ 𝑛 . 𝑏𝑑 = 𝑚+ 𝑛 and 𝑑 is 
a power of 2.

2. Split the two trees using 
the 𝑑 splitters 

The Skeleton of 𝑻′

Figure 2:An illustration of the set-set algorithms.Wefirst split both trees into chunks by the glaobally b-th, 2b-th, ..., elements. Here b = m+n
4

,
but in general b = (n +m)/d should be Θ(

√
m + n) where d = Θ(

√
m + n) is a power of 2. We then recursively sketch each pair of chunks, until

we reach the base case and call the base case algorithms. We then connect the results with pivots, and get the sketch of the result tree. Finally
we rebalance the tree structure and fill in all tombs.

7’

4’

7

4 8

2 9

𝑇

6

𝑇′

𝑇′ = insert(𝑇, 6)

Figure 3: A persistent insertion on a
tree. The algorithm basically copies all
tree nodes on the insertion path, such
that the new (copied) root represents the
output tree, and the input tree is intact
represented by the old root pointer. This
algorithm costs O (logn) time for an in-
put tree of size n.

Algorithm 3: T ← Set_Set(T1,T2), the main algorithm for

ordered set-set operations

Input: Two weight-balanced trees storing two ordered sets.

Output: A weight-balanced tree T storing the

union/intersection/difference of the two input sets.

1 if |T1 | < |T2 | then return Set_Set(T2, T1)
2 T ′ ← Sketch(T1, T2) // Algorithm 4

3 T ← Rebalance(T ′, false) // Algorithm 5

4 return T

tree T by key k into two trees and a bit, such that all keys smaller

than k and larger than k will be stored the two output trees, respec-

tively, and the bit indicates if k ∈ T . Because of path-copying, the
persistent Split returns two output trees and leaves the input tree

intact. This algorithm costs O(logn) work on a tree of size n.

5.3 The Main Algorithms
We first give a high-level description of our algorithms for the

three set-set functions. As mentioned, we denote the larger input

tree as TL , and the smaller input tree as TS . We use two steps,

sketching and rebalancing. The sketching step aims at combining

the elements in the two input trees in-order into one tree, which

is not necessarily balanced. The rebalancing step will apply a top-

down algorithm to rebalance the whole tree by the WBB[α] criteria.
Our sketching algorithm is based on a d-way divide-and-conquer

scheme, where d = Θ(
√
n +m) is a power of 2. It is a recursive

Algorithm 4: T ′ ← Sketch(T1,T2)

Input: Two WBB[α ] trees. T1 is from the original larger tree TL and

T2 is from the original smaller tree TS .
Output: A binary tree sketch T ′ representing the

union/intersection/difference of the two input sets.

1 Let n′ ← |T1 | andm′ ← |T2 |
2 if n′ is 0 then return T2
3 if m′ is 0 then return T1
4 if m′ <

√
n′ +m′ then return Base_Case(T1, T2)

5 d ← 2
⌈log

2

√
m′+n′⌉

6 b ← (m′ + n′)/d
7 Let splitter

0
← −∞ and splitterd ← +∞

8 parallel for i ← 1 to d − 1 do
9 Find splitteri , which is the (i · b)-th element in T1 and T2

(duplicate value counts twice) by dual-binary search

10 Let fi indicate if splitteri is a tomb

11 parallel for i ← 1 to d do
12 Split T1 using splitteri−1 and splitteri , output tree T1,i
13 Split T2 using splitteri−1 and splitteri , output tree T2,i
14 T ′i ← Sketch(T1,i , T2,i )
15 Connect T ′

1
, . . . , T ′d using splitter

1
, . . . , splitterd−1

16 return the result tree

algorithm, for which the two input trees are denoted as T1 and T2.
In particular, T1 contains a subset of TL and T2 contains a subset
of TS . The algorithm will combine the two subsets and return one

result tree. Note that even though T1 ⊆ TL and T2 ⊆ TS , the sizes
of T1 is not necessarily larger than T2. Throughout the recursive
process, we track the following quantities for each tree node v :

(1) The size of the subtree, noted as size(v).
(2) The number of elements originally fromTL , noted as large(v).
(3) The number of elements originally fromTS , noted as small(v).
(4) The number of elements appearing both inTL andTS , noted

as common(v).
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Algorithm 5: ⟨T , e⟩ ← Rebalance(T ′, last)
Input: A tree sketch T ′, and a boolean flag last indicating if the last

element should be extracted.

Output: A valid weight-balanced tree T with no tombs. If last is true,
e is the last element extracted from T ′.

Note :EffectiveSize(T ) returns the number of non-tombs in T .

1 if EffectiveSize(T ′) is 0 then return ⟨∅, ∅⟩
2 if T ′ is obtained by base cases (Line 4 in Algorithm 4 then
3 if last then return ⟨RemoveLast(T ′), Last(T ′)⟩
4 else return ⟨T ′, ∅⟩
5 if no nodes in TS fall into T ′ (by checking small(T ′)) then
6 if last then return ⟨RemoveLast(T ′), Last(T ′)⟩
7 else return ⟨T ′, ∅⟩
8 if last then b ← 1 else b ← 0

9 if EffectiveSize(LeftTree(T ′)) + 1 and
EffectiveSize(RightTree(T ′)) − b + 1 differs by more than a factor

of 2/α then
10 Flatten T ′ and reconstruct it (if last then extract the last element

in T ′)
11 return the new tree

12 if the root of T ′ is a tomb then t ← true else t ← false

13 In parallel:
14 ⟨Tl , el ⟩ = Rebalance(LeftTree(T ′), t )
15 ⟨Tr , er ⟩ = Rebalance(RightTree(T ′), last)
16 if EffectiveSize(RightTree(T ′)) is 0 and last then
17 T ← Tl
18 if the root of T ′ is a tomb then e ← el
19 else e ← T ′.root
20 else
21 e ← er
22 if the root of T ′ is a tomb then T ← Connect(Tl , el , Tr )
23 else T ← Connect(Tl , T ′.root, Tr )
24 return ⟨RebalanceByRoatation(T ), e ⟩

The tree size size(v) is required by theWBB[α] invariant. The other
three are used for TL −TS , TS −TL , and TS ∩TL respectively. The

generic algorithm for all three operations is given in Algorithms 3, 4,

and 5. An illustration is shown in Figure 2. The difference between

the three set-set functions is only in the base cases.

We now present the two steps of the algorithm in details:

(1) Sketching (Algorithm 4). This step generates an output treeT ′

with all elements in the result, although not rebalanced. There

are three subcomponents in this step. Denote n′ = |T1 | and
m′ = |T2 |, which means the number of tree nodes handled by

this recursive call that are originally from the larger and smaller

tree, respectively. As mentioned,m′ can be even larger than n′

in some of the recursive calls.

(a) Base Case.Whenm′ <
√
n′ +m′, the algorithm reaches the

base case. It calls the work-inefficient algorithm to generate a

balanced output tree inO(m′ logn′)work andO(logn′) span,
which are presented in the full version of this paper [24].

(b) Dividing. We then use d − 1 pivots to split both input trees

intod chunks, and denote the partitioning ofT1 asT1, {1, ...,d } ,
and T2 as T2, {1, ...,d } . The d − 1 pivots are the global b-th, 2b-
th, . . . elements in the two trees, where b = (n +m)/d , so
that |T1,i | + |T2,i | for all i have the same value (or differ by

at most 1). All the splits (Line 12-13) can be done in paral-

lel using a persistent split algorithm on weight-balanced

trees [21]. We then apply the algorithm recursively on each

pair of chunks.

Note that not all the pivots should appear in the output tree

of the entire algorithm, depending on the set function. For

example, for Intersection, those pivots that only appear

in one tree will not show up at the end. In this case, in the

Sketch step, we will mark such pivot nodes as tombs, and
filter them out later in the rebalancing step.

(c) Connecting. After the dividing substep and recursive calls,

we have d − 1 pivots (including tombs), and d combined

chunks returned by the recursive calls. In the connecting

substep, we directly connect them regardless of balance. Since

d is a power of 2, the d − 1 pivots will form a full balanced

binary tree structure on the top log
2
d levels, and all the

chunks output from recursive calls will dangle on thed pivots.

This process is shown in Line 15.

The output T ′ of the Sketch step is a binary tree, which may

or may not be balanced. We will call T ′ the sketch of the final

output of the algorithm. We also call the top log
2
d levels in

T ′ consists of pivots the skeleton of T ′. We note that T ′ may

contain tombs, and we will filter them out in the next step.

(2) Rebalancing. We will use a reconstruction-based rebalancing

algorithm to remove the tombs and rebalance the sketch treeT ′

(Algorithm 5, see more details in Section 5.4). This rebalancing

algorithm is stand-alone, and is of independent interest.

5.4 The Rebalancing Algorithm
We now present the reconstruction-based rebalancing algorithm.

A similar idea was also used in [29]. In this paper, we use this

technique to support better parallelism instead of write-efficiency.

We use the effective size of a subtree as the number of elements

in this subtree excluding all tombs. The effective size for a tree

node v can be computed based on size(v), large(v), small(v) and
common(v), depending on the specific set operation. It is used to

determine if two subtrees will be balanced after removing all tombs.

The rebalancing algorithm is given in Algorithm 5. The algo-

rithm recursively settles each level top-down. For a tree node, we

check the effective sizes of its two children and decide if they are

almost-balanced. Here almost-balanced indicates that sizes of the

two subtrees differ by at most a factor of 2/α .3 If not, we flatten
the subtree and re-build it. Otherwise, we recursively settle its two

children, and after that we re-connect the two subtrees back and

rebalance using at most a constant number of rotations.

We also need to filter out tombs, since they should not appear in

the output tree. We do this recursively. If the current subtree root

of T ′ in Algorithm 5 is a tomb, we will need to fill it in using the

last element in its left subtree. We note that the effective size of the

left subtree cannot be 0 (otherwise the algorithm returns at Line

11). To do this, the algorithm will take an extra boolean argument

last denoting if the last element of the result needs to be extracted

(returned as e in the output of Algorithm 5). In this case, if the root

3
Generally speaking, the constant 2 here can be any value, but here we use 2 for

convenience.
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ofT ′ is a tomb, the algorithm simply passes a true value to the left
recursive call, getting the last element to replace the tomb.

For computing the last value (denoted as r ), there are two cases.

First, if the subtree needs rebalancing, then after flattening the

elements into an array, we simply take out the last element in

the array as r and return. Extracting the last element is inlined in

the process of reconstruction (Line 10). Otherwise, we recursively

deal with the two subtrees. If last is true, we also extract the last

element in its right subtree.

Multiple base cases apply to this rebalancing algorithm. If the

effective size of T ′ is 0, the algorithm directly returns an empty

tree and an empty element. The second case is when no element

in TS falls into T ′. This can be determined by looking at small(T ′).
Note that all the chunks in the sketching algorithm is designed to

be the same size. Therefore, in this case, the whole subtree should

be (almost) perfectly balanced, so we directly return it. These base

cases are essential in bounding the work of rebalancing, since we

do not need to traverse the whole subtree for these special cases.

5.5 Base Case Algorithms and Cost Analysis
Due to page limitation, we put the algorithm description of base

case algorithms and the cost analysis of the algorithm in the full

version of this paper [24]. Here we show a very brief description

about the intuition.

Base case algorithms.The base case algorithmsBase_Case(T1,T2)
in Algorithm 4 use an work-inefficient version (O(m′ logn′) work
and O(log(n′ +m′)) span) of the set-set algorithms. These algo-

rithms are applied when m′ <
√
n′ +m′, which guarantees the

total base case cost is O
(
m log

( n
m + 1

) )
. The intuition of the base

case algorithms is to search allm′ elements fromT1 inT2, and based
on the set operation being performed, add (remove) them′ elements

into (from) T2. The same rebalancing algorithm as in Section 5.4 is

applied to guarantee a balanced output tree. Detailed description is

in the full version of this paper [24].

Span.We will show that all base cases, Sketch, and Rebalance

algorithms have span O(log(n +m)). We first prove that the height

of the sketch T ′ is O(log(n +m)) in the full version of this paper

[24]. The span of the base cases is straight-forward. For Sketch,

this bound holds because of the

√
m + n-way divide-and-conquer.

For Rebalance, the span holds because the algorithm settles each

node top-down, and settling each level in the skeleton only costs

a constant span. For the skeleton of the returned tree, if a node

is nearly-balanced, then a constant number of rotations settles it.

Otherwise, flattening and reconstructing a tree of height h takes

O(h) span, which is also equivalent to a constant per level. In all, the
span isO(log(n +m)). We formally prove the span of the algorithm

in the full paper [24].

Work. For work, we will prove that all base cases, Sketch,

and Rebalance algorithms cost work O
(
m log

( n
m + 1

) )
. We first

show that the number of pivots is O(m). Most interestingly, for

Rebalance, the optimality in work lies in the reconstruction-based

algorithm. For all pivots in the skeleton, if it is nearly balanced,

the rebalancing cost is a constant. Therefore the total work is

proportional to the size of the skeleton, which is no more than

O
(
m log

( n
m + 1

) )
.

To show the total reconstruction work, in the sketch T ′, we
mark all upper nodes of the elements in TS as red. There are at

most O
(
m log

( n
m + 1

) )
red nodes in T ′. We will show that the re-

construction work averaged to each red node is a constant. The key

observation is that, rebalancing for a subtree Tx ∈ T
′
happens only

when there aremx ≥ c |Tx | red nodes in Tx , where c is a constant.
This is because the two subtrees of Tx are supposed to have the

same size (

√
n′ +m′) due to the selection of pivots. However there

can be duplicates in Union; also Intersection and Difference

do not keep all input elements in the output. Therefore there can

be imbalanced in size. We will show that the size of either subtree

changes by no more thanmx . Therefore, to make them unbalanced,

mx has to be at least c |Tx | for some constant c . This makes the

average cost per red node to be O(1). Adding the cost of all red

nodes gives the stated optimal work bound. We will formally prove

the work of the algorithm in the full version of this paper [24].

6 RANDOM PERMUTATION
Generating random permutation in parallel is useful in parallel

algorithms, and is used in the list and tree contraction algorithms in

this paper. Hence it has beenwell-studied both theoretically [6, 8, 51,

61–63, 66, 68, 77, 82, 87] and experimentally [49, 67, 87]. To the best

of our knowledge, none of these algorithms can be implemented

in the binary-forking model using linear work and O(logn) span.
We now consider the simple sequential algorithm of Knuth [76]

(Durstenfeld’s [56]) shuffle that iteratively decides each element:

1 Function KnuthShuffle(A, H)
2 A[i] ← i for all i = 0, . . . ,n − 1

3 for i ← n − 1 to 0 do
4 swap(A[i], A[H [i]])

where H [i] is an integer uniformly drawn between 0 and i − 1, and
A[·] is the output random permutation.

A recent paper [87] shows that this sequential iterative algorithm

is readily parallel. The key idea is to apply multiple swaps in parallel

as long as the sets of source and destination locations of the swaps

are disjoint. Figure 4 shows an example, and we can swap location

5 and 2, 7 and 1, 6 and 3 simultaneously in the first round, and the

three swaps do not interfere each other. If the nodes pointing to

the same node are chained together and the self-loops are removed,

we get the dependences of the computation. An example is given

in Figure 4(b). Similar to list contraction, we can execute the swaps

for all leaf nodes and remove them from the tree in a round-based

manner. It can be shown that the modified dependences by chaining

all the roots in the dependence forest (as shown in Figure 4(c))

correspond to a random binary search tree, and the tree depth

is again bounded by O(logn) whp. The span of this algorithm is

therefore O(log2 n) whp in the binary-forking model.

Similar to the new list contraction algorithm discussed in Sec-

tion 3, the computation can be executed asynchronously. Namely,

the swaps in different leaves or subtrees are independent. Therefore,

once the dependence structure is generated, we can apply a similar

approach as in Algorithm 1, but instead of splicing out each node,

we swap the values for the pair of nodes.
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Figure 4: An example when H = [0, 0, 1, 3, 1, 2, 3, 1]. Figure (a) indi-
cates the destinations of the swaps shown byH . The dependences of
the swaps are shown by Figure (b), indicating the order of the swaps.
Figure (c) links the roots of the forest to make it a binary tree.

The remaining question is how to generate the dependence struc-

ture. We do this in two steps. We first semisort all nodes based on

the destination locations (grouping the nodes on all the horizontal

chains in Figure 4(b) or right chains in Figure 4(c)). Then we use an

algorithm that takes quadratic work to sort the nodes within each

group, and connect the nodes as discussed.

Theorem 6.1. The above algorithm generates a random permu-
tation of size n using O(n) expected work and O(logn) span whp in
the binary-forking model.

Proof. Similar to the list contraction algorithm in Section 3, this

algorithm applies the same operations as the random permutation

algorithm in [87], and the swaps obey the same ordering for any

pair of nodes with dependency. The improvement for span is due

to allowing asynchrony for disjoint subtrees.

The cost after the construction of dependence tree is the same

as the list contraction algorithm (Algorithm 1), which is O(n) work
and O(logn) span whp. For constructing the dependence tree, the
semisort step takes O(n) expected work and O(logn) span whp
using the algorithm in Section 4. The quadratic work sorting can

easily be implemented in O(logn) span whp, as in Section 4. We

now analyze the work to sort the chains.

Let a 0/1 random variable Ai, j is 1 if H [i] = j for j < i , and the

probability Pr[Ai, j = 1] is 1/i . Pr[Ai, jAk, j = 1] is then 1/(ik) for
j < i < k since they are independent. The expected overall work

for sorting is (omitting constant in front of Ai, j ).

E[WRandPerm(n)] = E


n∑
j=1

©«
n∑
i=j

Ai, j
ª®¬
2

=E


n∑
j=1

n∑
i=j

A2

i, j

 + 2 · E

n∑
j=1

n∑
i=j+1

n∑
k=i+1

Ai, jAk, j


=

n∑
i=1

i−1∑
j=1

1/i +
n∑

k=1

k−1∑
i=1

i−1∑
j=1

1/ik = O(n)

Combining all results gives the stated theorem. �

7 RANGE MINIMUM QUERIES
Given an array A of size n, the range minimum query (RMQ) takes

two input indices i and j, and reports the minimal value within

this range. RMQ is a fundamental algorithmic building block that is

used to solve other problems such as the lowest common ancestor

(LCA) problem on rooted trees, the longest common prefix (LCP)

problem, and lots of other problems on trees, strings and graphs.

An optimal RMQ algorithm requires linear preprocessing work

and space, and constant query time. It can be achieved by a variety

of algorithms (e.g., [7, 10, 16, 17, 58]). These algorithms are based

on the data structure referred to as the sparse table that can be pre-

computed inO(n logn)work where n is the input size, and constant

RMQ cost. To further improve the work, the high-level idea in these

algorithms is to chunk the array into O(n/logn) groups each with

size O(logn), find the minima of the groups, and only preprocess

the sparse table for the minima. Within each group, these algo-

rithms use different techniques to preprocess in O(logn) work per

group, and support constant query cost within each group. Then

for a range minimum query (i, j), the minimum can be answered by

combining by the query for the sparse table for the whole groups

in this range, and the query for the boundary groups that contain

elements indexed at i and j. These algorithms can be trivially par-

allelized in the PRAM model using O(logn) span (time), but when

translating to the binary-forkingmodel, the span becomesO(log2 n)
in preprocessing the sparse table, and needs to be improved.

For simplicity, we first assume the number of groups n′ is a
power of 2. In the classic sparse table, we denoteTi,k as the minimal

value between group range i and i + 2
k − 1. It can be computed

as min

{
Ti,k−1,Ti+2k−1,k−1

}
. Let k = ⌊log

2
(j − i)⌋. Then for query

from group i to j(> i), we have RMQ(i, j) = min

{
Ti,k ,Tj−2k+1,k

}
.

Directly parallelizing the construction for the sparse table uses

O(log2 n) span—O(logn) levels in total and O(logn) span within

each level. We now consider a variant of the sparse table which is

easier to be generated in the binary-forking model and equivalently

effective.

In the modified version, we similarly have log
2
n′ levels, and in

k-th level we partition the array into n′/2k subarrays each with

size 2
k
. For each subarray, we further partition it to two parts with

equal size, and compute the suffix minima for the left side, and

prefix minima for the right side. We denote T ′i,k as such value with

index i in the k-th level. For each query (i, j), we find the highest

significant bit that is different for i and j ≥ i . If this bit is the k-th

bit from the right, then we have RMQ(i, j) = min

{
T ′i,k ,T

′
j,k

}
. An

illustration is shown in Figure 6.

We now describe how to compute T ′i,k . We note that the compu-

tation for each subarray is independent, and each takes linear work

and logarithmic span proportional to the subarray size [18]. Since

each element corresponds to log
2
n′ computed values, the overall

cost is therefore O(n′ · log
2
n′) = O(n) work and O(logn) span.

Theorem 7.1. The range minimum queries for an array of size n
can be preprocessed in O(n) work and O(logn) span in the binary-
forking model, and each query requires constant cost.

8 TREE CONTRACTION
Parallel algorithms for tree contraction have received considerable

interest because of its ample applications for many tree and graph

applications [13, 73, 77, 85, 87]. There are many variants of parallel

tree contraction. Here we will assume we are contracting rooted

binary trees in which every internal node has exactly two children.
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(c) 𝐿 values in red, computed by
𝐿 𝑣 = min 𝑀 𝑣. 𝑙𝐶 ,𝑀(𝑣. 𝑟𝐶)

(b) Interior nodes with 𝑀 values in 

blue, indicating the subtree maxima
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Figure 5: An example of the tree contraction algorithm. It first generates the priority of the leaf node from a random permutation, as shown
in Figure (a). Then every interior node computes the highest priority label in the subtree, and the computed values are shown as the blue
numbers in Figure (b). Then each interior node v is paired with the leaf node that has the priority which is stored in the child node different
from the priority of v . Taking the root node as an example, the priority 5 is different from the right node which has priority 4, so the root
node is paired with the leaf node with priority 4. The pairing results are shown as the red numbers in Figure (c). In this example, leaf nodes
0, 1, and 2 can be contracted simultaneously, and the contracted tree is shown in Figure (d).

Figure 6: An illustration of the modified sparse table in Section 7.
The range is hierarchically partitioned into logarithmic number of
levels, and the prefix and suffixminima are computed as the arrows
indicate. For each query range shown as the red segment, we can
locate a unique level such that the minimum of the range can be
answered by the suffix and the prefix minima (the shaded range).

Any rooted tree can be reformatted to this shape in linear work

and logarithmic span. We assume the tree T has n leaf nodes (and

n − 1 interior nodes). We use v .lC and v .rC to denote the left and

the right child of a node v , respectively.
List contraction can be considered as a degenerated case of tree

contraction when all interior nodes are chained up. As a result, we

do not know an optimal parallel algorithm for tree contraction with

O(n) work and O(logn) span. Similarly, the difficulty in designing

such an algorithm remains in using no synchronization.

Here we consider parallelizing the sequential iterative algorithm

that “rakes” one leaf node at a time. A rake operation removes a

leaf node and its parent node v , and if v is not the root, it sets the

other child of v to replace v as the child of v’s parent. We assign

each leaf node a priority drawn from a random permutation, so

the priority defines a global ordering of the nodes to be removed,

and eventually only one node with the lowest priority remains. By

maintaining some additional information on the tree nodes, we can

apply a variety of tree operations such as expression evaluation,

roofix or leafix, which are useful in many applications [85].

Similar to list contraction, we want to avoid applying two rake

operations simultaneously such that one of the interior nodes is

the parent of the other. Beyond that, we can rake a set of leaf nodes

in parallel. For instance, in Figure 5(a), we can contract leaf nodes

0, 1, 2, and their parents together, as shown in Figure 5(d).

To decide the nodes that can be processed together, we define

M(v) of each interior nodev as the lowest priority (maximum value)

of any of the leaves in its subtree (blue numbers in Figure 5(b)).

Based on M(·), we further define L(v) = min{M(v .lC,v .rC)} (red

numbers in Figure 5(c)) if v is an interior node, or its own priority

if v is a leaf node. L(v) defines a one-to-one mapping between the

interior nodes and the leaf nodes (except for one leaf node that

stays at the end), and L(v) = u indicates that v will be raked by the

leaf node u. Based on the labeling, the parallel algorithm in [87]

checks every node v , and it can be raked immediately if v’ parent
has an L value smaller than those ofv’s sibling andv’s grandparent
(if it exists). Otherwise the node waits for the next round. If we

rake all possible leaf nodes in a round-based manner, the number

of rounds is O(logn) whp, leading to an O(log2 n) span whp in the

binary-forking model.

Assuming L(·) has already been computed, we can change the

round-based algorithm to an asynchronous divide-and-conquer

algorithm similar to the list contraction algorithm (Algorithm 1) in

Section 3. The only difference is when setting the flags, since now
there can be 1, 2, or 3 directions that may activate a postponed node

(in list contraction it is either 1 or 2, depending on the initialization

of the flag array). This however, can be easily decided by checking

the number of neighbor interior nodes. Similarly, the last thread

corresponding to the contraction of a neighbor node that reaches

a postponed node activates it and apply the rake operation. Since

the longest possible path has length O(logn), the algorithm for the

contraction phase uses O(n) work, and O(logn) span whp.
The last challenge is computing L(·). As shown in Figure 5(b),

computingM(·) is a leafix operation on the tree (analogy to prefix

minima but from the leaves to the root), which can be solved by the

standard range minimum queries as discussed in Section 7, based

on Euler-tour of the input tree. In Section 3, we discussed the list

ranking algorithm to generate the Euler tour. As a result, computing

M(·) and L(·) uses O(n) work and O(logn) span whp. In summary,

we have the following theorem.

Theorem 8.1. Tree contraction uses O(n) work and O(logn) span
whp in the binary-forking model.
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