Reduced-Rank Hidden Markov Models

Sajid M. Siddiqi
Byron Boots
Geoffrey J. Gordon

Select Lab

Carnegie Mellon University
y_{2}
y_{3}

Sequence of observations: $Y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\tau}\end{array}\right]$

Assume a hidden variable that explains the observations: $X=\left\lfloor\begin{array}{lll}x_{1} & x_{2} & x_{3} \ldots x_{\tau}\end{array}\right\rfloor$

Sequence of observations: $Y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\tau}\end{array}\right]$

Assume a hidden variable that explains the observations: $X=\left\lfloor\begin{array}{lll}x_{1} & x_{2} & x_{3} \ldots x_{\tau}\end{array}\right\rfloor$

Sequence of observations: $Y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\tau}\end{array}\right]$

Hidden variable is discrete and Markovian

sence Iearn act
 Hidden Markov Models (HMMs)

Assume a hidden variable that explains the observations: $X=\left\lfloor\begin{array}{llll}x_{1} & x_{2} & x_{3} & \ldots\end{array} x_{\tau}\right\rfloor$

Sequence of observations: $Y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\tau}\end{array}\right]$

Hidden variable is discrete and Markovian

Hidden Markov Models (HMMs)

Assume a hidden variable that explains the observations: $X=\left\lfloor\begin{array}{lll}x_{1} & x_{2} & x_{3} \ldots\end{array} \ldots x_{\tau}\right\rfloor$

Sequence of observations: $Y=\left[\begin{array}{lllll}y_{1} & y_{2} & y_{3} & \ldots & y_{\tau}\end{array}\right]$

Hidden variable is discrete and Markovian

Popular for modeling:
biological sequences, speech, etc.

Previous Work

Would like to learn a HMM from sequences of observations

Previous Work

Would like to learn a HMM from sequences of observations

A popular approach is Expectation-Maximization (Baum-Welch)

- Tries to find a maximum-likelihood solution
- Suffers from local maxima
- Impractical (data \& computation) for large hidden state spaces

Previous Work

Would like to learn a HMM from sequences of observations
A popular approach is Expectation-Maximization (Baum-Welch)

- Tries to find a maximum-likelihood solution
- Suffers from local maxima
- Impractical (data \& computation) for large hidden state spaces

Many attempts to reduce local maxima, e.g.

> STACS - [Siddiqi,Gordon,Moore 2008]
> Best-first Model Merging - [Stolcke \& Omohundro 1994]

These techniques have not eliminated the problem

Previous Work

An interesting alternative approach:
[Hsu, Kakade, Zhang, 2008]

- A closed-form spectral algorithm for identifying HMMs
- Consistent, finite sample bounds
- No local optima, but small loss in statistical efficiency

Today

This work:

- Generalize spectral learning algorithm to larger class of models
- Supply tighter finite sample bounds
- Apply algorithm to high dimensional data

Overview

In particular we introduce a new model:

Overview

In particular we introduce a new model:

Overview

In particular we introduce a new model:

Overview

In particular we introduce a new model:

Outline

1. Preliminaries

2. Hidden Markov Models
3. Reduced-Rank Hidden Markov Models
4. Learning RR-HMMs \& Bounds
5. Empirical Results

HMM Definition

m : number of discrete states
n : number of discrete observations
$T: m \times m$ column-stochastic transition matrix
$T_{i, j}=\operatorname{Pr}\left\lfloor x_{t+1}=i \mid x_{t}=j\right\rfloor$
$O: n \times m$ column stochastic observation matrix
$O_{i, j}=\operatorname{Pr}\left\lfloor y_{t}=i \mid x_{t}=j\right\rfloor$

$\pi: m \times 1$ prior distribution over states $\pi_{i}=\operatorname{Pr}\left\lfloor x_{1}=i\right\rfloor$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]
For each $y \in\{1, \ldots, n\}$, define an $m \times m$ matrix

$$
\left.\left\lfloor A_{y}\right\rfloor_{i, j} \equiv \operatorname{Pr}\left\lfloor x_{t+1}=i \wedge y_{t}=y \mid x_{t}\right\rfloor\right\rfloor
$$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]
For each $y \in\{1, \ldots, n\}$, define an $m \times m$ matrix

$$
\begin{aligned}
\left\lfloor A_{y}\right\rfloor_{i, j} & \left.\equiv \operatorname{Pr}\left\lfloor x_{t+1}=i \wedge y_{t}=y \mid x_{t}\right\rfloor\right\rfloor \\
A_{y} & =T \operatorname{diag}\left(O_{y, \cdot}\right)
\end{aligned}
$$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]
For each $y \in\{1, \ldots, n\}$, define an $m \times m$ matrix

$$
\left.\left\lfloor A_{y}\right\rfloor_{i, j} \equiv \operatorname{Pr}\left\lfloor x_{t+1}=i \wedge y_{t}=y \mid x_{t}\right\rfloor\right\rfloor
$$

$$
A_{y}=\operatorname{Pr}\left\lfloor x_{t+1} \mid x_{t}\right\rfloor \operatorname{Pr}|y| x_{t}
$$

Inference in HMMs

$$
\operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right]
$$

Inference in HMMs

$$
\begin{gathered}
\operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right] \\
\sum_{x_{\tau+1}} \operatorname{Pr}\left[x_{\tau+1} \mid x_{\tau}\right] \operatorname{Pr}\left[y_{\tau} \mid x_{\tau}\right] \ldots \sum_{x_{3}} \operatorname{Pr}\left[x_{3} \mid x_{2}\right] \operatorname{Pr}\left[y_{2} \mid x_{2}\right] \sum_{x_{2}} \operatorname{Pr}\left[x_{2} \mid x_{1}\right] \operatorname{Pr}\left[y_{1} \mid x_{1}\right] \operatorname{Pr}\left[x_{1}\right]
\end{gathered}
$$

Inference in HMMs

$$
=\sum_{x_{\tau+1}} \underbrace{\operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right]}
$$

seme , idicin
 Inference in HMMs

$$
=\sum_{x_{\tau+1}} \operatorname{Pr} \operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right]
$$

Inference in HMMs

$$
=\sum_{x_{\tau+1}} \underbrace{\operatorname{Pr}\left[x_{\tau+1} \mid x_{\tau}\right] \|} \operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right]
$$

seme
 aid
 Inference in HMMs

$$
\begin{aligned}
& \operatorname{Pr}\left[y_{1}, y_{2}, \ldots, y_{\tau}\right] \\
& =\sum_{x_{\tau+1}} \operatorname{Pr}\left[x_{\tau+1} \mid x_{\tau}\right]_{\|} \operatorname{Pr}\left[y_{\tau} \mid x_{\tau}\right]_{]} \ldots \sum_{x_{3}} \underbrace{\operatorname{Pr}\left[x_{3} \mid x_{2}\right]_{\|} \operatorname{Pr}\left[y_{2} \mid x_{2}\right]_{J} \sum_{x_{2}} \operatorname{Pr}\left[x_{2} \mid x_{1}\right]_{\|} \operatorname{Pr}\left[y_{1} \mid x_{1}\right]_{]} \operatorname{Pr}\left[x_{1}\right]}
\end{aligned}
$$

Inference in an HMM is: $O\left(\tau m^{2}\right)$

Problems with HMMs

- HMMs that model smoothly evolving systems require a very large number of discrete states
- Inference and learning for such models is hard

Outline

1. Preliminaries

2. Hidden Markov Models
3. Reduced-Rank Hidden Markov Models
4. Learning RR-HMMs \& Bounds
5. Empirical Results

Reduced-Rank Hidden Markov Models

Idea: Even if we have a very large number of discrete states, sometimes distribution lies in a real-valued subspace

We can take advantage of this fact to perform efficient inference and learning

Reduced-Rank Hidden Markov Models

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM)

sense
 Iearn act
 Reduced-Rank Hidden Markov Models

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) with a low-rank transition matrix

Parameters:
T : column-stochastic with factors R and S

Reduced-Rank Hidden Markov Models

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) with a low-rank transition matrix

Parameters:
T : column-stochastic with factors R and S
O : column-stochastic $n \times m$ observation matrix
π : prior distribution over states with factors R and π_{l}

Inference in RR-HMMs

$$
\begin{gathered}
\operatorname{Pr}\left\lfloor y_{1}, y_{2}, y_{3}, \ldots, y_{\tau}\right\rfloor \\
\text { can be expressed as } \\
1_{m}^{\top} T \operatorname{diag}\left(O_{y_{\tau}, \cdot}\right) \ldots T \operatorname{diag}\left(O_{y_{3},}\right) T \operatorname{diag}\left(O_{y_{2}, .}\right) T \operatorname{diag}\left(O_{y_{1}, .}\right) \pi
\end{gathered}
$$

Inference in RR-HMMs

$\operatorname{Pr}\left[y_{1}, y_{2}, y_{3}, \ldots, y_{\tau}\right\rfloor$
can be expressed as

Inference in RR-HMMs

$$
\begin{gathered}
\operatorname{Pr}\left\lfloor y_{1}, y_{2}, y_{3}, \ldots, y_{\tau}\right\rfloor \\
\text { can be expressed as }
\end{gathered}
$$

Can group terms into $k \times k$ observable operators W_{y}

$$
\begin{gathered}
W_{y} \equiv S \operatorname{diag}\left(O_{y, .}\right) R \\
\left.\right|_{k \times k} ^{W_{y}}=\frac{S}{k \times m} O_{y,} \square_{m \times k}
\end{gathered}
$$

Inference in RR-HMMs

$$
\begin{gathered}
\operatorname{Pr}\left\lfloor y_{1}, y_{2}, y_{3}, \ldots, y_{\tau}\right\rfloor \\
\text { can be expressed as }
\end{gathered}
$$

Inference in RR-HMMs

$$
\begin{gathered}
\operatorname{Pr}\left\lfloor y_{1}, y_{2}, y_{3}, \ldots, y_{\tau}\right\rfloor \\
\text { can be expressed as }
\end{gathered}
$$

Inference in a RR-HMM is only: $O\left(\tau k^{2}\right)$

Outline

1. Preliminaries

2. Hidden Markov Models
3. Reduced-Rank Hidden Markov Models
4. Learning RR-HMMs \& Bounds
5. Empirical Results

Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \left.\equiv \operatorname{Pr} \mid y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

sence
 Iearn act
 Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1} & =O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1} & =O A_{y} T \operatorname{diag}(\pi) O^{\top}
\end{aligned}
$$

sence
 Iearn act
 Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1}= & O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1}= & \xlongequal{A_{y}} T \operatorname{diag}(\pi) O^{\top} \\
& A_{y} \equiv T \operatorname{diag}\left(O_{y}, \cdot\right)
\end{aligned}
$$

sence
 Iearn act
 Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1}= & O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1}= & \xlongequal{A_{y}} T \operatorname{diag}(\pi) O^{\top} \\
& A_{y} \equiv T \operatorname{diag}\left(O_{y}, \cdot\right)
\end{aligned}
$$

3. Pick a U s.t. $\left(U^{\top} O\right)$ is invertible

seino
 Iearn act
 Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1}= & O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1}= & O A_{y} T \operatorname{diag}(\pi) O^{\top} \\
& \\
& A_{y} \equiv T \operatorname{diag}\left(O_{y}, \cdot\right)
\end{aligned}
$$

3. Pick a U s.t. $\left(U^{\top} O\right)$ is invertible

Then: $B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=\left(U^{\top} O\right) A_{y}\left(U^{\top} O\right)^{-1}$

senco
 Iearn act
 Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1}= & O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1}= & O A_{y} T \operatorname{diag}(\pi) O^{\top} \\
& \\
& A_{y} \equiv T \operatorname{diag}\left(O_{y}, \cdot\right)
\end{aligned}
$$

3. Pick a U s.t. $\left(U^{\top} O\right)$ is invertible
similarity transform of the true HMM
Then: $\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\mathrm{\top}} O A_{y} U^{\top} O\right)^{-1}$ parameter A_{y}

Spectral Learning for HMM Parameters

[Hsu, Kakade, Zhang, 2008]
Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$
\begin{aligned}
\left\lfloor P_{2,1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{2}=i, y_{1}=j\right\rfloor \\
\left\lfloor P_{3, y, 1}\right\rfloor_{i, j} & \equiv \operatorname{Pr}\left\lfloor y_{3}=i, y_{2}=y, y_{1}=j\right\rfloor
\end{aligned}
$$

2. Matrices factor into HMM parameters

$$
\begin{aligned}
P_{2,1}= & O T \operatorname{diag}(\pi) O^{\top} \\
P_{3, y, 1}= & O A_{y} T \operatorname{diag}(\pi) O^{\top} \\
& \\
& A_{y} \equiv T \operatorname{diag}\left(O_{y}, \cdot\right)
\end{aligned}
$$

3. Pick a U s.t. $\left(U^{\top} O\right)$ is invertible
similarity transform of the true HMM
Then: $\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\mathrm{\top}} O A_{y} U^{\top} O\right)^{-1}$ parameter A_{y} other parameters can be recovered up to a linear transform as well

sense
 learn
 act

 Spectral Learning for HMM Parameters

 Spectral Learning for HMM Parameters}
[Hsu, Kakade, Zhang, 2008]

The algorithm:

1. Look at triples of observations $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ in the data estimate frequencies: $\widehat{P}_{2,1}$ and $\widehat{P}_{3, y, 1}$
2. Compute SVD of $\widehat{P}_{2,1}$ to find a matrix of the top m singular vectors \widehat{U}
3. Find observable operators $\widehat{B}_{y}=\left(\widehat{U}^{\top} \widehat{P}_{3, y, 1}\right)\left(\widehat{U}^{\top} \widehat{P}_{2,1}\right)^{\dagger}$

Spectral Learning for HMM Parameters

Pros

Transformed parameters allow HMM inference!
(other terms cancel)

Spectral Learning for HMM Parameters

Pros

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

senise
 Ieain
 act

 Spectral Learning for HMM Parameters

 Spectral Learning for HMM Parameters Pros and Cons

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:

senise
 Ieain act

 Spectral Learning for HMM Parameters

 Spectral Learning for HMM Parameters

 Pros and Cons

 Pros and Cons}

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:
Inference in large HMMs is still expensive (data and computation)

senco
 learn act

 Spectral Learning for HMM Parameters

 Spectral Learning for HMM Parameters

 Pros and Cons

 Pros and Cons}

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:
Inference in large HMMs is still expensive (data and computation)

Error bounds vacuous if T is low rank.

Spectral Learning for RR-HMMs

The rank of $P_{2,1}$ and $P_{3, y, 1}$ depends on R and S

$$
\begin{aligned}
P_{2,1} & =O T \operatorname{diag}(\pi) O^{\top} \\
& =O R S \operatorname{diag}(\pi) O^{\top}
\end{aligned}
$$

Spectral Learning for RR-HMMs

The rank of $P_{2,1}$ and $P_{3, y, 1}$ depends on R and S

$$
\begin{aligned}
P_{2,1} & =O T \operatorname{diag}(\pi) O^{\top} \\
& =O R S \operatorname{diag}(\pi) O^{\top}
\end{aligned}
$$

Spectral Learning for RR-HMMs

The rank of $P_{2,1}$ and $P_{3, y, 1}$ depends on R and S

$$
\begin{aligned}
P_{2,1} & =O T \operatorname{diag}(\pi) O^{\top} \\
& =O R S \operatorname{diag}(\pi) O^{\top}
\end{aligned}
$$

Thin SVD $U V^{\top}$ splits $P_{2,1}$ "inside" $R S$

Spectral Learning for RR-HMMs

We can show that:

$$
B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=\left(U^{\top} O R\right) W_{y}\left(U^{\top} O R\right)^{-1}
$$

Spectral Learning for RR-HMMs

We can show that:

$$
\left.\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\top} O R\right) W_{y} U^{\top} O R\right)^{-1}
$$

This is a similarity transform of the RR-HMM parameter W_{y}
Can estimate other parameters up to a linear transform as well

Spectral Learning for RR-HMMs

We can show that:

$$
\left.\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\top} O R\right) W_{y} U^{\top} O R\right)^{-1}
$$

This is a similarity transform of the RR-HMM parameter W_{y} Can estimate other parameters up to a linear transform as well

Parameters allow accurate RR-HMM inference (other terms cancel)

Spectral Learning for RR-HMMs

We can show that:

$$
\left.\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\top} O R\right) W_{y} U^{\top} O R\right)^{-1}
$$

This is a similarity transform of the RR-HMM parameter W_{y}
Can estimate other parameters up to a linear transform as well

Parameters allow accurate RR-HMM inference (other terms cancel)

Learning and inference are independent of m

Spectral Learning for RR-HMMs

We can show that:

$$
\left.\left.B_{y} \equiv\left(U^{\top} P_{3, y, 1}\right)\left(U^{\top} P_{2,1}\right)^{\dagger}=U^{\top} O R\right) W_{y} U^{\top} O R\right)^{-1}
$$

This is a similarity transform of the RR-HMM parameter W_{y} Can estimate other parameters up to a linear transform as well

Parameters allow accurate RR-HMM inference (other terms cancel)

Learning and inference are independent of m

A k-dimensional RR-HMM is considerably more expressive than a k-state HMM (example in paper, and see experiments below)

senco
 Iearn
 act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

sense
 learn
 act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq \epsilon \quad \text { w.p. } \quad 1-\eta
$$

senise
 Iearn
 act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq \epsilon \quad \text { w.p. } \quad 1-\eta
$$

N must be larger than a term that is

$$
\propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations }
$$

senise
 learn act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq \epsilon \quad \text { w.p. } \quad 1-\eta
$$

N must be larger than a term that is

$$
\begin{aligned}
& \propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations } \\
\text { as well as } & \propto \frac{1}{\epsilon^{2}}, \frac{1}{\sigma_{k}(O R)^{2}}, \frac{1}{\sigma_{k}\left(P_{2,1}\right)^{4}}, \log \left(\frac{1}{\eta}\right)
\end{aligned}
$$

sence learn act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq € \text { w.p. } 1-\eta
$$

N must be larger than a term that is

$$
\propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations }
$$

as well as $\propto\left(\frac{1}{\epsilon^{2}}\right) \frac{1}{\sigma_{k}(O R)^{2}}, \frac{1}{\sigma_{k}\left(P_{2,1}\right)^{4}}, \log \left(\frac{1}{\eta}\right)$

sense learn act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq € \text { w.p. } 1-\eta
$$

N must be larger than a term that is

$$
\propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations }
$$

as well as $\propto \frac{1}{\epsilon^{2}} \frac{1}{\sigma_{k}(O R)^{2}}, \frac{1}{\sigma_{k}\left(P_{2,1}\right)^{4}}, \log \left(\frac{1}{\eta}\right)$

[^0]
sence
 Iearn act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\begin{aligned}
& \sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq \epsilon \text { w.p. } \quad 1-\eta \\
& \text { rger than a term thatis }
\end{aligned}
$$

N must be larger than a term that is

$$
\propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations }
$$

as well as

sense
 5hx act
 Bound on Error in Probability Estimates

N training sequences of length 3 each
Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$
\sum_{y_{1}, \ldots, y_{t}}\left|\operatorname{Pr}\left[y_{1}, \ldots, y_{t}\right]-\widehat{\operatorname{Pr}}\left[y_{1}, \ldots y_{t}\right]\right| \leq \epsilon \text { w.p. } \quad 1 /-\eta
$$

N must be larger than a term that is

$$
\propto(\# \text { timesteps })^{2}, \text { rank } k, \# \text { observations }
$$

as well as

Proof Intuition

1. Bound \# samples needed to estimate $P_{2,1}$ and $P_{3, y, 1}$ using standard tail inequality bounds
2. Bound resulting parameter estimation error by analyzing how errors in $P_{2,1}$ affect its SVD
3. Propagate bound to error in joint probabilities computed using estimated parameters

Additional Extensions

See paper for how to:

1. Model systems that require sequences of observations to disambiguate state
2. Use Kernel Density Estimation for continuous observations
3. Use features computed from observations

Outline

\author{

1. Preliminaries
 2. Hidden Markov Models
 3. Reduced-Rank Hidden Markov Models
 4. Learning RR-HMMs \& Bounds
 5. Empirical Results
}

Experimental Results

Statistical Consistency:

See paper for an assessment of consistency on a toy problem

Clock Pendulum Video Texture:
Learning a smoothly evolving system

Mobile Robot Vision:
Assess long range prediction accuracy

Experimental Results Video Textures

given a short video

Learn 3 models: HMM, LDS, RR-HMM

constrain dimensionality (10) to test expressivity

Experimental Results

 Video Texturesgiven a short video

Learn 3 models: HMM, LDS, RR-HMM
constrain dimensionality (10) to test expressivity

Experimental Results Video Textures

Simulations from models trained on clock data

Experimental Results Video Textures

Simulations from models trained on clock data

HMM

LDS

RR-HMM

Experimental Results Video Textures

Simulations from models trained on clock data

HMM

LDS

RR-HMM

Experimental Results Video Textures

Simulations from models trained on clock data

HMM

LDS

RR-HMM

Experimental Results
 Mobile Robot Vision

Experimental Results
 Mobile Robot Vision

Conclusion

Summary:

- Introduced the RR-HMM: a model with many of the benefits of a large-state-space HMM, but without the associated inefficiency during inference and learning
- Supplied a spectral learning algorithm and finite sample bounds for the RR-HMM
- Successfully applied the RR-HMM to high dimensional data

Conclusion

Summary:

- Introduced the RR-HMM: a model with many of the benefits of a large-state-space HMM, but without the associated inefficiency during inference and learning.
- Supplied a spectral learning algorithm and finite sample bounds for the RR-HMM
- Successfully applied the RR-HMM to high dimensional data

Related Work:

- Hilbert Space Embeddings of Hidden Markov Models (ICML-2010)
[L. Song, B. Boots, S. M. Siddiqi, G. Gordon, A. Smola]
- Closing the Learning-Planning Loop with Predictive State Representations (RSS-2010) [B. Boots, S. M. Siddiqi, G. Gordon]

Thank you!
sence
let
sence
let

[^0]: large if observations are uninformative

