Reduced-Rank Hidden Markov Models

Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon

Select Lab

Carnegie Mellon University

Sequence of observations: $Y = [y_1 \ y_2 \ y_3 \ \dots \ y_{\tau}]$

Assume a hidden variable that explains the observations: $X = [x_1 \ x_2 \ x_3 \ \dots \ x_{\tau}]$

Sequence of observations: $Y = [y_1 \ y_2 \ y_3 \ \dots \ y_{\tau}]$

Assume a hidden variable that explains the observations: $X = [x_1 \ x_2 \ x_3 \ \dots \ x_{\tau}]$

Sequence of observations: $Y = [y_1 \ y_2 \ y_3 \ \dots \ y_{\tau}]$

Hidden variable is discrete and Markovian

Hidden Markov Models (HMMs)

Assume a hidden variable that explains the observations: $X = [x_1 \ x_2 \ x_3 \ \dots \ x_{\tau}]$

Sequence of observations: $Y = [y_1 \ y_2 \ y_3 \ \dots \ y_{\tau}]$

Hidden variable is discrete and Markovian

Hidden Markov Models (HMMs)

Assume a hidden variable that explains the observations: $X = [x_1 \ x_2 \ x_3 \ \dots \ x_{\tau}]$

Sequence of observations: $Y = [y_1 \ y_2 \ y_3 \ \dots \ y_{\tau}]$

Hidden variable is discrete and Markovian

Popular for modeling: biological sequences, speech, etc.

.

1

Previous Work

Would like to learn a HMM from sequences of observations

Previous Work

Would like to learn a HMM from sequences of observations

A popular approach is Expectation-Maximization (Baum-Welch)

- Tries to find a maximum-likelihood solution
- Suffers from local maxima
- Impractical (data & computation) for large hidden state spaces

Previous Work

Would like to learn a HMM from sequences of observations

A popular approach is Expectation-Maximization (Baum-Welch)

- Tries to find a maximum-likelihood solution
- Suffers from local maxima
- Impractical (data & computation) for large hidden state spaces

Many attempts to reduce local maxima, e.g.

STACS - [Siddiqi,Gordon,Moore 2008] Best-first Model Merging - [Stolcke & Omohundro 1994]

These techniques have not eliminated the problem

Previous Work

An interesting alternative approach:

[Hsu, Kakade, Zhang, 2008]

- A closed-form spectral algorithm for identifying HMMs
- Consistent, finite sample bounds
- No local optima, but small loss in statistical efficiency

Today

This work:

- Generalize spectral learning algorithm to larger class of models
- Supply tighter finite sample bounds
- Apply algorithm to high dimensional data

In particular we introduce a **new model**:

In particular we introduce a **new model**:

Hidden Markov Models

consistent learning with finite sample bounds

Outline

1. Preliminaries

2. Hidden Markov Models

3. Reduced-Rank Hidden Markov Models

4. Learning RR-HMMs & Bounds

5. Empirical Results

HMM Definition

m: number of discrete states*n* : number of discrete observations

 $T: m \times m \text{ column-stochastic transition matrix}$ $T_{i,j} = \Pr \left[x_{t+1} = i \, | \, x_t = j \right]$

 $O:n \times m$ column stochastic observation matrix $O_{i,j} = \Pr \left[y_t = i \, | \, x_t = j \right]$

 π : $m \times 1$ prior distribution over states $\pi_i = \Pr[x_1 = i]$

 π

 $m \times 1$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]

For each $y \in \{1, \ldots, n\}$, define an $m \times m$ matrix

 $[A_y]_{i,j} \equiv \Pr[x_{t+1} = i \land y_t = y \,|\, x_t]]$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]

For each $y \in \{1, \ldots, n\}$, define an $m \times m$ matrix

$$[A_y]_{i,j} \equiv \Pr[x_{t+1} = i \land y_t = y \mid x_t]]$$
$$A_y = T \operatorname{diag}(O_{y,\cdot})$$

Observable Operators

[Schützenberger, 1961; Jaeger, 2000]

For each $y \in \{1, \ldots, n\}$, define an $m \times m$ matrix

$$\begin{split} [A_y]_{i,j} &\equiv \Pr[x_{t+1} = i \land y_t = y \,|\, x_t]] \\ A_y &= T \text{diag}(O_{y,\cdot}) \\ \text{transition probability} \qquad \text{observation likelihood} \\ A_y &= \Pr[x_{t+1} \,|\, x_t] \Pr[y \,|\, x_t] \end{split}$$

 $\Pr[y_1, y_2, \ldots, y_\tau]$

 $\Pr[y_1, y_2, \dots, y_{\tau}]$

$= \sum_{x_{\tau+1}} \Pr[x_{\tau+1} \mid x_{\tau}] \Pr[y_{\tau} \mid x_{\tau}] \dots \sum_{x_3} \Pr[x_3 \mid x_2] \Pr[y_2 \mid x_2] \sum_{x_2} \Pr[x_2 \mid x_1] \Pr[y_1 \mid x_1] \Pr[x_1]$

Problems with HMMs

• HMMs that model smoothly evolving systems require a very large number of discrete states

• Inference and learning for such models is hard

Outline

1. Preliminaries

2. Hidden Markov Models

3. Reduced-Rank Hidden Markov Models

4. Learning RR-HMMs & Bounds

5. Empirical Results

Idea: Even if we have a very large number of discrete states, sometimes distribution lies in a real-valued subspace

We can take advantage of this fact to perform efficient inference and learning

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM)

Reduced-Rank Hidden Markov Models

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) with a low-rank transition matrix

Parameters:

T: column-stochastic with factors R and S

Reduced-Rank Hidden Markov Models

We formulate a Reduced-Rank Hidden Markov Model (RR-HMM) with a low-rank transition matrix

Parameters:

T: column-stochastic with factors R and S

O: column-stochastic $n \times m$ observation matrix

 π : prior distribution over states with factors R and π_l

 $\Pr[y_1, y_2, y_3, \ldots, y_{\tau}]$

can be expressed as

 $1_m^{\mathsf{T}} T \operatorname{diag}(O_{y_1,\cdot}) \dots T \operatorname{diag}(O_{y_3,\cdot}) T \operatorname{diag}(O_{y_2,\cdot}) T \operatorname{diag}(O_{y_1,\cdot}) \pi$

 $\Pr[y_1, y_2, y_3, \dots, y_{\tau}]$ can be expressed as $1_m^{\mathsf{T}} T \operatorname{diag}(O_{y_{\tau}, \cdot}) \dots T \operatorname{diag}(O_{y_3, \cdot}) T \operatorname{diag}(O_{y_2, \cdot}) T \operatorname{diag}(O_{y_1, \cdot}) \pi$ $1_m^{\mathsf{T}} RS \operatorname{diag}(O_{y_{\tau}, \cdot}) \dots RS \operatorname{diag}(O_{y_3, \cdot}) RS \operatorname{diag}(O_{y_2, \cdot}) RS \operatorname{diag}(O_{y_1, \cdot}) R\pi_l$

sense learn

act

$$\Pr[y_1, y_2, y_3, \dots, y_{\tau}]$$
can be expressed as
$$1_m^{\mathsf{T}} T \operatorname{diag}(O_{y_{\tau}, \cdot}) \dots T \operatorname{diag}(O_{y_3, \cdot}) T \operatorname{diag}(O_{y_2, \cdot}) T \operatorname{diag}(O_{y_1, \cdot}) \pi$$

$$1_m^{\mathsf{T}} RS \operatorname{diag}(O_{y_{\tau}, \cdot}) \dots RS \operatorname{diag}(O_{y_3, \cdot}) RS \operatorname{diag}(O_{y_2, \cdot}) RS \operatorname{diag}(O_{y_1, \cdot}) R\pi_{t}$$

Can group terms into $k \times k$ observable operators W_y

$$W_y \equiv S \operatorname{diag}(O_{y,\cdot})R$$

$$\begin{bmatrix}
 W_y \\
 k \times k
 \end{bmatrix} =
 \begin{bmatrix}
 S \\
 k \times m
 \end{bmatrix}
 \begin{bmatrix}
 O_{y, \cdot} \\
 m \times m
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 m \times m
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 m \times k
 \end{bmatrix}$$

sense

learn

act

 $\Pr[y_1, y_2, y_3, \dots, y_{\tau}]$ can be expressed as $1_m^{\mathsf{T}} \operatorname{Tdiag}(O_{y_{\tau}, \cdot}) \dots T\operatorname{diag}(O_{y_3, \cdot}) T\operatorname{diag}(O_{y_2, \cdot}) T\operatorname{diag}(O_{y_1, \cdot}) \pi$ $1_m^{\mathsf{T}} RS\operatorname{diag}(O_{y_{\tau}, \cdot}) \dots RS\operatorname{diag}(O_{y_3, \cdot}) RS\operatorname{diag}(O_{y_2, \cdot}) RS\operatorname{diag}(O_{y_1, \cdot}) R\pi_l$ $\rho^{\mathsf{T}} W_{y_{\tau}} \dots W_{y_3} W_{y_2} W_{y_1} \pi_l$

where

 $W_y \equiv S \operatorname{diag}(O_{y,\cdot})R$
Inference in RR-HMMs

sense

learn

act

where

 $W_y \equiv S \operatorname{diag}(O_{y,\cdot})R$

Inference in a RR-HMM is only: $O(\tau k^2)$

Outline

1. Preliminaries

2. Hidden Markov Models

3. Reduced-Rank Hidden Markov Models

4. Learning RR-HMMs & Bounds

5. Empirical Results

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters $P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$ $P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters

$$P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$A_y \equiv T \operatorname{diag}(O_y, \cdot)$$

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters $P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$

$$P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$$

$$A_y \equiv T \operatorname{diag}(O_y, \cdot)$$

3. Pick a U s.t. $(U^{\mathsf{T}}O)$ is invertible

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters

$$P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$A_y \equiv T \operatorname{diag}(O_y, \cdot)$$

3. Pick a U s.t. $(U^{\mathsf{T}}O)$ is invertible

Then: $B_y \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O) A_y (U^{\mathsf{T}} O)^{-1}$

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters

$$P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$A_y \equiv T \operatorname{diag}(O_y, \cdot)$$

3. Pick a U s.t. $(U^{\mathsf{T}}O)$ is invertible of the true HMM Then: $B_y \equiv (U^{\mathsf{T}}P_{3,y,1})(U^{\mathsf{T}}P_{2,1})^{\dagger} = (U^{\mathsf{T}}O)A_y(U^{\mathsf{T}}O)^{-1}$ parameter A_y

[Hsu, Kakade, Zhang, 2008]

Idea: Recover observable HMM parameters from probabilities of doubles and triples of observations

1. Define

$$[P_{2,1}]_{i,j} \equiv \Pr[y_2 = i, y_1 = j]$$

$$[P_{3,y,1}]_{i,j} \equiv \Pr[y_3 = i, y_2 = y, y_1 = j]$$

2. Matrices factor into HMM parameters

$$P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$P_{3,y,1} = OA_y T \operatorname{diag}(\pi) O^{\mathsf{T}}$$
$$\downarrow$$
$$A_y \equiv T \operatorname{diag}(O_y, \cdot)$$

3. Pick a U s.t. $(U^{\mathsf{T}}O)$ is invertible of the true HMM Then: $B_y \equiv (U^{\mathsf{T}}P_{3,y,1})(U^{\mathsf{T}}P_{2,1})^{\dagger} = (U^{\mathsf{T}}O)A_y(U^{\mathsf{T}}O)^{-1}$ parameter A_y

other parameters can be recovered up to a linear transform as well

[Hsu, Kakade, Zhang, 2008]

The algorithm:

- 1. Look at triples of observations $\langle y_1, y_2, y_3 \rangle$ in the data estimate frequencies: $\hat{P}_{2,1}$ and $\hat{P}_{3,y,1}$
- 2. Compute SVD of $\widehat{P}_{2,1}$ to find a matrix of the top m singular vectors \widehat{U}

3. Find observable operators $\widehat{B}_y = (\widehat{U}^{\mathsf{T}} \widehat{P}_{3,y,1}) (\widehat{U}^{\mathsf{T}} \widehat{P}_{2,1})^{\dagger}$

Pros

Transformed parameters allow HMM inference! (other terms cancel)

Pros

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

Pros and Cons

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:

Pros and Cons

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:

Inference in large HMMs is still expensive (data and computation)

Pros and Cons

Transformed parameters allow HMM inference! (other terms cancel)

Can prove finite sample error bounds

However:

Inference in large HMMs is still expensive (data and computation)

Error bounds vacuous if T is low rank.

The rank of $P_{2,1}$ and $P_{3,y,1}$ depends on R and S

 $P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$ $= ORS \operatorname{diag}(\pi) O^{\mathsf{T}}$

The rank of $P_{2,1}$ and $P_{3,y,1}$ depends on R and S

 $P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$ $= ORS \operatorname{diag}(\pi) O^{\mathsf{T}}$

Spectral Learning for RR-HMMs

The rank of $P_{2,1}$ and $P_{3,y,1}$ depends on R and S

 $P_{2,1} = OT \operatorname{diag}(\pi) O^{\mathsf{T}}$ $= ORS \operatorname{diag}(\pi) O^{\mathsf{T}}$

Thin SVD UV^{T} splits $P_{2,1}$ "inside" RS

We can show that:

 $B_{y} \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O R) W_{y} (U^{\mathsf{T}} O R)^{-1}$

We can show that:

$$B_y \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O R) W_y (U^{\mathsf{T}} O R)^{-1}$$

This is a similarity transform of the RR-HMM parameter W_y Can estimate other parameters up to a linear transform as well

We can show that:

$$B_y \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O R) W_y (U^{\mathsf{T}} O R)^{-1}$$

This is a similarity transform of the RR-HMM parameter W_y Can estimate other parameters up to a linear transform as well

Parameters allow accurate RR-HMM inference (other terms cancel)

We can show that:

$$B_{y} \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O R) W_{y} (U^{\mathsf{T}} O R)^{-1}$$

This is a similarity transform of the RR-HMM parameter W_y Can estimate other parameters up to a linear transform as well

Parameters allow accurate RR-HMM inference (other terms cancel)

Learning and inference are independent of m

We can show that:

$$B_{y} \equiv (U^{\mathsf{T}} P_{3,y,1}) (U^{\mathsf{T}} P_{2,1})^{\dagger} = (U^{\mathsf{T}} O R) W_{y} (U^{\mathsf{T}} O R)^{-1}$$

This is a similarity transform of the RR-HMM parameter W_y Can estimate other parameters up to a linear transform as well

Parameters allow accurate **RR-HMM inference** (other terms cancel)

Learning and inference are independent of m

A k-dimensional RR-HMM is considerably more expressive than a k-state HMM (example in paper, and see experiments below)

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1 - \eta$

$$\sum_{y_1,\dots,y_t} \left| \Pr[y_1,\dots,y_t] - \widehat{\Pr}[y_1,\dots,y_t] \right| \le \epsilon \quad w.p. \quad 1 - \eta$$

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1 - \eta$

$$\sum_{y_1,\dots,y_t} \left| \Pr[y_1,\dots,y_t] - \widehat{\Pr}[y_1,\dots,y_t] \right| \le \epsilon \quad w.p. \quad 1 - \eta$$

N must be larger than a term that is

 $\propto (\# \text{timesteps})^2$, rank k, # observations

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1 - \eta$

$$\sum_{y_1,\dots,y_t} \left| \Pr[y_1,\dots,y_t] - \widehat{\Pr}[y_1,\dots,y_t] \right| \le \epsilon \quad w.p. \quad 1 - \eta$$

N must be larger than a term that is

 $\propto (\# \text{timesteps})^2$, rank k, # observationsas well as $\propto \frac{1}{\epsilon^2}, \frac{1}{\sigma_k(OR)^2}, \frac{1}{\sigma_k(P_{2,1})^4}, \log\left(\frac{1}{\eta}\right)$

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1 - \eta$

$$\sum_{y_1,\ldots,y_t} \left| \Pr[y_1,\ldots,y_t] - \widehat{\Pr}[y_1,\ldots,y_t] \right| \leq \epsilon \quad w.p. \quad 1 - \eta$$

N must be larger than a term that is

 $\propto (\# \text{timesteps})^2$, rank k, # observationsas well as $\propto \left(\frac{1}{\epsilon^2}\right) \frac{1}{\sigma_k (OR)^2}, \frac{1}{\sigma_k (P_{2,1})^4}, \log\left(\frac{1}{\eta}\right)$

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1-\eta$

$$\sum_{y_1,\ldots,y_t} \left| \Pr[y_1,\ldots,y_t] - \widehat{\Pr}[y_1,\ldots,y_t] \right| \leq \epsilon \quad w.p. \quad 1 - \eta$$

N must be larger than a term that is

 $\propto (\# \text{timesteps})^2, \text{ rank } k, \# \text{observations}$ as well as $\propto \left(\frac{1}{\epsilon^2}\right) \left(\frac{1}{\sigma_k(OR)^2}\right), \frac{1}{\sigma_k(P_{2,1})^4}, \log\left(\frac{1}{\eta}\right)$

large if observations are uninformative

sense Bound on Error in Probability Estimates learn act

N training sequences of length 3 each

Mild assumptions on RR-HMM parameters R, S, O, π

To bound error on joint probability estimates by ϵ with probability $1 - \eta$

 $\propto (\# \text{timesteps})^2$, rank k, # observations

N must be larger than a term that is

as well as $\propto \left(\frac{1}{\epsilon^2}\right) \left(\frac{1}{\sigma_k(OR)^2}\right) \left(\frac{1}{\sigma_k(P_{2,1})^4}\right), \log\left(\frac{1}{\eta}\right)$

large if observations are uninformative

large if transitions are highly stochastic

Proof Intuition

1. Bound # samples needed to estimate $P_{2,1}$ and $P_{3,y,1}$ using standard tail inequality bounds

2. Bound resulting parameter estimation error by analyzing how errors in $P_{2,1}$ affect its SVD

3. Propagate bound to error in joint probabilities computed using estimated parameters

Additional Extensions

See paper for how to:

- 1. Model systems that require sequences of observations to disambiguate state
- 2. Use Kernel Density Estimation for continuous observations
- 3. Use features computed from observations

Outline

1. Preliminaries

2. Hidden Markov Models

3. Reduced-Rank Hidden Markov Models

4. Learning RR-HMMs & Bounds

5. Empirical Results

Experimental Results

Statistical Consistency:

See paper for an assessment of consistency on a toy problem

Clock Pendulum Video Texture: Learning a smoothly evolving system

Mobile Robot Vision:

Assess long range prediction accuracy

Experimental Results

Video Textures

given a short video

Learn 3 models: HMM, LDS, RR-HMM

constrain dimensionality (10) to test expressivity

Experimental Results

Video Textures

given a short video

Learn 3 models: HMM, LDS, RR-HMM

constrain dimensionality (10) to test expressivity

Simulations from models trained on clock data

LDS

Simulations from models trained on clock data

HMM

LDS

Simulations from models trained on clock data

HMM

LDS

Simulations from models trained on clock data

HMM

LDS

Experimental Results Mobile Robot Vision

Experimental Results Mobile Robot Vision

Conclusion

Summary:

• Introduced the RR-HMM: a model with many of the benefits of a large-state-space HMM, but without the associated inefficiency during inference and learning

• Supplied a spectral learning algorithm and finite sample bounds for the RR-HMM

• Successfully applied the RR-HMM to high dimensional data

Conclusion

Summary:

• Introduced the RR-HMM: a model with many of the benefits of a large-state-space HMM, but without the associated inefficiency during inference and learning.

• Supplied a spectral learning algorithm and finite sample bounds for the RR-HMM

• Successfully applied the RR-HMM to high dimensional data

Related Work:

Hilbert Space Embeddings of Hidden Markov Models (ICML-2010)
[L. Song, B. Boots, S. M. Siddiqi, G. Gordon, A. Smola]

• Closing the Learning-Planning Loop with Predictive State Representations (RSS-2010) [B. Boots, S. M. Siddiqi, G. Gordon]

Thank you!

