15-780 - GRADUATE ARTIFICIAL INTELLIGENCE
AI AND EDUCATION II

Shayan Doroudi
April 26, 2017
Series on applications of AI to education.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Application</th>
<th>AI Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/24/17</td>
<td>Learning</td>
<td>Machine Learning + Search</td>
</tr>
<tr>
<td>4/26/17</td>
<td>Assessment</td>
<td>Machine Learning + Mechanism Design</td>
</tr>
<tr>
<td>5/01/17</td>
<td>Instruction</td>
<td>Multi-Armed Bandits</td>
</tr>
</tbody>
</table>
• Item Response Theory (IRT)
• Computerized Adaptive Testing (CAT)
• Calibrated Self-Assessment
ITEM RESPONSE THEORY (IRT)
LAST TIME: ADDITIVE FACTORS MODEL (AFM)

• AFM:
 • $\log \left(\frac{p_{ij,T+1}}{1-p_{ij,T+1}} \right) = \theta_i + \sum_k Q_{jk} (\beta_k + \gamma_k T)$
 • $p_{ij,T+1} = \frac{1}{1+\exp(-(-\theta_i+\sum_k Q_{jk} (\beta_k + \gamma_k T)))}$

• $p_{ij,T}$: Probability that student i answers question j correctly at opportunity T.
• θ_i: Ability of student i
• β_k: Difficulty of skill k
• γ_k: Learning rate of skill k
ITEM RESPONSE THEORY (IRT)

• One-Parameter IRT Model (1PL):
 • \(\log \left(\frac{p_{ij}}{1-p_{ij}} \right) = \theta_i - b_j \)
 • \(p_{ij} = \frac{1}{1+\exp(-\theta_i-b_j)} \)

• \(p_{ij} \): Probability that student \(i \) answers question \(j \) correctly.
• \(\theta_i \): Ability of student \(i \)
• \(b_j \): Difficulty of item \(j \)
ITEM RESPONSE THEORY (IRT)

- Two-Parameter IRT Model (2PL):
 \[\log \left(\frac{p_{ij}}{1-p_{ij}} \right) = a_j (\theta_i - b_j) \]
- \(p_{ij} \): Probability that student \(i \) answers question \(j \) correctly.
- \(\theta_i \): Ability of student \(i \)
- \(b_j \): Difficulty of item \(j \)
- \(a_j \): Discrimination of item \(j \)
ITEM RESPONSE THEORY (IRT)
Which of the following is true about the IRT model?

• It is a linear regression model.
• It is a logistic regression model.
• It follows a power law of practice for \(P = \left(\frac{p_{ij}}{1-p_{ij}} \right) \).
• It follows an exponential law of practice for \(P = \left(\frac{p_{ij}}{1-p_{ij}} \right) \).
What are some of the advantages of IRT to classical testing theory (add up the score on each item)?

• Can measure with much more precision.
• Can obtain a standard error of measurement.
• Can give different tests to different students without compromising rankings.
• Computerized Adaptive Testing!
What are some of the advantages of IRT to classical testing theory (add up the score on each item)?

• Can measure with much more precision.
What are some of the advantages of IRT to classical testing theory (add up the score on each item)?

- Can measure with much more precision.
- Can obtain a standard error of measurement.
What are some of the advantages of IRT to classical testing theory (add up the score on each item)?

• Can measure with much more precision.
• Can obtain a standard error of measurement.
• Can give different tests to different students without compromising rankings.
What are some of the advantages of IRT to classical testing theory (add up the score on each item)?

- Can measure with much more precision.
- Can obtain a standard error of measurement.
- Can give different tests to different students without compromising rankings.
- Computerized Adaptive Testing!
COMPUTERIZED ADAPTIVE TESTING (CAT)
Why might we want a test to be adaptive?
Start with a set of calibrated test items.
Start with a set of calibrated test items.

1. Based on our estimate of a student's ability θ choose the item that will give us the most information to get a more precise measure of the student's ability.
Start with a set of calibrated test items.

1. Based on our estimate of a student's ability $\hat{\theta}$ choose the item that will give us the most information to get a more precise measure of the student's ability.

2. Student answers question.
Start with a set of calibrated test items.

1. Based on our estimate of a student's ability \(\hat{\theta} \) choose the item that will give us the most information to get a more precise measure of the student's ability.

2. Student answers question.

3. Update \(\hat{\theta} \) using maximum likelihood estimation.
Start with a set of calibrated test items.

1. Based on our estimate of a student's ability $\hat{\theta}$ choose the item that will give us the most information to get a more precise measure of the student's ability.
2. Student answers question.
3. Update $\hat{\theta}$ using maximum likelihood estimation.
4. Repeat steps 1-3 until termination.
• Fisher Information: $\mathcal{I}(\theta) = \mathbb{E} \left[\left(\frac{\partial}{\partial \theta} \log p(X; \theta) \right)^2 \right] | \theta$
• Fisher Information: $\mathcal{I}(\theta) = \mathbb{E} \left[(\frac{\partial}{\partial \theta} \log p(X; \theta))^2 \right] | \theta$

• 1PL Information: $\mathcal{I}_j(\theta_i) = p_{ij}(1 - p_{ij})$
Fisher Information: \(\mathcal{I}(\theta) = \mathbb{E} \left[\left(\frac{\partial}{\partial \theta} \log p(X; \theta) \right)^2 \right] \)

1PL Information: \(\mathcal{I}_j(\theta_i) = p_{ij}(1 - p_{ij}) \)

2PL Information: \(\mathcal{I}_j(\theta_i) = \alpha_i^2 p_{ij}(1 - p_{ij}) \)
CALIBRATED SELF-ASSESSMENT

LABUTOV, I., & STUDER, C. CALIBRATED SELF-ASSESSMENT.

EDUCATIONAL DATA MINING, 2016.
How do we grade free-form questions in large courses (e.g., MOOCs)?
Ask student how likely they are to have answered a question correctly!
Want a strategy proof mechanism to elicit student correctness.
Want a strategy proof mechanism to elicit student correctness. Can use quadratic scoring rule:

$$S_{ij} = \begin{cases}
 c_{ij} & \text{if item } j \text{ correct} \\
 -\frac{1}{2}c_{ij}^2 & \text{if item } j \text{ incorrect}
\end{cases}$$

where c_{ij} is a score proposed by student i on item j.
Student wants to maximize:

$$\mathbb{E} [S_{ij}] = c_{ij}p_{ij} - \frac{1}{2}c_{ij}^2(1 - p_{ij})$$
Student wants to maximize:

\[\mathbb{E} [S_{ij}] = c_{ij} p_{ij} - \frac{1}{2} c_{ij}^2 (1 - p_{ij}) \]

Maximized when \(c_{ij} = \frac{p_{ij}}{1 - p_{ij}} \).
\[
\log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \hat{\theta}_i - \hat{b}_j
\]

- \(p_{ij} \): Student \(i \)'s estimated probability that they answer question \(j \) correctly.
- \(\hat{\theta}_i \): Student \(i \)'s estimate of their own ability
- \(\hat{b}_j \): Student \(i \)'s estimate of the difficulty of item \(j \)
IRT FOR SELF-ASSESSMENT

\[
\log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \hat{\theta}_i - \hat{b}_j
\]

- \(p_{ij} \): Student \(i \)'s estimated probability that they answer question \(j \) correctly.
- \(\hat{\theta}_i \): Student \(i \)'s estimate of their own ability
- \(\hat{b}_j \): Student \(i \)'s estimate of the difficulty of item \(j \)
- Assume \(\hat{\theta}_i - \hat{b}_j \sim \mathcal{N}(\theta_i - b_j, \sigma^2) \)
$\log(c_{ij}) = \log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \theta_i - b_j + \epsilon$

$\epsilon \sim \mathcal{N}(0, \sigma^2)$
ESTIMATING STUDENT ABILITY

\[
\log(c_{ij}) = \log \left(\frac{p_{ij}}{1 - p_{ij}} \right) = \theta_i - b_j + \epsilon
\]

\[\epsilon \sim \mathcal{N}(0, \sigma^2)\]

Can be estimated using linear regression!
Is the mechanism fair?

\[\mathbb{E} [S_{ij}] = c_{ij}p_{ij} - \frac{1}{2}c_{ij}^2(1 - p_{ij}) \]

- Yes, it is fair.
- No, it will give inflate scores of higher ability students and deflate scores of lower ability students.
- No, it will deflate scores of higher ability students and inflate scores of lower ability students.
MECHANISM DESIGN FOR SELF-ASSESSMENT

What happens when we don't actually grade student answers?
If each item is graded with probability ρ:

$$
\mathbb{E}[S_{ij}] = \rho (c_{ij} p_{ij} - \frac{1}{2} c_{ij}^2 (1 - p_{ij})) + (1 - \rho) c_{ij}
$$
• IRT allows for more precise measuring of student abilities.
• IRT allows for more precise measuring of student abilities.
• Is used for computerized adaptive testing.
• IRT allows for more precise measuring of student abilities.
• Is used for computerized adaptive testing.
• Can combine mechanism design with IRT to elicit scores from students.