Graduate AI
Lecture 10:
Learning Theory

Teachers:
Zico Kolter
Ariel Procaccia (this time)
THE PAC MODEL

• PAC = probably approximately correct
• Introduced by Valiant [1984]
• Learner can do well on training set but badly on new samples
• Establish guarantees on accuracy of learner when generalizing from examples
THE PAC MODEL

• Input space X
• D distribution over X: unknown but fixed
• Learner receives a set S of m instances x_1, \ldots, x_m, independently sampled according to D
• Function class F of functions $f: X \rightarrow \{+, -\}$
• Assume target function $f_t \in F$
• Training examples $Z = \{(x_i, f_t(x_i))\}$
Example: Faces

- $X = \mathbb{R}^{k \times \ell}$
- Each $x \in X$ is a matrix of colors, one per pixel
- $f_t(x) = +$ iff x is a picture of a face
- Training examples: Each is a picture labeled “face” or “not face”
Example: Rectangle Learning

- $X = \mathbb{R}^2$
- $F = \text{axes-aligned rectangles}$
- $f(x) = +$ iff x is contained in f
The PAC model

• The error of function f is
 $$\text{err}(f) = \Pr_{x \sim D}[f_t(x) \neq f(x)]$$

• Given accuracy parameter $\epsilon > 0$, would like to find function f with $\text{err}(f) \leq \epsilon$

• Given confidence parameter $\delta > 0$, would like to achieve
 $$\Pr[\text{err}(f) \leq \epsilon] \geq 1 - \delta$$
The PAC Model

• A learning algorithm L is a function from training examples to F such that: for every $\epsilon, \delta > 0$ there exists $m^*(\epsilon, \delta)$ such that for every $m \geq m^*$ and every D, if m examples Z are drawn from D and $L(Z) = f$ then

$$\Pr[\text{err}(f) \leq \epsilon] \geq 1 - \delta$$

• F is learnable if there is a learning algorithm for F
Rectangles are learnable

- $X = \mathbb{R}^2$
- $F =$ axes-aligned rectangles
- Learning algorithm: given training set, return tightest fit for positive examples
- Theorem: axes-aligned rectangles are learnable with sample complexity

$$m^*(\epsilon, \delta) \geq \frac{4}{\epsilon} \ln \frac{4}{\delta}$$
Rectangles are learnable

- **Proof:**
 - Target rectangle R
 - Recall: our learning algorithm returns the tightest-fitting R' around the positive examples
 - For region E, let
 \[w(E) = \Pr_{x \sim D} [x \in E] \]
 - $\text{err}(R') = w(R \setminus R')$ (why?)
• Proof (cont.):
 o Divide $R \setminus R'$ into four strips T_1', T_2', T_3', T_4'
 o $\text{err}(R') \leq \sum_{i=1}^{4} w(T_i')$
 o We will estimate
 $$\Pr \left[w(T_i') \geq \frac{\varepsilon}{4} \right]$$
Rectangles are learnable

Proof (cont.):

- Focusing wlog on T_1', define a T_1 strip T_1 such that $w(T_1) = \frac{\epsilon}{4}$
- $w(T_1') \geq \frac{\epsilon}{4} \iff T_1 \subseteq T_1'$
- $T_1 \subseteq T_1' \iff x_1, \ldots, x_m \notin T_1$
- $w(T_1') \geq \frac{\epsilon}{4} \iff x_1, \ldots, x_m \notin T_1$
- $\Pr[x_1, \ldots, x_m \notin T_1] = \left(1 - \frac{\epsilon}{4}\right)^m$
Rectangles are learnable

• Proof (cont.):
 - \(\text{Pr}[w(R \setminus R') \geq \varepsilon] \leq 4 \left(1 - \frac{\varepsilon}{4}\right)^m \)
 because at least one \(T_i' \) must have \(w(T_i') \geq \varepsilon/4 \)
 - So we want \(4 \left(1 - \frac{\varepsilon}{4}\right)^m \leq \delta \), and with a bit of algebra we get the desired bound \(\blacksquare \)
VC DIMENSION

• We would like to obtain a more general result
• Let $S = \{x_1, \ldots, x_m\}$
• $\Pi_F(S) = \{(f(x_1), \ldots, f(x_m)) : f \in F\}$
\[\Pi_F(S) = \{(-, -, -), (-, +, -), (-, -, +), (+, -, -), (+, +, -), (-, +, +), (+, -+, +), (+, +, +)\} \]
VC DIMENSION

• $X = \text{real line}$
• $F = \text{intervals; points inside interval are labeled by } +, \text{ outside by } −$
• **Poll 1:** what is $|\Pi_F(S)|$ for $S =$

 1. 1
 2. 2
 3. 3
 4. 4
VC DIMENSION

• Poll 2: what is $|\Pi_F(S)|$ for $S =$

 1. 5
 2. 6
 3. 7
 4. 8
VC DIMENSION

- S is shattered by F if $|\Pi_F(S)| = 2^{|S|}$
- The VC dimension of F is the cardinality of the largest set that is shattered by F

How do we prove upper and lower bounds?
Example: Rectangles

- There is an example of four points that can be shattered.
- For any choice of five points, one is "internal".
- A rectangle cannot label outer points by 1 and inner point by 0.
- VC dimension is 4.
VC DIMENSION

- **Poll 3:** \(X = \) real line, \(F = \) intervals, what is \(\text{VC-dim}(F) \)?
 1. 1
 2. 2
 3. 3
 4. None of the above

- **Poll 4:** \(X = \) real line, \(F = \) unions of intervals, what is \(\text{VC-dim}(F) \)?
 1. 2
 2. 3
 3. 4
 4. None of the above
Example: Linear Separators

- $X = \mathbb{R}^d$
- A linear separator is $f(x) = \text{sgn}(a \cdot x + b)$
- Theorem: The VC dimension of linear separators is $d + 1$
- Proof (lower bound):
 - $e^i = (0, ..., 0, 1, 0, ..., 0)$ is the i-th unit vector
 - $S = \{0\} \cup \{e^i : i = 1, ..., d\}$
 - Given $y^0, ..., y^d \in \{-1, 1\}$, set $a = (y^1, ..., y^d), b = y^0/2$
SAMPLE COMPLEXITY

• If for any k there is a sample of size k that can be shattered by F, we say that $\text{VC-dim}(F) = \infty$.

• **Theorem:** A function class F with $\text{VC-dim}(F) = \infty$ is not PAC learnable.

• **Theorem:** Let F with $\text{VC-dim}(F) = d$. Let L be an algorithm that produces an $f \in F$ that is consistent with the given samples S. Then L is a learning algorithm for F with sample complexity

$$m^*(\epsilon, \delta) = O\left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{d}{\epsilon} \log \frac{1}{\epsilon}\right)$$
Implications for linear classifiers? Overfitting?
SUMMARY

• Definitions
 o PAC model
 o Error, accuracy, confidence
 o Learning algorithm
 o $\Pi_F(S)$, shattering
 o VC-dimension

• Turing-award-winning ideas:
 o Learnability can be formalized