
Cost-Based Search as IP



Motivation

● Many problems can be solved by search (e.g., backtracking, branch and 
bound, etc.) but we haven’t seen anything on the other direction

● IP is a very expressive representation
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Variables: binary variable for each edge in the graph, representing 
whether the edge is in the final path or not (0 means edge is not in 
the final path, 1 means edge is in the final path)

Ex: xX→Y is a binary variable representing whether the edge X → Y is 
in the final path
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Formulating Search as IP

How to represent the path S→A→C→G?
3 edges: {S→A, A→C, C→G}
xS→A = indicator for whether S→A is in the path, etc (same for every path in our 
graph)

9-tuple: (1, 0, 0, 1, 0, 0, 0, 1, 0)



Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 



a) i) 9-tuple representation for S→A→B→C→G

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 



a) i) 9-tuple representation for S→A→B→C→G

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 



a) i) 9-tuple representation for S→A→B→C→G
   (1, 0, 1, 0, 1, 0, 0, 1, 0)

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 



a) i) 9-tuple representation for S→A→B→C→G
   (1, 0, 1, 0, 1, 0, 0, 1, 0)
ii) 9-tuple representation for A→C→S→B

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 
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a) i) 9-tuple representation for S→A→B→C→G
   (1, 0, 1, 0, 1, 0, 0, 1, 0)
ii) 9-tuple representation for A→C→S→B
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iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)
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a) i) 9-tuple representation for S→A→B→C→G
   (1, 0, 1, 0, 1, 0, 0, 1, 0)
ii) 9-tuple representation for A→C→S→B
   (0, 1, 0, 1, 0, 0, 1, 0, 0)
iii) Path that corresponds to (0, 0, 1, 0, 1, 0, 0, 0, 0)
   A→B→C

Order: xS→A , xS→B , xA→B , xA→C , xB→C , xB→G , xC→S , xC→G , xG→C 
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Constraint 2: path ends at G 
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Constraints: need to make sure paths are valid
1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid 
path from S to G
{S→A, C→G}: (1, 0, 0, 0, 0, 0, 0, 1, 0)
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More constraints: ensure all other nodes are non-terminal (not start or goal)
● Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B: S, A → either xS→B or xA→B must be 1, but both cannot be 1
xS→B + xA→B <= 1

Two nodes coming out of B: C, G → either xB→C or xB→G must be 1, but both cannot 
be 1
xB→C + xB→G <= 1
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More constraints: If there is an edge to B, then there must be an edge out of B 
(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained 
that you can only have one of those edges)
xS→B + xA→B <= xB→C + xB→G  
xS→B + xA→B >= xB→C + xB→G 



More constraints: If there is an edge to B, then there must be an edge out of B 
(otherwise, B is either a dead end or a start)
Idea: number of edges into B = number of edges out of B (we already constrained 
that you can only have one of those edges)
xS→B + xA→B - xB→C - xB→G  <= 0
-xS→B - xA→B + xB→C + xB→G  <= 0
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Objective function:
Idea: coefficient for each edge is the cost of that edge

3xS→A + 7xS→B + 5xA→B + 4xA→C + 2xB→C + 1xB→G + 1xC→S + 6xC→G + 6xG→C 
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Counterexample: 



Still not enough to ensure a valid path :(

Counterexample: 

Idea: anything with a loop outside the path is still allowed by our constraints
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How can we fix this?
Answer: we don’t have to :)

Idea: If we have an extra cycle, that would just increase the total path cost. Because 
we are trying to minimize cost, this would only hurt us, so we wouldn’t return such a 
solution anyway. 
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● Is this is complete?
● Is this is optimal?



Cost-Based Search as IP 

● Now let’s put everything together, and define the following search algorithm
○ First convert the search problem into the IP representation
○ Then run an IP-solver (which is complete and optimal) on the representation
○ Reconstruct the path from start to goal by getting all the ones in the variables

● Is this is complete? Yes
● Is this is optimal?



Cost-Based Search as IP 

● Now let’s put everything together, and define the following search algorithm
○ First convert the search problem into the IP representation
○ Then run an IP-solver (which is complete and optimal) on the representation
○ Reconstruct the path from start to goal by getting all the ones in the variables

● Is this is complete? Yes
● Is this is optimal? Yes



Take Home Messages

● Cost-based search can be expressed, and solved with IP
● IP is very expressive, we can do many interesting things with it

● Want some more?

              Minimax as IP!!!   (Bonus question on the course website)


