Cost-Based Search as IP

Motivation

- Many problems can be solved by search (e.g., backtracking, branch and bound, etc.) but we haven't seen anything on the other direction
- IP is a very expressive representation

Formulating Search as IP

Formulating Search as IP

Variables:

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing whether the edge is in the final path or not (0 means edge is not in the final path, 1 means edge is in the final path)

Formulating Search as IP

Variables: binary variable for each edge in the graph, representing whether the edge is in the final path or not (0 means edge is not in the final path, 1 means edge is in the final path)
$E x: X_{X \rightarrow Y}$ is a binary variable representing whether the edge $X \rightarrow Y$ is in the final path

Formulating Search as IP

How to represent the path $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$?

Formulating Search as IP

How to represent the path $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$?
3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$
$x_{S \rightarrow A}=$ indicator for whether $S \rightarrow A$ is in the path, etc (same for every path in our graph)

Formulating Search as IP

How to represent the path $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$?
3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$
$x_{S \rightarrow A}=$ indicator for whether $S \rightarrow A$ is in the path, etc (same for every path in our graph)
$\left(x_{S \rightarrow A}=1 \quad x_{S \rightarrow B}=0 \quad x_{A \rightarrow B}=0 \quad x_{A \rightarrow C}=1 \quad x_{B \rightarrow C}=0 \quad x_{B \rightarrow G}=0 \quad x_{C \rightarrow S}=0 \quad x_{C \rightarrow G}=1 \quad x_{G \rightarrow C}=0\right)$

Formulating Search as IP

How to represent the path $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$?
3 edges: $\{S \rightarrow A, A \rightarrow C, C \rightarrow G\}$
$x_{S \rightarrow A}=$ indicator for whether $S \rightarrow A$ is in the path, etc (same for every path in our graph)
$\left(x_{S \rightarrow A}=1 \quad x_{S \rightarrow B}=0 \quad x_{A \rightarrow B}=0 \quad x_{A \rightarrow C}=1 \quad x_{B \rightarrow C}=0 \quad x_{B \rightarrow G}=0 \quad x_{C \rightarrow S}=0 \quad x_{C \rightarrow G}=1 \quad x_{G \rightarrow C}=0\right)$
9 -tuple: (1, 0, 0, 1, 0, 0, 0, 1, 0)

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
(1, 0, 1, 0, 1, 0, 0, 1, 0)

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
($1,0,1,0,1,0,0,1,0$)
ii) 9-tuple representation for $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{S} \rightarrow \mathrm{B}$

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
($1,0,1,0,1,0,0,1,0$)
ii) 9-tuple representation for $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{S} \rightarrow \mathrm{B}$
$(0,1,0,1,0,0,1,0,0)$

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
($1,0,1,0,1,0,0,1,0$)
ii) 9-tuple representation for $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{S} \rightarrow \mathrm{B}$
($0,1,0,1,0,0,1,0,0$)
iii) Path that corresponds to ($0,0,1,0,1,0,0,0,0$)

Order: $x_{S \rightarrow A}, x_{S \rightarrow B}, x_{A \rightarrow B}, x_{A \rightarrow C}, x_{B \rightarrow C}, x_{B \rightarrow G}, x_{C \rightarrow S}, x_{C \rightarrow G}, x_{G \rightarrow C}$
a) i) 9-tuple representation for $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{G}$
($1,0,1,0,1,0,0,1,0$)
ii) 9-tuple representation for $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{S} \rightarrow \mathrm{B}$
($0,1,0,1,0,0,1,0,0$)
iii) Path that corresponds to ($0,0,1,0,1,0,0,0,0$)

$$
\mathrm{A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C}
$$

Constraints:

Constraints: need to make sure paths are valid

Constraints: need to make sure paths are valid 1) Ensure path starts at S

Constraints: need to make sure paths are valid 1) Ensure path starts at S
2) Ensure path ends at G

Constraint 1: path starts at S

Constraint 1: path starts at S
Two nodes going out of S : A and B

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1

Constraint 1: path starts at S
Two nodes going out of S : A and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1

$$
x_{S \rightarrow A}+x_{S \rightarrow B}=1
$$

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1 $x_{S \rightarrow A}+x_{S \rightarrow B}=1$

Inequality form: $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}+\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{A}}-\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{B}}<=-1$

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1

$$
x_{S \rightarrow A}+x_{S \rightarrow B}=1
$$

Inequality form: $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}+\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=-1$
One node going into S : C

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1

$$
x_{S \rightarrow A}+x_{S \rightarrow B}=1
$$

Inequality form: $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}+\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=-1$
One node going into S : C
$\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{S}}=0$

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1 $x_{S \rightarrow A}+x_{S \rightarrow B}=1$

Inequality form: $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}+\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=-1$
One node going into S : C
$\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{S}}<=0$ and $-\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{S}}<=0$

Constraint 1: path starts at S
Two nodes going out of $\mathrm{S}: \mathrm{A}$ and $\mathrm{B} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}$ or $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ must be 1 $x_{S \rightarrow A}+x_{S \rightarrow B}=1$

Inequality form: $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}+\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{A}}-\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{B}}<=-1$
One node going into S : C
$\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{S}}<=0$ and $-\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{S}}<=0$

Constraint 2: path ends at G

Constraint 2: path ends at G
Two nodes going into $\mathrm{G}: \mathrm{C}$ and $\mathrm{B} \rightarrow$ either $\mathrm{X}_{\mathrm{C} \rightarrow \mathrm{G}}$ or $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}$ must be 1

$$
\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{G}}+\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{G}}<=1 \text { and }-\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{G}}-\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{G}}<=-1
$$

Constraint 2: path ends at G
Two nodes going into $\mathrm{G}: \mathrm{C}$ and $\mathrm{B} \rightarrow$ either $\mathrm{X}_{\mathrm{C} \rightarrow \mathrm{G}}$ or $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}$ must be 1
$\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{G}}+\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}<=1$ and $-\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{G}}-\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{G}}<=-1$
One node coming out of $\mathrm{G}: \mathrm{C} \rightarrow \mathrm{X}_{\mathrm{G} \rightarrow \mathrm{C}}$ must be 0
$\mathrm{X}_{\mathrm{G} \rightarrow \mathrm{C}}<=0$ and $-\mathrm{X}_{\mathrm{G} \rightarrow \mathrm{C}}<=0$

Constraint 2: path ends at G
Two nodes going into $\mathrm{G}: \mathrm{C}$ and $\mathrm{B} \rightarrow$ either $\mathrm{X}_{\mathrm{C} \rightarrow \mathrm{G}}$ or $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}$ must be 1
$\mathrm{X}_{\mathrm{C} \rightarrow \mathrm{G}}+\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}<=1$ and $-\mathrm{x}_{\mathrm{C} \rightarrow \mathrm{G}}-\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}<=-1$
One node coming out of $\mathrm{G}: \mathrm{C} \rightarrow \mathrm{X}_{\mathrm{G} \rightarrow \mathrm{C}}$ must be 0
$X_{G \rightarrow C}<=0$ and $-X_{G \rightarrow C}<=0$

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done
2) Ensure path ends at G - done

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done
2) Ensure path ends at G - done

These two constraints are not enough :(

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid path from S to G

Constraints: need to make sure paths are valid

1) Ensure path starts at S - done
2) Ensure path ends at G - done

Question: 9-tuple that satisfies these constraints but does not represent a valid path from S to G
$\{S \rightarrow A, C \rightarrow G\}:(1,0,0,0,0,0,0,1,0)$

More constraints: ensure all other nodes are non-terminal (not start or goal)

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once: Two nodes going into B: S, A

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B : $\mathrm{S}, \mathrm{A} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ or $\mathrm{X}_{\mathrm{A} \rightarrow \mathrm{B}}$ must be 1 , but both cannot be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into B : $\mathrm{S}, \mathrm{A} \rightarrow$ either $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}$ or $\mathrm{X}_{\mathrm{A} \rightarrow \mathrm{B}}$ must be 1 , but both cannot be 1 $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}+\mathrm{X}_{\mathrm{A} \rightarrow \mathrm{B}}<=1$

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into $B: S, A \rightarrow$ either $x_{S \rightarrow B}$ or $x_{A \rightarrow B}$ must be 1 , but both cannot be 1 $\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{B}}+\mathrm{x}_{\mathrm{A} \rightarrow \mathrm{B}}<=1$

Two nodes coming out of $\mathrm{B}: \mathrm{C}, \mathrm{G} \rightarrow$ either $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{C}}$ or $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}$ must be 1 , but both cannot be 1

More constraints: ensure all other nodes are non-terminal (not start or goal)

- Path can only pass through each non-terminal node at most once

Constraint that node B can only appear on the path at most once:
Two nodes going into $B: S, A \rightarrow$ either $x_{S \rightarrow B}$ or $x_{A \rightarrow B}$ must be 1 , but both cannot be 1 $\mathrm{X}_{\mathrm{S} \rightarrow \mathrm{B}}+\mathrm{X}_{\mathrm{A} \rightarrow \mathrm{B}}<=1$

Two nodes coming out of $\mathrm{B}: \mathrm{C}, \mathrm{G} \rightarrow$ either $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{C}}$ or $\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}$ must be 1 , but both cannot be 1
$\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{C}}+\mathrm{X}_{\mathrm{B} \rightarrow \mathrm{G}}<=1$

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start)

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start)
Idea: number of edges into $B=$ number of edges out of B (we already constrained that you can only have one of those edges)

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start)
Idea: number of edges into $B=$ number of edges out of B (we already constrained that you can only have one of those edges)

$$
\mathrm{x}_{\mathrm{S} \rightarrow \mathrm{~B}}+\mathrm{x}_{\mathrm{A} \rightarrow \mathrm{~B}}=\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{C}}+\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{G}}
$$

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start)
Idea: number of edges into $B=$ number of edges out of B (we already constrained that you can only have one of those edges)

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{S} \rightarrow \mathrm{~B}}+\mathrm{x}_{\mathrm{A} \rightarrow \mathrm{~B}}<=\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{C}}+\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{G}} \\
& \mathrm{x}_{\mathrm{S} \rightarrow \mathrm{~B}}+\mathrm{x}_{\mathrm{A} \rightarrow \mathrm{~B}}>=\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{C}}+\mathrm{x}_{\mathrm{B} \rightarrow \mathrm{C}}
\end{aligned}
$$

More constraints: If there is an edge to B, then there must be an edge out of B (otherwise, B is either a dead end or a start)
Idea: number of edges into $B=$ number of edges out of B (we already constrained that you can only have one of those edges)
$x_{S \rightarrow B}+x_{A \rightarrow B}-x_{B \rightarrow C}-x_{B \rightarrow G}<=0$
$-x_{S \rightarrow B}-x_{A \rightarrow B}+x_{B \rightarrow C}+x_{B \rightarrow G}<=0$

Objective function:

Objective function:

Idea: coefficient for each edge is the cost of that edge

Objective function:

Idea: coefficient for each edge is the cost of that edge

$$
3 x_{S \rightarrow A}+7 x_{S \rightarrow B}+5 x_{A \rightarrow B}+4 x_{A \rightarrow C}+2 x_{B \rightarrow C}+1 x_{B \rightarrow G}+1 x_{C \rightarrow S}+6 x_{C \rightarrow G}+6 x_{G \rightarrow C}
$$

Still not enough to ensure a valid path :(

Still not enough to ensure a valid path :(
Counterexample:

Still not enough to ensure a valid path :(

Counterexample:

Idea: anything with a loop outside the path is still allowed by our constraints

How can we fix this?

How can we fix this?

Answer: we don't have to :)

How can we fix this?

Answer: we don't have to :)
Idea: If we have an extra cycle, that would just increase the total path cost. Because we are trying to minimize cost, this would only hurt us, so we wouldn't return such a solution anyway.

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
- First convert the search problem into the IP representation
- Then run an IP-solver (which is complete and optimal) on the representation
- Reconstruct the path from start to goal by getting all the ones in the variables
- Is this is complete?
- Is this is optimal?

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
- First convert the search problem into the IP representation
- Then run an IP-solver (which is complete and optimal) on the representation
- Reconstruct the path from start to goal by getting all the ones in the variables
- Is this is complete? Yes
- Is this is optimal?

Cost-Based Search as IP

- Now let's put everything together, and define the following search algorithm
- First convert the search problem into the IP representation
- Then run an IP-solver (which is complete and optimal) on the representation
- Reconstruct the path from start to goal by getting all the ones in the variables
- Is this is complete? Yes
- Is this is optimal? Yes

Take Home Messages

- Cost-based search can be expressed, and solved with IP
- IP is very expressive, we can do many interesting things with it
- Want some more?
Minimax as IP!!! (Bonus question on the course website)

