As you come in...

Draw a graph with x_{1} as the x -axis and x_{2} as the y -axis.
You can restrict attention to $x_{1} \geq 0, x_{2} \geq 0$.
Mark the region where $3 x_{1}+4 x_{2} \leq 100$.

AI: Representation and Problem Solving Optimization

Instructors: Nihar Shah and Tuomas Sandholm
Slide credits: CMU AI with some drawings from ai.berkeley.edu

Optimization: BIG PICTURE

$1817-$	optimize, v. transitive. To render optimal, to make as good as possible; to make the best or most effective use of.
$1857-$	optimization, n. The action or process of making the best of something; (also) the action or process of rendering optimal; the state or condition of being optimal.

Optimization
minimize (or maximize) something subject to some constraints

Optimization
"How much time to spend on this course?"
maximize your learning (or your grade)
subject to also having a life outside of work

Optimization

"How much time to spend on this course?"
$\underset{\substack{\text { how you spend } \\ \text { your time }}}{\text { maximize }}$ time spent on course
subject to at least blah time for blah activities
${ }^{\square}$ constraint(s)

Optimization

"How much time to spend on this course?"

maximize $x_{1}+x_{2}$
$x_{1}, x_{2}, x_{3}, x_{4}$
$\checkmark \quad x_{1}$: time spent in 281's lectures
x_{2} : time spent on 281 outside lectures
x_{3} : sleeping, eating, ...
x_{4} : spending time with friends, ...
subject to $x_{1}=3, x_{3} \geq$ blah, $x_{4} \geq$ blah,

$$
x_{1}+x_{2}+x_{3}+x_{4}=24 * 7
$$

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
$$

Optimization: Many, many applications

- Machine Learning / Natural language processing (including ChatGPT (\%)
- Operations research (e.g., making airline schedules)
- Telecommunications
- Finance
- Power systems
- Healthcare
and many more.

Optimization recipe

- You have a real-world problem to solve
- First write it mathematically as an optimization problem
- There are many optimization "solvers" available online - can use them
- e.g., Gurobi, scipy.optimize, cvxpy, ...
- There are specific representations of optimization problems for which specialized, more efficient algorithms are known.
- e.g., linear programs, integer programs, ...
- Check if your problem has such a representation. If not, check if you can transform your problem to such a representation. If so, use the relevant solver.
- e.g., scipy.optimize.linprog
- Otherwise use a generic solver

Linear Programs

A specific representation

Another example: What to eat?

We are staying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Healthiness goals

- $2000 \leq$ Calories ≤ 2500
- Sugar ≤ 100 g
- Calcium $\geq 700 \mathrm{mg}$

What is the cheapest way to stay "healthy" with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?

We can choose the amount of stir-fry (ounce) and boba (fluid ounces)

Food	Cost	Calories	Sugar	Calcium	$2000 \leq$ Calories ≤ 2500
Stir-fry (per oz)	1	100	3	20	Sugar $\leq 100 \mathrm{~g}$
Boba (per floz)	0.5	50	4	70	Calcium $\geq 700 \mathrm{mg}$
What is the cheapest way to stay "healthy" with this menu?					
How much stir-fry (ounce) and boba (fluid ounces) should we buy?					

Variables? Amount of stir-fry x_{1} and boba x_{2}
Objective? Cost $1^{*} x_{1}+0.5^{*} x_{2}$
Constraints? Calories min $100 x_{1}+50 x_{2} \geq 2000$
Calories max $100 x_{1}+50 x_{2} \leq 2500$
Sugar $\quad 3 x_{1}+4 x_{2} \leq 100$
Calcium $\quad 20 x_{1}+70 x_{2} \geq 700$
Non-negativity $\quad x_{1} \geq 0, x_{2} \geq 0$

We can choose the amount of stir-fry (ounce) and boba (fluid ounces)

Food	Cost	Calories	Sugar	Calcium	.	$2000 \leq$ Calories ≤ 2500		
Stir-fry (per oz)	1	100	3	20	-	Sugar $\leq 100 \mathrm{~g}$		
Boba (per fl oz)	0.5	50	4	70	-	Calcium $\geq 700 \mathrm{mg}$		What is the cheapest way to stay "healthy" with this menu?
:---								
How much stir-fry (ounce) and boba (fluid ounces) should we buy?								

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & 1 x_{1}+0.5 x_{2} \\
\text { s.t. } & 100 x_{1}+50 x_{2} \geq 2000 \\
& 100 x_{1}+50 x_{2} \leq 2500 \\
& 3 x_{1}+4 x_{2} \leq 100 \\
& 20 x_{1}+70 x_{2} \geq 700 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{array}
$$

Let's look at any one constraint
$3 x_{1}+4 x_{2} \leq 100$

In two dimensions, constraint is simply entire region on one side of a line!
"Linear constraint"

Our constraints are linear

Calories min $100 x_{1}+50 x_{2} \geq 2000$ Calories max $100 x_{1}+50 x_{2} \leq 2500$ Sugar
Calcium
$3 x_{1}+4 x_{2} \leq 100$
Non-negativity
$20 x_{1}+70 x_{2} \geq 700$
$x_{1} \geq 0$
$x_{2} \geq 0$

Our constraints are linear

Calories min $100 x_{1}+50 x_{2} \geq 2000$ Calories max $100 x_{1}+50 x_{2} \leq 2500$ Sugar
Calcium
Non-negativity
$3 x_{1}+4 x_{2} \leq 100$
$20 x_{1}+70 x_{2} \geq 700$
$x_{1} \geq 0$
$x_{2} \geq 0$

Mathematical representation of linear constraints Our problem had 2 variables, and constraints like $3 x_{1}+4 x_{2} \leq 100$

More generally, consider d variables $x_{1}, x_{2}, \ldots, x_{d}$. Then a linear constraint is of the form:

$$
\text { blah } * \mathrm{x}_{1}+\text { blah } * \mathrm{x}_{2}+\ldots+\text { blah } * \mathrm{xd} \leq \text { blah }
$$

where each "blah" is a real number

A linear constraint is of the form:

$$
\text { blah } * \mathrm{x}_{1}+\text { blah } * \mathrm{x}_{2}+\ldots+\text { blah } * \mathrm{xd} \leq \text { blah }
$$

where each "blah" is a real number.
Are our constraints linear?

Calories min	$100 x_{1}+50 x_{2} \geq 2000$
Calories max	$100 x_{1}+50 x_{2} \leq 2500$
Sugar	$3 x_{1}+4 x_{2} \leq 100$
Calcium	$20 x_{1}+70 x_{2} \geq 700$
Non-negativity	$x_{1} \geq 0$
	$x_{2} \geq 0$

First constraint:

$$
100 x_{1}+50 x_{2} \geq 2000
$$

Equivalent constraint: $-100 x_{1}-50 x_{2} \leq-2000$

A linear constraint is of the form:

$$
\text { blah } * \mathrm{x}_{1}+\text { blah } * \mathrm{x}_{2}+\ldots+\text { blah } * \mathrm{xd} \leq \text { blah }
$$

where each "blah" is a real number.
Are our constraints linear?

> Calories min $-100 x_{1}-50 x_{2} \leq-2000$ Calories max $100 x_{1}+50 x_{2} \leq 2500$ Sugar $\begin{array}{lr}3 x_{1}+4 x_{2} & \leq 100 \\ \text { Calcium } & -20 x_{1}-70 x_{2} \leq-700 \\ \text { Non-negativity } & -x_{1} \leq 0 \\ & -x_{2} \leq 0\end{array}$

Yes!

Now let's stare at our objective
$1 x_{1}+0.5 x_{2}$

Seems to have a familiar form
blah $* \mathrm{x}_{1}+$ blah $* \mathrm{x}_{2}+\ldots+$ blah $* \mathrm{xd}$
"Linear objective"

Let's look at it on a graph...

Now let's look at our objective

$\min .1 x_{1}+0.5 x_{2}$

Suppose you can move a unit distance starting from this point. In which direction is the cost reduced most?

Simpler question: Which reduces cost more?
Moving down 1 unit
Moving left 1 unit
Moving down by $\frac{1}{\sqrt{1^{2}+0.5^{2}}}$ and left by $\frac{0.5}{\sqrt{1^{2}+0.5^{2}}}$
Third option actually results in max decrease
\therefore Keep going along this line to keep reducing cost
"Linear" objective

Now let's look at our objective

$\min .1 x_{1}+0.5 x_{2}$

- Moving down by $\frac{1}{\sqrt{1^{2}+0.5^{2}}}$ and left by $\frac{0.5}{\sqrt{1^{2}+0.5^{2}}}$
- Consider direction -[1, 0.5]
- More generally for objective $c^{\top} x$, direction - c
- Contours of objective are perpendicular to it
- Want to find the point in the feasible set that is as far as possible in that direction

$$
\begin{aligned}
& \text { Putting it back together } \\
& \text { min. } \\
& \text { min }_{1}, x_{2} \\
& \text { s.t. } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

More generally

$$
\begin{array}{cl}
\min _{x_{1}, x_{2}} & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & a_{1,1} x_{1}+a_{1,2} x_{2} \leq b_{1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2} \leq b_{2} \\
& a_{3,1} x_{1}+a_{3,2} x_{2} \leq b_{3} \\
& a_{4,1} x_{1}+a_{4,2} x_{2} \leq b_{4} \\
& a_{5,1} x_{1}+a_{5,2} x_{2} \leq b_{5} \\
& a_{6,1} x_{1}+a_{6,2} x_{2} \leq b_{6}
\end{array}
$$

Even more generally, a linear program is... $\begin{array}{cc}\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}\end{array}$
$A=\left[\begin{array}{cc}-100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \\ -1 & 0 \\ 0 & -1\end{array}\right]$

$$
\left.\boldsymbol{b}=\left[\begin{array}{cc}
-2000 \\
2500 & \text { Calorie min } \\
100 & \text { Calorie max } \\
-700 & \text { Sugar } \\
0 \\
0
\end{array}\right] \text { Calcium } \quad \text { Non-negativity } \quad l \begin{array}{c}
1 \\
0.5
\end{array}\right]
$$

Question 1

What has to increase to add more nutrition constraints?

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Select all that apply
A) length x
B) length \boldsymbol{c}
C) height A
D) width A
E) length \boldsymbol{b}

Question 2

What has to increase to add more menu items?

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}
\end{array}
$$

Select all that apply
A) length \boldsymbol{x}
B) length \boldsymbol{c}
C) height A
D) width A
E) length \boldsymbol{b}

Linear Programming

Different representations

Inequality form
$\begin{array}{cc}\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & A \boldsymbol{x} \leq \boldsymbol{b}\end{array}$

General form
$\begin{array}{cl}\min _{\boldsymbol{x}} . & \boldsymbol{c}^{T} \boldsymbol{x}+\boldsymbol{d} \\ \text { s.t. } & G \boldsymbol{x} \leq \boldsymbol{h} \\ & A \boldsymbol{x}=\boldsymbol{b}\end{array}$

Standard form

$$
\begin{array}{cl}
\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \mathrm{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \succeq 0
\end{array}
$$

Can switch between representations!
E.g, $\quad A x=b$ can be written as $\left[\begin{array}{c}A \\ -A\end{array}\right] x \leq\left[\begin{array}{c}b \\ -b\end{array}\right]$

Optimization: General form

Optimization: General form Given functions $f: R^{d} \rightarrow R, g: R^{d} \rightarrow R^{m}$
minimize $f(x)$
$x \in \mathbf{R}^{d}$
subject to $g(x) \leq 0$

General form
minimize $f(x)$
$x \in R^{d}$
subject to $g(x) \leq 0$
Linear program
minimize $\quad c^{T} x$
$\begin{gathered}x \in R^{d} \\ \text { subject to }\end{gathered} \quad A x \leq b$

Special case: Constraint Satisfaction Problems

Is there any x which satisfies the constraints?
E.g., map coloring problem

Find any $\quad \boldsymbol{x} \quad$ s.t. $\quad \boldsymbol{x}$ satisfies constraints

minimize 1 $x \in \mathbf{R}^{\mathrm{d}}$
subject to $g(x) \leq 0$

Poll
$\min _{x} \boldsymbol{c}^{T} \boldsymbol{x}$
\boldsymbol{x}
s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$

If $A \in \mathbb{R}^{M \times N}$, which of the following also equals N ?

Select all that apply
A) length \boldsymbol{x}
B) length c
C) length \boldsymbol{b}

