AI: Representation and Problem Solving Particle Filtering

Instructors: Nihar B. Shah and Tuomas Sandholm
Slide credits: CMU AI and ai.berkeley.edu

Hidden Markov Models

- In many applications, the true state is not observed directly
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_{t} is a single discrete variable; E_{t} may be continuous and may consist of several variables

Filtering

$$
P\left(X_{T} \mid e_{1: T}\right)=?
$$

Robot Localization

- We know the map, but not the robot's position
- Observations are some sensor readings
- Another challenge: State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $\mathrm{P}(\mathrm{X})$

Particle Filter Localization (Sonar)

Global localization with sonar sensors

What about our current algorithms?

Previous lecture: Exact inference

Computational cost per time step: $O\left(|X|^{2}\right)$ where $|X|$ is the number of states
$O\left(|X|^{2}\right)$ is infeasible for models with many state variables

What about our current algorithms?

Want to compute $\mathrm{P}(\mathrm{XIE})$. What algorithm have we learnt for this?

- Likelihood weighted sampling!
- Fortin 1,2,....
- Draw $x_{t} \sim P\left(X_{t} \mid X_{t-1}=x_{t-1}\right)$
- $w=w^{*} P\left(e_{t} \mid x_{t}\right)$
- Take many such samples (say, N samples) and consider their weighted average
- Fails - number of samples needed grows exponentially with T
- Why??!!

Failure of likelihood weighted sampling

- Want to compute $\mathrm{P}(\mathrm{X} \mid \mathrm{E}=\mathrm{e})$,
- We sample from $P\left(X_{t} \mid X_{t-1}\right)$ so want samples which have high probability of $\mathrm{E}=\mathrm{e}$

Mismatch!

- Values of X which have high probability in $P\left(X_{t} \mid X_{t-1}\right)$ may have low probability of evidence $\mathrm{E}=\mathrm{e}$, i.e., low $\mathrm{P}(\mathrm{E}=\mathrm{e} \mid \mathrm{X}=$ sample)
- As t increases, samples eventually have very
 low probability of $\mathrm{E}=\mathrm{e}$

Particle Filtering

Filtering: $P\left(X_{T} \mid e_{1: T}\right)=$?

New algorithm: Particle filtering

- Builds on likelihood weighted sampling

Idea \# 1!

- Recall that the probability distribution of the samples are based on $P\left(X_{t} \mid X_{t-1}\right)$.
- But we are interested in samples with high probability of $\mathrm{P}(\mathrm{E}=\mathrm{e} \mid \mathrm{X})$
- What captures this distribution?
- The weights! ($\left.w=w^{*} \mathrm{P}\left(e_{t} \mid x_{t}\right)\right)$
- Let's use weights to somehow create a distribution to draw the samples from... (but how?)

New algorithm: Particle filtering

Idea \# 2 !

- Let's use weights to somehow create a distribution to draw the samples from... (but how?)
- For any sample, we have one weight. How can we really use that as a distribution?
- We are actually drawing N samples. This set of N weights can approximate a distribution!
- Don't draw samples one at a time, but instead in parallel.
- First draw N samples from $\mathrm{P}\left(\mathrm{X}_{1}\right)$
- Set weights for all N samples
- Then move on to X_{2} for all N samples, and so on.
- But how are we using it as a distribution?

New algorithm: Particle filtering

Idea \# 3 (the algorithm)!

- For each of the N samples, draw next state X_{t} from $P\left(X_{t \mid} X_{t-1}\right)$

- Set weights for all N samples according to $P\left(E_{t} \mid X_{t}\right)$
- Denote the N samples as $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{N}}$ and their respective weights as $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{N}}$
- Normalize the weights: $\mathrm{w}_{\mathrm{i}} \leftarrow \frac{\mathrm{w}_{\mathrm{i}}}{\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{w}_{\mathrm{j}}}$
- Resample each of the N samples
- For each i $\in 1, \ldots, N$:
- Draw \tilde{s}_{i} at random: $\tilde{s}_{i}=s_{\mathrm{j}}$ with probability w_{j} across $\mathrm{j}=1, \ldots, \mathrm{~N}$
oSet all weights to 1
- Repeat for X_{t+1} and so on

Robot Localization

- We know the map, but not the robot's position
- Observations are some sensor readings
- Another challenge: State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $\mathrm{P}(\mathrm{X})$

Particle Filter Localization (Sonar)

Global localization with sonar sensors

Particle Filter Localization (Laser)

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution
Propagate forward
Weight based on
Resample using based on transition function observation function weighted particles

Particles:
$(3,2) \mathrm{w}=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) \mathrm{w}=.2$
$(3,3) \mathrm{w}=.4$
$(2,2) \mathrm{w}=.4$

(New)
Particles: $(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Question

If we only have one particle which of these steps are unnecessary?

Propagate forward

Resample

Select all that are unnecessary.
A. Propagate forward
B. Weight
C. Resample
D. None of the above

Question

If we only have one particle which of these steps are unnecessary?

Propagate forward
Weight

Resample

Select all that are unnecessary.
A. Propagate forward Unless the weight is zero, in which case, you'll
B. Weight want to resample from the beginning $*$
C. Resample
D. None of the above

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

SLAM

In Class Activity

Given the following starting particles, transition model, and e_{1} and e_{2} observed at time 1 and time 2 , estimate $\mathbf{P}\left(\mathbf{X}_{2} \mid \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}\right)$.

$P\left(X_{t+1} \mid X_{t}\right.$ in middle row $)$

$\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{X}_{\mathrm{t}}\right.$ in bottom row $)$

$\mathrm{P}\left(\mathrm{e}_{1} \mid \mathrm{x}_{1}\right)$

.3	.5		
.5	.5		
.2	.5		

$\mathrm{P}\left(\mathrm{e}_{2} \mid \mathrm{x}_{2}\right)$

	.05	.4	
	.3	.5	
	.05	.2	

In Class Activity

Given the following starting particles, transition model, and e_{1} and e_{2} observed at time 1 and time 2, estimate $\mathbf{P}\left(\mathbf{X}_{\mathbf{1}} \mid \mathbf{e}_{1}\right)$.

$\mathrm{P}\left(\mathrm{e}_{1} \mid \mathrm{x}_{1}\right)$

.3	.5		
.5	.5		
.2	.5		

In Class Activity

Given the following starting particles, transition model, and e_{1} and e_{2} observed at time 1 and time 2, estimate $\mathbf{P}\left(\mathbf{X}_{\mathbf{1}} \mid \mathbf{e}_{1}\right)$.

$\mathrm{P}\left(\mathrm{e}_{1} \mid \mathrm{x}_{1}\right)$

.3	.5		
.5	.5		
.2	.5		

In Class Activity

Given the following starting particles, transition model, and e_{1} and e_{2} observed at time 1 and time 2, estimate $\mathbf{P}\left(\mathbf{X}_{\mathbf{1}} \mid \mathbf{e}_{1}\right)$.

In Class Activity

Given the particles at $\mathrm{T}=1$, transition model, and e_{2} observed at time 2 , estimate $\mathbf{P}\left(X_{2} \mid \mathbf{e}_{1}, \mathbf{e}_{2}\right)$.

In Class Activity

Given the particles at $\mathrm{T}=1$, transition model, and e_{2} observed at time 2 , estimate $\mathrm{P}\left(\mathrm{X}_{2} \mid \mathrm{e}_{1}, \mathrm{e}_{2}\right)$.

$$
P\left(e_{2} \mid x_{2}\right)
$$

	.05	.4	
	.3	.5	
	.05	.2	

In Class Activity

Given the particles at $\mathrm{T}=1$, transition model, and e_{2} observed at time 2, estimate $\mathbf{P}\left(X_{2} \mid \mathbf{e}_{1}, \mathrm{e}_{2}\right)$.

$P\left(e_{2} \mid x_{2}\right)$

