AI: Representation and Problem Solving Particle Filtering

Instructors: Nihar B. Shah and Tuomas Sandholm

Slide credits: CMU AI and ai.berkeley.edu

Hidden Markov Models

- In many applications, the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states *X*
 - You observe evidence *E* at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Filtering

 $P(X_T | e_{1:T}) = ?$

Robot Localization

- We know the map, but not the robot's position
- Observations are some sensor readings
- Another challenge: State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store P(X)

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

What about our current algorithms?

Computational cost per time step: $O(|X|^2)$ where |X| is the number of states

 $O(|X|^2)$ is infeasible for models with many state variables

What about our current algorithms?

Want to compute P(X | E). What algorithm have we learnt for this?

- o Likelihood weighted sampling!
 - For t in 1,2,....
 - o Draw $x_t \sim P(X_t | X_{t-1} = x_{t-1})$
 - \circ w=w*P(e_t | x_t)
 - Take many such samples (say, N samples) and consider their weighted average
- Fails number of samples needed grows *exponentially* with *T*
- Why??!!

Failure of likelihood weighted sampling

 Want to compute P(X | E=e), so want samples which have high probability of E=e

• We sample from $P(X_t | X_{t-1})$

Mismatch!

- Values of X which have high probability in P(X_t|X_{t-1}) may have low probability of evidence E=e, i.e., low P(E=e|X=sample)
- As t increases, samples eventually have very low probability of E=e

Particle Filtering

Filtering: $P(X_T | e_{1:T}) = ?$ $(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4)$ $(e_1 \ e_2 \ e_3 \ e_4)$

New algorithm: Particle filtering

Builds on likelihood weighted sampling

Idea #1!

- Recall that the probability distribution of the samples are based on $P(X_t | X_{t-1})$.
- But we are interested in samples with high probability of P(E=e|X)
- What captures this distribution?

 \circ **The weights!** (w=w*P(e_t | x_t))

 Let's use weights to somehow create a distribution to draw the samples from... (but how?)

New algorithm: Particle filtering

Idea # 2!

- Let's use weights to somehow create a distribution to draw the samples from... (but how?)
- For any sample, we have one weight. How can we really use that as a distribution?
- We are actually drawing N samples. This set of N weights can approximate a distribution!
- Don't draw samples one at a time, but instead in parallel.
 - \circ First draw N samples from P(X₁)
 - Set weights for all N samples
 - $\circ\,$ Then move on to X_2 for all N samples, and so on.
- But how are we using it as a distribution?

New algorithm: Particle filtering

Idea #3 (the algorithm)!

- \circ For each of the N samples, draw next state X_t from P(X_t|X_{t-1})
- $\circ\,$ Set weights for all N samples according to $P(E_t\,|\,X_t)$
- \circ Denote the N samples as s_1, s_2, \ldots, s_N and their respective weights as w_1, w_2, \ldots, w_N
- \circ Normalize the weights: $w_i \leftarrow \frac{w_i}{\sum_{j=1}^N w_j}$
- o **Resample** each of the N samples
 - \circ For each i ε 1,...,N:

o Draw \tilde{s}_i at random: $\tilde{s}_i = s_j$ with probability w_j across j=1,...,N

•Set all weights to 1

 $\circ\,$ Repeat for $X_{t+1} \,and\,$ so on

Robot Localization

- We know the map, but not the robot's position
- Observations are some sensor readings
- Another challenge: State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store P(X)

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Dieter Fox, et al.]

[Video: global-floor.gif]

Summary: Particle Filtering

Question

If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above

Question

If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above
- Unless the weight is zero, in which case, you'll want to resample from the beginning \otimes

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- o State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Sebastian Thrun, et al.]

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2

[Dirk Haehnel, et al.]

[Demo: PARTICLES-SLAM-fastslam.avi]

SLAM

https://www.irobot.com/

Given the following starting particles, transition model, and e_1 and e_2 observed at time 1 and time 2, estimate $P(X_2 | e_1, e_2)$.

$P(e_1 x_1)$					
.3	.5				
.5	.5				
.2	.5				

$P(e_2 x_2)$				
	.05	.4		
	.3	.5		
	.05	.2		

Given the following starting particles, transition model, and e_1 and e_2 observed at time 1 and time 2, estimate $P(X_1 | e_1)$.

P(e ₁ x	1)	
.3	.5	
.5	.5	
.2	.5	

Given the following starting particles, transition model, and e_1 and e_2 observed at time 1 and time 2, estimate $P(X_1 | e_1)$.

P(e ₁	$ \mathbf{x}_1)$
------------------	------------------

.3	.5	
.5	.5	
.2	.5	

Given the following starting particles, transition model, and e_1 and e_2 observed at time 1 and time 2, estimate $P(X_1 | e_1)$.

te	
σ	
Ξ	
-	
S	
ш	

	.2		
.5	.3		

F	P(e ₁ x ₁)		
	.3	.5	
	.5	.5	
	.2	.5	

Given the particles at T=1, transition model, and e_2 observed at time 2, estimate $P(X_2 | e_1, e_2)$.

$P(e_2 x_2)$			
	.05	.4	
	.3	.5	
	.05	.2	

Given the particles at T=1, transition model, and e_2 observed at time 2, estimate **P**(**X**₂ | e_1,e_2).

$P(e_2 x_2)$				
	.05	.4		
	.3	.5		
	.05	.2		

Given the particles at T=1, transition model, and e_2 observed at time 2, estimate $P(X_2 | e_1, e_2)$.

Weight based on e₂

	.1	
.6	.3	

P(e ₂ x ₂)				
	.05	.4		
	.3	.5		
	.05	.2		