AI: Representation and Problem Solving

Bayes Nets Sampling

Instructors: Nihar B. Shah and Tuomas Sandholm
Slide credits: CMU AI and ai.berkeley.edu

Today: Sampling

- For random variables X_{1}, \ldots, X_{n}
- How to get a sample from $P\left(X_{1}, \ldots, X_{n}\right)$?
- How to get a sample from $P\left(X_{5}, X_{6} \mid X_{3}=x_{3}, X_{7}=x_{7}\right)$?
- Why do we need this?

Reason 1: Inference

- Estimating posterior probabilities ($\mathrm{P}($ Query l evidence)) can be computationally expensive
- Instead, sampling from the posterior distribution can be easier
- Recall Monte Carlo approach from earlier
- Given enough samples, counts converge to true probability
- Use that to approximate the posterior probability

Warm up

Prior Sampling: Given N samples from $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$, what does the value $\frac{\operatorname{count}(+a,-b,+c)}{N}$ approximate?
A. $P(+a,-b,+c)$
B. $P(+c \mid+a,-b)$
C. $P(+c \mid-b)$
D. $P(+c)$

In fact, $\lim _{N \rightarrow \infty} \frac{\operatorname{count}(+a,-b,+c)}{N}=P(+a,-b,+c)$

Warm-up

Given these $\mathrm{N}=10$ samples from $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$:
What is the approximate value for
$P(-a,+b,-c)$?
A. $1 / 10$
B. $5 / 10$
C. $1 / 4$

Counts

+a	+b	+c	0
+a	+b	-c	0
+a	-b	+c	3
+a	-b	-c	0
-a	+b	+c	4
-a	+b	-c	1
-a	-b	+c	2
-a	-b	-c	0

D. $1 / 5$

Warm-up

Given these $\mathrm{N}=10$ samples from $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$:
What is the approximate value for
$P(-c \mid-a,+b)$?
A. $1 / 10$
B. $5 / 10$
C. $1 / 4$

Counts

+a	+b	+c	0
+a	+b	-c	0
+a	-b	+c	3
+a	-b	-c	0
-a	+b	+c	4
-a	+b	-c	1
-a	-b	+c	2
-a	-b	-c	0

D. $1 / 5$

Reason 2: Simulations

Fire department wants to conduct a drill

- Simulate daily conditions by drawing from P(F, S, A)
- Simulate situation of an alarm by drawing from $P(F, S \mid A=+a)$

Cool connection: GenAI Image generation

- This is at its core a sampling problem
- It is generating random samples from the distribution, in this example, of human images
- The distribution is unknown and hard to specify
- Techniques much more advanced than what we'll study here

Sampling in Bayes' Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

Prior Sampling

\circ Given a Bayes net, how to sample from $P\left(X_{1}, \ldots, X_{n}\right)$?

- Certain applications (e.g., simulations) need sample from entire joint distribution
- To answer a conditional or marginal probability
- Approximate joint distribution based on samples
- Answer desired query from it

Example

- How would you sample from $\mathrm{P}(\mathrm{A}, \mathrm{B})$?
- You have access to $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

	+a	$1 / 2$
+a	$1 / 2$	
$-a$	$1 / 2$	

$$
P(B \mid A)
$$

- $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- First draw a sample $\mathrm{a} \sim \mathrm{P}(\mathrm{A})$
- Then draw $\mathrm{b} \sim \mathrm{P}(\mathrm{B} \mid \mathrm{A}=\mathrm{a})$
- Thus (a, b) is a sample from $\mathrm{P}(\mathrm{A}, \mathrm{B})$

Prior Sampling

\circ Given a Bayes net, how to sample from $P\left(X_{1}, \ldots, X_{n}\right)$?

- You have access to the CPTs used to construct the Bayes net
- Consider a topological ordering of the nodes of the Bayes net (say, it is $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$)
- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample $x_{i} \sim P\left(X_{i} \mid\right.$ Parents $\left(X_{i}\right)=$ their sampled values)
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Rejection Sampling

How to sample conditionals?

- How to get a sample from $\mathrm{P}(\mathrm{F} \mid \mathrm{A}=+\mathrm{a})$
- E.g., for a fire department drill

Rejection sampling:

- Use prior sampling to get a sample (f, s, a) ~P(F, S, A)
- If $\mathrm{a}=-\mathrm{a}$, then discard this sample and go back to the step above
- If $a=+a$, then return the sampled value of f

Rejection Sampling

For given values of variable(s) $X_{e}=x_{e}$, want to draw a sample from P (other $X^{\prime} s \mid X_{e}=x_{e}$)

- Sample $\left(x_{1}, \ldots, x_{n}\right) \sim P\left(X_{1}, \ldots, X_{n}\right)$
- If sample for X_{e} is different from given evidence
- Discard sample and go back to first step
- Return sampled value

Rejection Sampling in Bayes nets

For given values of variable(s) $X_{e}=x_{e}$, want to draw a sample from P (other $X^{\prime} s \mid X_{e}=x_{e}$)

- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ (assumed topological ordering of graph)
- Sample x_{i} from $P\left(X_{i} \mid\right.$ Parents $\left(X_{i}\right)=$ sampled values)
- If i is in evidence set e , and sampled x_{e} is different from given evidence
- Restart from first step, starting again from $\mathrm{i}=1$
- Return sampled value

Question

Consider rejection sampling under evidence $\mathrm{C}=+\mathrm{c}$. Suppose you draw 10 samples, and observe the following counts.

Why don't you observe any samples with -c?

Counts $N(A, B, C)$			
+a	+b	+c	4
+a	+b	-c	
+a	-b	+c	3
+a	-b	-c	
-a	+b	+c	2
-a	+b	-c	
-a	-b	+c	1
-a	-b	-c	

Question

Consider rejection sampling under evidence $\mathrm{C}=+\mathrm{c}$. Suppose you draw 10 samples, and observe the following counts.

Approximately, what is $\mathrm{P}(+\mathrm{a},+\mathrm{b} \mid+\mathrm{c})$?

1) $1 / 10$
2) $1 / 20$
3) $1 / 4$
4) $1 / 2$
Counts $N(A, B, C)$

+a	+b	+c	4
+a	+b	-c	
+a	-b	+c	3
+a	-b	-c	
-a	+b	+c	2
-a	+b	-c	
-a	-b	+c	1
-a	-b	-c	

Problem with rejection sampling

"If $\mathrm{a}=-\mathrm{a}$, then discard this sample..."

Can be very wasteful!
E.g., if P (evidence) is low, then will have to discard a large fraction of samples!

Likelihood Weighting

Likelihood reweighing: Main idea

- In rejection sampling, we were drawing samples from $P\left(X_{1}, \ldots, X_{n}\right)$ without regard to given evidence
- Instead:
- Let's fix evidence variables $X_{e}=x_{e}$
- Sample the remaining variables
- Due to the "fixing", the distribution of the sampling may have issues
- Do some reweighing to address these issues

Likelihood weighted Sampling

For given values of variable $X_{e}=x_{e}$, want to obtain $P\left(\right.$ other $\left.X^{\prime} s \mid X_{e}=x_{e}\right)$

○ For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ (assumed toplogical ordering of graph)

- If $\mathrm{i}=\mathrm{e}$
- Set x_{e} as the given value
- Let $w=P\left(X_{e}=x_{e} \mid \operatorname{Parents}\left(X_{e}\right)=\right.$ sampled values $)$
- Else
- Sample x_{i} from $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)=\right.$ sampled or given values $)$
- Return sample along with weight w

Instead of sampling X_{e}, we set it to given evidence x_{e} and give a weight to this sample as its probability conditioned on sampled values of its parents
$\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{e}-1}=\mathrm{x}_{\mathrm{e}-1}, \mathrm{X}_{\mathrm{e}+1}=\mathrm{x}_{\mathrm{e}+1}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \mid \mathrm{X}_{\mathrm{e}}=\mathrm{x}_{\mathrm{e}}\right)=\frac{\sum_{\text {samples }} \mathbb{I}\left\{\text { sample }=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{e}-1,}, \mathrm{X}_{\mathrm{e}+1, \ldots,}, \mathrm{x}_{\mathrm{n}}\right)\right\}_{* \text { weight of sample }}}{\sum_{\text {samples }} \text { weight of sample }}$

Question

Suppose $\mathrm{e}=\mathrm{B}$. We want to estimate $\mathrm{P}(\mathrm{A}, \mathrm{C} \mid \mathrm{B}=+\mathrm{b})$ via likelihood reweighing.

$P(A)$	+a	1/2		- What variable should we sample first? What distribution?
	-a	1/2		
$P(B \mid A)$	+a	+b	1/10	- Suppose you draw +a - What should you do next?
		-b	9/10	- Next variable in topological ordering is the evidence variable B - Set weight $\mathrm{w}=\mathrm{P}(\mathrm{B}=+\mathrm{b} \mid \mathrm{A}=+\mathrm{a})$
	-a	+b	1/2	
		-b	1/2	- $\mathrm{w}=1 / 10$ - What next?
$P(C \mid B)$				- What next? - Sample C via $\mathrm{P}(\mathrm{C} \mid \mathrm{B}=+\mathrm{b})$
	+b	+c	4/5	- Sample C via $\mathrm{P}(\mathrm{Cl} \mathrm{B}=+\mathrm{b})$
		-c	1/5	
	-b	+c	1	- Output sample ($+\mathrm{a},-\mathrm{c}$) with weight $1 / 10$
		-c	0	

Question

Suppose $\mathrm{e}=\mathrm{B}$. We want to estimate $\mathrm{P}(\mathrm{A}, \mathrm{C} \mid \mathrm{B}=+\mathrm{b})$ via likelihood reweighing.

Question

Suppose $\mathrm{e}=\mathrm{B}$. We want to estimate $\mathrm{P}(\mathrm{A}, \mathrm{C} \mid \mathrm{B}=+\mathrm{b})$ via likelihood reweighing.

	+a	1/2		- Suppose we have the following samples: - 4 samples ($+\mathrm{a},-\mathrm{c}$) each with weight $1 / 10$ - 2 samples ($-\mathrm{a},-\mathrm{c}$) each with weight $1 / 2$ - 2 samples $(-a,+c)$ each with weight $1 / 2$ - 1 sample $(+a,+c)$ with weight $1 / 10$
	-a	1/2		
$P(B \mid A)$	+a	+b	1/10	
		-b	9/10	
	-a	+b	1/2	
		-b	1/2	
				What is our estimate of $\mathrm{P}(\mathrm{A}=+\mathrm{a}, \mathrm{C}=+\mathrm{c} \mid \mathrm{B}=+\mathrm{b})$?
$P(C \mid B)$	+b	+c	4/5	1/10
		-c	1/5	$\frac{1}{10}+2 * \frac{1}{2}+2 * \frac{1}{2}+4 * \frac{1}{10} \quad 25$
	-b	+c	1	
		-c	0	

Likelihood weighted Sampling

What if there are multiple evidence (given) variables?

- Initialize weight w=1

○ For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ (assumed toplogical ordering of graph)

- If i is an evidence (given) variable
- Set x_{e} as the given value
$\circ W=W^{*} P\left(X_{e}=x_{e} \mid\right.$ Parents $\left(X_{e}\right)=$ sampled values $)$
- Else
- Sample x_{i} from $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)=\right.$ sampled or given values)
- Return sample along with weight w

$$
\mathrm{P}\left(\text { other variables }=\text { value } \mid X_{\mathrm{e}}=\mathrm{x}_{\mathrm{e}}\right)=\frac{\sum_{\text {samples }} \mathbb{\{ \text { sample } = \text { value } \} * \text { weight of sample }}}{\sum_{\text {samples }} \text { weight of sample }}
$$

Gibbs Sampling

GenAI Image Generation

S DALL•E

- Suppose you want to generate images
- These images don't actually exist and you want to generate new ones
- Popular technique: Diffusion models
- Also: Generative Adversarial Networks (GANs)
- At its core, this involves sampling from some unknown crazy distribution!
- Today: Let's understand Gibbs sampling via a toy version of this

Image generation: Toy example

- Image comprises a foreground and a background
- Image foreground ϵ \{Cow, human, airplane, car\}
- Image background ϵ \{Buildings, sky, grass\}
- Want to generate an image randomly \sim P(Foreground, Background)
- What is $\mathrm{P}($ Foreground $=$ cow $)$? What is $\mathrm{P}($ Background $=$ Buildings $)$?
- Hard to tell
- What is P(Foreground = cow | Background = grass)?
\circ What is P (Background = grass \mid Foreground = airplane)?
- Marginals are hard to specify or estimate but conditionals are easier!

Gibbs sampling

- You have access to $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$ for all i
- Want to sample from $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
- Initialize some values ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$)
- Repeat many times:
o For $\mathrm{i}=1, \ldots, \mathrm{n}$:
\circ Let $x_{i} \sim P\left(X_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}, X_{i+1}=x_{i+1}, \ldots, X_{n}=x_{n}\right)$
- Note: this will overwrite the previous value of x_{i}
\circ Output x_{1}, \ldots, x_{n}

Gibbs sampling: Toy example

- Initialize Foreground = cow, Background = sky
- Draw from P(Foreground I Background=sky) to get airplane
- Draw from P(Background | Foreground= airplane) to get sky
- Draw from P(Foreground I Background=sky) to get human
- Draw from P(Background | Foreground=human) to get buildings
- Draw from P(Foreground | Background=buildings) to get car
- Draw from P(Background | Foreground=car) to get grass
- Output (Foreground=car, Background=grass)

Gibbs sampling of conditional

- You are given $X_{e}=x_{e}$
- You have access to $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$ for every remaining variable i
- Want to sample from P(other variables $\mid X_{e}=x_{e}$)
- Initialize some values for all other variables
- Repeat many times:
- For every variable i not in e
\circ Let $x_{i} \sim P\left(X_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}, X_{i+1}=x_{i+1}, \ldots, X_{n}=x_{n}\right)$
\circ Note: this will overwrite the previous value of x_{i}
- Output $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$

Poll

\circ Consider two variables A and B, taking values $\{-a,+a\}$ and $\{-b,+b\}$ respectively.

- To avoid pathological cases, suppose $P(A=a, B=b)>0$ for every (a, b).
- You are given access to $P(A \mid B)$ and $P(B \mid A)$.
- Gibbs sampling produces $P(A, B)$ from these two conditionals. But one may wonder whether the two conditionals even specify $P(A, B)$ uniquely or whether they leave some ambiguity. To this end, work out the following.
- State true or false: From this data, one can always recover $\mathrm{P}(\mathrm{A}, \mathrm{B})$.

