INSTRUCTIONS

- Due: Monday, February 19, 2024 at 10:00 PM EDT. Remember that you may use up to 2 slip days for the Written Homework making the last day to submit Wednesday, February 21, 2024 at 10:00 PM EDT.
- Format: Write your answers in the yoursolution.tex file and compile a pdf (preferred) or you can type directly on the blank pdf. Make sure that your answers are within the dedicated regions for each question/part. If you do not follow this format, we may deduct points. Handwritten solutions are not acceptable and may lead to lost points.
- How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 15-281, click on the HW4 assignment, and upload your pdf containing your answers.
- Policy: See the course website for homework policies and academic integrity.

Name	
Andrew ID	
Hours to complete?	$\bigcirc(0,2]$ hours $\quad \bigcirc(2,4]$ hours $\bigcirc(4,6]$ hours
	$\bigcirc(6,8]$ hours $\bigcirc>8$ hours

Q1. [18 pts] Local Search

(a) For each question below, write the name of the local search algorithm that most closely resembles the special case.
(i) $[1 \mathrm{pt}]$ Simulated annealing with $T=0$ at all times (and omitting the termination test)

Answer:
(ii) $[1 \mathrm{pt}]$ Simulated annealing with $\mathrm{T}=\infty$ at all times

Answer:
(b) Consider how each of the following searches performs in the state space below. Recall that in the context of local search, our goal is to find the state that maximizes the objective.

(i) [2 pts] Does hill-climbing search with start state c terminate?
\bigcirc Yes \bigcirc No
(ii) [2 pts] If hill-climbing search with start state c terminates, does it find the global maximum x ?YesNoDoes Not Terminate
(iii) [2 pts] Does random-restart hill-climbing search with randomly generated initial states a, d, then b terminate?
\bigcirc Yes \bigcirc No
(iv) [2 pts] If random-restart hill climbing search with randomly generated initial states a, d, then b terminates, does it find the global maximum x ?
\bigcirc Yes \bigcirc No \bigcirc Does Not Terminate
(v) [2 pts] Does stochastic hill climbing that allows sideways moves with start state d terminate?
\bigcirc Yes \bigcirc No
(vi) [2 pts] If stochastic hill climbing that allows sideways moves with start state d terminates, does it find the global maximum x ?
\bigcirc
Yes \bigcirc No Does Not Terminate
(vii) [2 pts] For all starting values of T, at which starting state will simulated annealing be the most likely to find the global maximum?
○b \square c d
(viii) [2 pts] Given that the start state is c, will a smaller value or a larger value of T improve the chances of the agent finding x ?T will not have an impact on finding xSmaller value of TLarger value of T

Q2. [19 pts] Pinky's Day

Pinky is trying to organize her time in a day. Except for sleeping, eating, and (most importantly) posting on Instagram (@pinkythepenguin15281), she still has 8 hours to spare each day. Two important things in her life are partying and doing homework. In order to keep up with her classes, she has to spend at least 2 hours per day on homework. But she doesn't want the wear herself out, so the number of hours she spends partying should equal at least half the number of hours she spends on homework. On the other hand, she feels bad if she parties too much, so her party time should not exceed her homework time by more than 3 hours.

Pinky knows that she will gain 1 unit of happiness for every hour she parties, and she will lose 0.5 unit of happiness for every hour she spends on homework. But she needs your help to figure how much time she should spend on partying and how much time she should spend doing homework such that her happiness is maximized.
(a) [7 pts] Write this problem as an LP in inequality form as defined in lecture. Define variable x_{1} to be hours spend in parties, and variable x_{2} to be the time spend on homework. Warning: Be sure to strictly follow the inequality form, including the proper use of less than or equal, or you will lose points.

Inequality Form:

(b) $[9 \mathrm{pts}]$ Accurately plot the graphical representation of this linear program. Specifically:

- Plot the boundary of each halfspace as a line (no need to shade or draw normal vectors), and
- Plot the cost vector as an arrow with magnitude one, somewhere within the feasible region.

Do not draw; use a plotting tool such as Python matplotlib and include the resulting image here. Be sure to label the axes of your plot, including tick-marks. Display your plot with a square aspect ratio, e.g. in matplotlib: plt.axis("equal"). Additionally, zoom your plot to make the entire feasible region visible.
Tip to a plot vector $\left[v_{1}, v_{2}\right]^{T}$ in matplotlib starting at some point $\left(x_{1}, x_{2}\right)$:

```
plt.quiver(x1, x2, v1, v2, angles="xy", scale_units="xy", scale=1)
```

Tip to properly control scaling using a specific width and height:

```
plt.figure(figsize=(width,height))
```

We have included some starter code for you in figures/plot_graph.py. You will need to modify the plot_graph() function and fill in code for compute_unit_length() yourself.
Note: For the sake of grading please let your x be of range $[-2,10]$ and y be of range $[-4,8]$.
Plot:
(c) [3 pts] Find the optimal solution to the LP problem. Give the solution hours she should spend in party and homework respectively and her happiness.

Party:	Homework:	Happiness:

Q3. [16 pts] Graphing LPs

For the inequality form of a linear program, and a given A matrix and \mathbf{b} vector,

$$
\begin{aligned}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x} \preceq \mathbf{b}
\end{aligned}
$$

For each row i of A and \mathbf{b}, accurately plot 1) the line $a_{i, 1} x_{1}+a_{i, 2} x_{2}=b_{i}$ and 2) the vector $\left[a_{i, 1}, a_{i, 2}\right]^{T}$ as an arrow beginning at any point on its respective line with magnitude one.

Tip to plot a vector $\left[v_{1}, v_{2}\right]^{T}$ in matplotlib starting at some point $\left(x_{1}, x_{2}\right)$:
plt.quiver(x1, x2, v1, v2, angles="xy", scale_units="xy", scale=1)

Tip to properly control scaling using a specific width and height: plt.figure(figsize=(width,height))
Do not draw; use a plotting tool such as Python matplotlib and include the resulting image here. Be sure to label the axes of your plot, including tick-marks. Display your plot with a square aspect ratio, e.g. in matplotlib: plt.axis("equal"). Additionally, zoom your plot or adjust the axes such that all of the vectors are visible. You do not need to shade the feasible regions.

We have included some starter code for you in plot_graph.py. You will need to modify the plot_graph() function and fill in code for compute_unit_length() yourself.
(a) $[8 \mathrm{pts}]$

$$
A=\left[\begin{array}{cc}
3 & 5 \\
7 & 6 \\
12 & 6
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
10 \\
17 \\
27
\end{array}\right]
$$

Plot:
(b) $[8 \mathrm{pts}]$

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
2 & 5 \\
7 & 2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-4 \\
10 \\
11
\end{array}\right]
$$

Plot:

Q4. [23 pts] Integer Programming

Stock portfolio investment is a common application of linear and integer programming. Suppose you are interested in investing in two companies, X and Y. A good way to hedge your bets is to diversify your portfolio, so you want at least 2 shares of X 's stock and at least 2 shares of Y 's. One share of X costs $\$ 1$, and one share of Y costs $\$ 2$. You want to spend at most $\$ 10$. You also want to keep your risk below some risk threshold R. X has risk 3 , and Y has risk 1. How much of each stock should you buy to maximize profits if X has profit $\$ 4$ per share, and Y has profit $\$ 1$ per share.
(a) $[3 \mathrm{pts}]$ Write the A, b, and c matrix in inequality form (minimization). Assume $x=[X, Y]^{T}$ in that order. Use parameter R if needed.

(b) [4 pts] If $R=13$, what are the corners (X, Y) constrained polygon?

Corners:

(Optional) For partial credit on (b) and (c), you may choose to show your work below:

(c) [2 pts] What are the coordinates (X, Y) of the optimal objective? What is the associated profit?

LP Solution Coordinates:	Profit:

(d) [8 pts] You should find that the minimum cost corner is a non-integer. On your stock trading site, you must buy whole shares of stock. Run branch and bound to find the optimal number of integer shares of stock you should buy. Follow these instructions very carefully:

- Each iteration corresponds to that depth of the branch and bound tree. Fill in the appropriate information for each iteration until the branch and bound algorithm finishes and returns. Use only as many rows the algorithm needs before it returns.
- Specify ALL the constraints you add to the problem in addition to the original set. For example, if you first branch on $Y \leq 10$ and $Y \geq 11$, then you'd write for the left branch $Y \leq 10$ and for the write branch $Y \geq 11$. If you then pull $Y \geq 11$ off the queue and branch on $X \leq 20$ and $X \geq 21$, the second iteration would have left branch " $Y \geq 11, X \leq 20$ " and right branch " $Y \geq 11, X \geq 21$ "
- If a particular solution is infeasible, write "infeasible" in that box.

Iteration	Left Branch Constraints	Left Solution (X, Y)	Right Branch Constraints	Right Solution (X, Y)
1	(i)	(ii)	(iii)	(iv)
2	(v)	(vi)	(vii)	(viii)
3	(ix)	(x)	(xi)	(xii)
4	(xiii)	(xiv)	(xv)	(xvi)

What is the optimal objective and the associated profit?

(e) [6 pts] You decide that you're willing to be riskier in your stock purchases in order to make more money. Do not change any other constraints except the value of risk R. Find the minimum value of R that maximizes the total profit given the rest of the constraints.

New IP Solution:

New Profit:

Q5. [18 pts] Feasible Regions

In this problem, you are given a graph with constraint boundary lines (bolded) and potential feasible regions. You may assume shaded regions at the edge of the plot continue to infinity. Provide the corresponding A and \boldsymbol{b} based on the inequality form below for each feasible region in the boxes below:

$$
\begin{aligned}
\min _{\boldsymbol{x}} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & A \boldsymbol{x} \preceq \boldsymbol{b}
\end{aligned}
$$

(a) $[6 \mathrm{pts}]$ Feasible Region 1

(b) $[6 \mathrm{pts}]$ Feasible Region 2

(c) $[6 \mathrm{pts}]$ Feasible Region 3

Q6. [6 pts] Ethical Considerations for Amazon Delivery Routes

The following question will be about Amazon's Cost Saving Routing Algorithm Makes Drivers Walk Into Traffic: https://www.vice.com/en/article/5db95k/amazons-cost-saving-routing-algorithm-makes-drivers-wal k-into-traffic
(a) [2 pts] Give two possible parameters that the Amazon delivery routing algorithm currently optimizes for. Why do you think these are being used?

Answer:

(b) [2 pts] Why are these parameters in conflict with the delivery drivers' needs? Additionally, give two possible parameters that the routing algorithm could add to make it more fair for the drivers.
Answer: \quad (
(c) $[2 \mathrm{pts}]$ Mike, the anonymous interviewee, gave a lot of information about his route and troubles in the interview. Do you think it would be ethical for Amazon, using their data on delivery routes, to design an algorithm to search for who Mike really was? Why or why not?
Answer:

