Warm-up $\quad r=8$ it if a mold ascites γ, them it sotiefiy δ

- The regions below visually enclose the set of models that satisfy the respective sentence γ or δ. For which of the following diagrams does γ entail δ. Select all that apply.
AA)

琣

Warm-up

 $\gamma \vDash \delta$: iff in every world where γ is true, δ is also true- The regions below visually enclose the set of models that satisfy the respective sentence γ or δ. For which of the following diagrams does γ entail δ. Select all that apply.

AI: Representation and Problem Solving Boolean Satisfiability Problem (SAT)
 \& Logical Agents

Instructors: Fei Fang \& Pat Virtue
Slide credits: CMU AI, http://ai.berkeley.edu

Announcements

- Midterm 1 Exam
- Tue $10 / 1$, in class
- Assignments:
- HW4
- Due Tue 9/24, 10 pm
- P2: Logic and Planning
- Out today
- Due Sat 10/5, 10 pm

Learning Objectives

- Describe the definition of (Boolean) Satisfiability Problem (SAT)
- Describe the definition of Conjunctive Normal Form (CNF)
- Describe the following algorithms for solving SAT
- DPLL, CDCL, WalkSAT, GSAT
- Determine whether a sentence is satisfiable
- Describe Successor-State Axiom
- Describe and implement SATPlan (Planning as Satisfiability)
- (Hybrid Agent)

Logical Agent Vocab: Recap

- Symbol: Variable that can be true or false
- Model: Complete assignment of symbols to True/False
- Operators: $\neg A$ (not), $A \wedge B$ (conjunction), $A \vee B$ (disjunction), $A \Rightarrow B$ (implication), $A \Leftrightarrow$ B (biconditional)
- Sentence: A logical statement composed of logic symbols and operators
- KB: Collection of sentences representing facts and rules we know about the world
- Query: Sentence we want to know if it is provably True, provably False, or unsure.

Logical Agent Vocab: Recap

- Entail
- Does sentence1 entail sentence2?
- Input: sentence1, sentence2
- Output: True if each model that satisfies sentence1 must also satisfy sentence2; False otherwise
- "If I know 1 holds, then I know 2 holds"
- Satisfy
- Does model satisfy sentence?
- Input: model, sentence
- Output: True if this sentence is true in this model; False otherwise
- "Does this particular state of the world work?"

(Boolean) Satisfiability Problem (SAT)

- Satisfiable
- Is sentence satisfiable?
- Input: sentence
- Output: True if at least one model batisfies sentence
- "Is it possible to make this sentence true?"
- SAT problem is the problem of determining the satisfiability of a sentence
- SAT is a typical problem for logical agents
- SAT is the first problem proved to be NP-complete
- If satisfiable, we often want to know what that model is

SAT and Entailment

- A sentence is satisfiable if it is true in at least one world
- Suppose we have a hyper-efficient SAT solver; how can we use it to test entailment?
- Suppose $\alpha \mid=\beta$
- Then $\alpha \Rightarrow \beta$ is true in all worlds
- Hence $\neg(\alpha \Rightarrow \beta)$ is false in all worlds
- Hence $\alpha \wedge \neg \beta$ is false in all worlds, i.e., unsatisfiable
- More generally, to prove a sentence is valid (i.e., true in all models), introduce the negated claim and test for unsatisfiability; also known as reductio ad absurdum (reduction to absurdity)

SAT and CSPs

- SAT problems are essentially CSPs with Boolean variables
- Can apply backtracking based algorithms
- Can apply local search algorithms
- Naïve way to solve SAT: Truth table enumeration
- Efficient SAT solvers operate on conjunctive normal form
- Often based on backtracking and local search

Propositional Logical Vocab: Recap

- Literal
- Atomic sentence: True, False, Symbol, \neg Symbol
- Clause
- Disjunction of literals: $A \vee B \vee \neg C$
- Definite clause
- Disjunction of literals, exactly one is positive
- $\neg A \vee B \vee \neg C$
- Horn clause
- Disjunction of literals, at most one is positive
- All definite clauses are Horn clauses

Conjunctive Normal Form (CNF)

- Every sentence can be expressed as a conjunction of clauses
- Each clause is a disjunction of literals
- Each literal is a symbol or a negated symbol
- We can convert a sentence to CNF through a sequence of standard transformations

Conjunctive Normal Form (CNF)

- Original sentence:
- $A \Rightarrow(B \Leftrightarrow C)$
- Biconditional Elimination: Replace biconditional by two implications
- $A \Rightarrow((B \Rightarrow C) \wedge(C \Rightarrow B))$
- Implication Elimination: Replace $\alpha \Rightarrow \beta$ by $\neg \alpha \vee \beta$
- $\frac{\neg A(\vartheta)\left(\frac{(\neg B \vee C)}{\beta}\right.}{\beta} \frac{(\neg C \vee B))}{\gamma} \kappa$
- Distribution. Distribute \vee over \wedge, i.e., replace $\alpha \vee(\beta \wedge \gamma)$ by $(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$
- $\frac{(\neg A \vee \neg B \vee C)}{\beta} \wedge \frac{(\neg A v \neg C \vee B)}{\alpha}$

Conjunctive Normal Form (CNF)

- Original sentence:
- (๑A (1)B) $\vee C) \wedge(\neg C \wedge A)$
- De Morgan's Law: Replace $\neg(\alpha \vee \beta)$ by $\neg \alpha \wedge \neg \beta$, and $\neg(\alpha \wedge \beta)$ by $\neg \alpha \vee \neg \beta$

- Distribution: Distribute vover \wedge, i.e., replace $\alpha \vee(\beta \wedge \gamma)$ by $(\alpha \vee \beta) \wedge(\alpha \vee \gamma)$
- $(\neg A \vee C) \wedge(\neg B \vee C) \wedge(\neg C \wedge A)$

Other Logical Equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \quad \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

DPLL Algorithm

- DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers
- Essentially a backtracking search over models with several tricks:
- Early termination: stop if
- all clauses are satisfied; e.g., $(A \vee B) \wedge(A \vee \neg C)$ is satisfied by $\{A=$ true $\}$

SAT solver can stop with partial models; no need to assign all variables (can assign arbitrarily if a complete model is needed).

- F / T
- any clause is falsified; e.g., $(A \vee B)(A \vee \neg C)$ is satisfied by $\{A=$ false, $B=$ false $\}$ Stop when a conflict is found. Similar to backtracking algorithm for general CSPs.

DPLL Algorithm

- DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers
- Essentially a backtracking search over models with several tricks:
- Early termination
- Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value
- E.g., A is pure and positive in $\frac{(A \vee B)}{A=\text { false }} \wedge \stackrel{叩 A \vee \neg C)}{(C \vee \neg B)}$ so set it to true

Claim: If a sentence has a model to satisfy it, then it has a model in which the pure symbols are assigned values that make their literals true. Why?
W.I.o.g., assume symbol A shows up in all clauses as A. Assume there is a model satisfies the sentence with $A=$ false. Then construct a new model with $A=$ true and everything else the same. Since there are no opposite sign literals, making $A=$ true that could make any clause be false.

DPLL Algorithm

- DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers
- Essentially a backtracking search over models with several tricks:
- Early termination
- Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value $\quad \downarrow$ Trup True $B=$ False
- E.g., A is pure and positive in $(A \vee B) \wedge(A \vee \neg C) \wedge(C \& A B)$ so set it to true $C=$ False
Note: In determining the purity of a symbol, the algorithm can ignore clauses that are already known to be true in the model constructed so far

DPLL Algorithm

- DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers
- Essentially a backtracking search over models with several tricks:
- Early termination
- Pure symbols
- Unit clauses: A unit clause is a clause in which all literals but one are already assigned false by the model (i.e., left with a single literal that can potentially satisfy the clause). Set the remaining symbol of a unit clause to satisfy it.
- E.g., if $A=$ false and the sentence (in CNF) has a clause ($A \vee B$), then set B true Similar to Generalized Forward Checking (nFCO) for general CSPs
- Unit propagation: Assigning values to the symbol in a unit clause can lead to new unit clauses. Iteratively find unit clauses until no more remains.

DPLL Algorithm

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true if some clause in clauses is false in model then return false

P, value \leftarrow FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols- P, modelu\{ $P=$ value $\}$)
P, value \leftarrow FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then retur DPLL(clauses, symbols- P, model $\cup(P=$ value $\})$
$P \leftarrow$ First(symbols)
rest $\leftarrow \operatorname{Rest}($ symbols)

```
return or(DPLL(clauses, rest, modelU{P=true}),
    DPLL(clauses, rest, modelU{P=false}))

\section*{POLL Problem ( ) 人 ( ) ^( )}

\section*{Is a sentences in CNF with the following clauses satisfiable?}
\[
\text { AMD }\left\{\begin{array}{cc}
x_{1} \vee x_{4} & \text { A. Yes } \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} & \text { B. No } \\
x_{1} \vee x_{8} \vee x_{12} & \\
x_{2} \vee x_{11} & \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} & \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} & \\
x_{7} \vee x_{8} \vee \neg x_{10} & \\
x_{7} \vee x_{10} \vee \neg x_{12} &
\end{array}\right.
\]

\section*{POLL Problem}

Is a sentences in CNF with the following clauses satisfiable?

\[
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
\hline x_{7} \vee x_{10} \vee \neg x_{12} \\
\hline
\end{gathered}
\]

Pure symbol \(x_{1}=\) true
Pure symbol \(x_{2}=\) true
Pure symbol \(x_{3}=\) false
Pure symbol \(x_{4}=\) true
Pure symbol \(x_{11}=\) true
New pure symbol \(x_{8}=\) true New pure symbol \(x_{7}=\) true All constraints satisfied

\section*{DPLL Algorithm}

Clauses:
\[
\begin{gathered}
\neg a \vee b \vee c \\
a \vee c \vee d \\
a \vee c \vee \neg d \\
a \vee \neg c \vee d \\
a \vee \neg c \vee \neg d \\
\neg b \vee \neg c \vee d \\
\neg a \vee b \vee \neg c \\
\neg a \vee \neg b \vee c
\end{gathered}
\]

\section*{DPLL Algorithm}

Clauses:
\[
\begin{gathered}
\neg a \vee b \vee c \\
\left.\begin{array}{c}
a \vee c \vee d \\
a \vee c \vee \neg d \\
a \vee \neg c \vee d \\
a \vee \neg c \vee \neg d
\end{array} \right\rvert\, \\
\hline \neg b \vee \neg c \vee d \\
\neg a \vee b \vee \neg c \\
\neg a \vee \neg b \vee c
\end{gathered}
\]

\section*{DPLL Algorithm}

Clauses:
\(\neg a \vee b \vee c\) \(a \vee c \vee d\)
\(a \vee c \vee \neg d\)
\(a \vee \neg c \vee d\)
\(a \vee \neg c \vee \neg d\)
\(\rightarrow \neg b \vee \neg c \vee d\)
\(\neg a \vee b \vee \neg c\)
\(\rightarrow \frac{\neg}{F} a \vee \frac{\neg b}{F} \vee c \nless\)

Assign \(a=\) true
Assign \(b=\) true
Find unit clause \(\neg a \vee \neg b \vee c\), so \(c=\operatorname{true}\)

\section*{DPLL Algorithm}

Clauses:
\[
\begin{gathered}
\neg a \vee b \vee c \\
a \vee c \vee d \\
a \vee c \vee \neg d \\
a \vee \neg c \vee d \\
a \vee \neg c \vee \neg d \\
\neg b \vee \neg c \vee d \\
\neg a \vee b \vee \neg c \\
\neg a \vee \neg b \vee c
\end{gathered}
\]

Assign \(a=\) true
Assign \(b=\) true
Find unit clause \(\neg a \vee \neg b \vee c\), so \(c=\) true
Find unit clause \(\neg b \vee \neg c \vee d\), so \(d=\) true

\section*{Backjumping}
- Backjumping is a technique in backtracking algorithms
- Go up more than one level in the search tree when backtrack


A search tree visited by regular backtracking


A backjump: the grey node is not visited

\section*{Implication Graph}
- A directed graph \(G=(V, E)\) composed of vertex set \(V\) and directed edge set \(E\). Each vertex in \(V\) represents the truth status of a Boolean literal, and each directed edge from vertex \(u\) to vertex \(v\) represents the implication "If the literal \(u\) is true then the literal \(v\) is also true".
\[
\text { Example: Given a clause }(\mathrm{A} \vee \mathrm{~B}), A=\text { false implies } B=\text { true }
\]


\section*{Conflict Driven Clause Learning (CDCL)}
- Use implication graph
- Use non-chronological backjumping


\section*{Conflict Driven Clause Learning (CDCL)}
1. Select a variable and assign True or False
2. Apply unit propagation to build the implication graph
3. If there is any conflict
a) Find the cut in the implication graph that led to the conflict
b) Derive a new clause which is the negation of the assignments that led to the conflict
c) Backjump to the appropriate decision level, where the first-assigned variable involved in the conflict was assigned
4. Otherwise continue from step 1 until all variable values are assigned

\section*{Conflict Driven Clause Learning (CDCL)}
\[
\begin{aligned}
& \quad x_{1} \vee x_{4} \quad \text { Step } 1 \\
& x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
& x_{1} \vee x_{8} \vee x_{12} \\
& \quad x_{2} \vee x_{11} \\
& \neg x_{7} \vee \neg x_{3} \vee x_{9} \\
& \neg x_{7} \vee x_{8} \vee \neg x_{9} \\
& x_{7} \vee x_{8} \vee \neg x_{10} \\
& x_{7} \vee x_{10} \vee \neg x_{12}
\end{aligned}
\]

\section*{Conflict Driven Clause Learning (CDCL)}

\section*{Step 2}
\[
\begin{gathered}
x_{1} \vee x_{4} \\
x_{1} \vee \neg x_{3} \vee \neg x_{8} \\
x_{1} \vee x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12} \\
\vee \mathrm{x} 4=1 \\
\mathrm{x} 1=0
\end{gathered}
\]

Build the implication graph

\section*{Conflict Driven Clause Learning (CDCL)}
\[
\begin{gathered}
x_{1} \vee x_{4} \\
\frac{\text { Step 3 }}{x_{1} \vee \neg x_{3} \vee \neg x_{8}} \\
\hline x_{1} \vee x_{8} \vee x_{12} \\
x_{2} \vee x_{11} \\
\neg x_{7} \vee \neg x_{3} \vee x_{9} \\
\neg x_{7} \vee x_{8} \vee \neg x_{9} \\
x_{7} \vee x_{8} \vee \neg x_{10} \\
x_{7} \vee x_{10} \vee \neg x_{12}
\end{gathered}
\]


\section*{Conflict Driven Clause Learning (CDCL)}


\section*{Conflict Driven Clause Learning (CDCL)}


\section*{Conflict Driven Clause Learning (CDCL)}


\section*{Conflict Driven Clause Learning (CDCL)}

Step 11
\[
x_{7} \vee x_{10} \vee \neg x_{12}
\]



Find the cut and its corresponding literals: \(x_{3}, x_{7}, \neg x_{8}\) Derive a new clause \(\neg x_{3} \vee \neg x_{7} \vee x_{8}\). Why? If \(x_{3} \wedge x_{7} \wedge \neg x_{8}\), then there will be a conflict

\section*{Conflict Driven Clause Learning (CDCL)}


\section*{Conflict Driven Clause Learning (CDCL)}


\section*{Conflict Driven Clause Learning (CDCL)}
1. Select a variable and assign True or False
2. Apply unit propagation to build the implication graph
3. If there is any conflict
a) Find the cut in the implication graph that led to the conflict
b) Derive a new clause which is the negation of the assignments that led to the conflict
c) Backjump to the appropriate decision level, where the first-assigned variable involved in the conflict was assigned
4. Otherwise continue from step 1 until all variable values are assigned

> Similar ideas can be applied to general CSPs

\section*{Local Search Algorithms for SAT}
- WALK-SAT
- Randomly choose an unsatisfied clause grandma walk
- With probability \(p\), flip a randomly selected symbol in the clause
- Otherwise, flip a symbol in the clause that maximizes the \# of satisfied clauses
best neighbor

\section*{WalkSAT}
function WALKSAT(clauses, \(p\), max_flips) returns a model or failure inputs: clauses, a set of clauses
\(p\), the probability of choosing to do a random walk, typically around 0.5 max_flips, number of flips allowed before giving up
model \(\leftarrow\) a random assignment of true/false to the symbols in clauses for \(i=1\) to max_flips do
if model satisfies clauses then return model
clause \(\leftarrow\) a randomly selected clause from clauses that is false in model with probability \(p\) flip the value in model of
a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the \# of satisfied clauses return failure

\section*{Local Search Algorithms for SAT}

\section*{- WALK-SAT}
- Randomly choose an unsatisfied clause
- With probability p, flip a randomly selected symbol in the clause
- Otherwise, flip a symbol in the clause that maximizes the \# of satisfied clauses
- GSAT [Selman, Levesque, Mitchell AAAI-92]
- Similar to hill climbing but with random restarts and allows for downhill/sideway moves if no better moves available

\section*{GSAT}
function GSAT(sentence, max_restarts, max_climbs) returns a model or failure for \(i=1\) to max_restarts do
model \(\leftarrow\) a random assignment of true/false to the symbols in clauses for \(\mathrm{j}=1\) to max_climbs do
if model satisfies sentence then return model model \(\leftarrow\) randomly choose one of the best successors
return failure


Greediness is not essential as long as climbs and sideways moves are preferred over downward moves.

\section*{Phase Transition of SAT}



\section*{SAT Applications}


\section*{Evolution of SAT Solvers}


\section*{Agent based on Propositional Logic}


\section*{Planning as Satisfiability (SATPlan)}
- Given a hyper-efficient SAT solver, can we use it to make plans for an agent so that it is guaranteed to achieve certain goals?
- For fully observable, deterministic case: Yes, planning problem is solvable iff there is some satisfying assignment for actions etc. (No sensor needed due to full observability; KB does not grow)

Wall


G


How can Pacman eat all food given that the ghost will move South, then \(E\), then \(N\), then stop there?
\[
\begin{aligned}
& \text { n stop there? } \\
& \text { Convert it fo SAT }
\end{aligned}
\]

\section*{Planning as Satisfiability (SATPlan)}

How can Pacman eat all food given that the ghost will move South, then \(E\), then \(N\), then stop there?


Use symbols to represent the problem, including aspects of the world that do not change over time (called "atemporal variables"), e.g., Wall \({ }_{i j}^{E}\), and aspects that change over time (called as "fluent", or "state variables"), e.g., location \(L_{i j}^{t}\) and action \(N^{t}, S^{t}, E^{t}, W^{t}, \forall t=1,2, \ldots\) (T)
1. Set up KB: Write down all the sentences in KB
2. Solve SAT: Find a model that satisfy all these sentences

What should be the value of \(T\) ?
Recall Iterative Deepening. Gradually increase \(T\) if a small value returns no solution

\section*{Planning as Satisfiability (SATPlan)}
\[
T_{\max }: \text { Max length of planning horizon }
\]
function SATPLAN ( init, transition, goal, \(T_{\max }\) ) returns solution or failure inputs: init, transition, goal, constitute a description of the problem \(T_{\text {max }}\), an upper limit for plan length
for \(T=0\) to \(T_{\max } \mathbf{d o} \quad T\) is the length of planning horizon. Gradually increase. \(c n f \leftarrow\) TRANSLATE-TO-SAT ( init, transition, goal, \(T\) ) Set up the KB model \(\leftarrow\) SAT-SOLVER \((c n f)\) Run SAT solver
if model is not null then
return EXTRACT-SOLUTION(model)
return failure

\section*{Planning as Satisfiability (SATPlan)}
- How to set up the KB? KB often includes sentences describing
- Initial state

- Domain constraints
e.g., Pacman cannot be at two locations at the same time \(\mathcal{G}\left(L_{11}^{1} \wedge L_{12}^{1}\right) \wedge \neg\left(L_{11}^{1} \wedge L_{21}^{1}\right) \wedge \neg\left(L_{11}^{1} \wedge L_{212}^{1}\right) \wedge \neg\left(L_{12}^{1} \wedge L_{21}^{1}\right) \ldots{ }^{1}\)


\section*{Planning as Satisfiability (SATPlan)}
- How to set up the KB? KB often includes sentences describing Wall
- Transition model sentences up to time T Write down how each fluent at each time gets its value based on successor-state axiom:
\(F^{t+1} \Leftrightarrow \underbrace{\text { ActionCauses } F^{t}} \vee\left(F^{t} \wedge \neg\right.\) ActionCausesNot \(\left.F^{t}\right)\)
e.g., If "Stop" action is allowed, for \(L_{12}^{1}\), Pacman was at an adjacent square at time 0 and movedto \((1,2)\) or was at \((1,2)\) and nothing causes to change its location

\[
\begin{gathered}
L_{12}^{1} \Leftrightarrow\left(\left(\underline{L}_{11}^{0} \wedge \underline{N^{0}} \wedge \neg \text { Wall } l_{12}^{S} \wedge \cdots\right) \vee \cdots\right) \\
\underline{=}\left(L _ { 1 2 } ^ { 0 } \wedge \neg \left(\left(S^{0} \wedge \neg\right.\right.\right. \text { Wall } \\
=
\end{gathered}
\]

\section*{Planning as Satisfiability (SATPlan)}
- How to set up the KB? KB often includes sentences describing Wall
- Goal is achieved at time T
\[
\begin{aligned}
& \text { e.g., no food left at T } \\
& \neg \text { Food }_{11}^{T} \wedge \neg \text { Food }_{12}^{T} \wedge \neg \text { Food }_{21}^{T} \wedge \neg \text { Food }_{22}^{T}
\end{aligned}
\]



SCORE: 0



SCORE: 0

\section*{Wumpus World}
- The world is not fully observable from the beginning
- KB consists of
- Facts
- Rules
- Percept and Actions
- Keep adding sentences to the KB with new percepts and actions
- At any time step, we can Ask the KB about the current state, e.g., whether a square is safe


1
2
3
4
\(B_{i j}=\) breeze felt; \(S_{i j}=\) stench smelt
\(P_{i j}=\) pit here; \(W_{i j}=\) wumpus here; \(G=\) gold

\section*{Hybrid Agent}
- Plan actions by combining search and logical inference
- Maintain and update a KB as well as a current plan
- Construct a plan based on a decreasing priority of goals
- In Wumpus world
- Ask KB to work out which squares are safe and which have yet to be visited
- If there is glitter, construct a plan to grad the gold and go back safely
- If there is no current plan, use A* search to plan a route that only goes through safe squares to the closest unvisited safe square
- If no such safe squares to explore, ask questions to determine whether to shoot at one of the possible wumpus locations

\section*{Summary}
- Many problems can be reduced to SAT
- Efficient SAT solvers operates on CNF and uses ideas in solving CSPs such as backtracking and local search
- Can frame a planning problem as a satisfiability problem

\section*{Learning Objectives}
- Describe the definition of (Boolean) Satisfiability Problem (SAT)
- Describe the definition of Conjunctive Normal Form (CNF)
- Describe the following algorithms for solving SAT
- DPLL, CDCL, WalkSAT, GSAT
- Determine whether a sentence is satisfiable
- Describe Successor-State Axiom
- Describe and implement SATPlan (Planning as Satisfiability)
- (Hybrid Agent)```

