Y\F% ;% p&mmM ghes Y, then
N sy §
* The regions below visually enclose the set of models that satisfy the

respective sentence y or d. For which of the following diagrams
does ¥ entail 0. Select aII that apply.

Warm-up

Warm-u P y & &:iff in every world where y is true, § is also true

* The regions below visually enclose the set of models that satisfy the
respective sentence y or d. For which of the following diagrams
does y entail 4. Select all that apply.

' .. d‘

Eo

Al: Representation and Problem Solving
Boolean Satisfiability Problem (SAT)
& Logical Agents

Instructors: Fei Fang & Pat Virtue
Slide credits: CMU Al, http://ai.berkeley.edu

Announcements

* Midterm 1 Exam
= Tue 10/1, in class
* Assignments:

= HWA4
 Due Tue 9/24, 10 pm

= P2:Logic and Planning
e QOuttoday
 Due Sat 10/5, 10 pm

Learning Objectives

* Describe the definition of (Boolean) Satisfiability Problem (SAT)
* Describe the definition of Conjunctive Normal Form (CNF)

* Describe the following algorithms for solving SAT
 DPLL, CDCL, WalkSAT, GSAT

* Determine whether a sentence is satisfiable

* Describe Successor-State Axiom

* Describe and implement SATPlan (Planning as Satisfiability)
e (Hybrid Agent)

Logical Agent Vocab: Recap

Symbol: Variable that can be true or false

Model: Complete assignment of symbols to True/False

Operators: — A (not), A A B (conjunction), A v B (disjunction), A = B (implication), A <
B (biconditional)

Sentence: A logical statement composed of logic symbols and operators
KB: Collection of sentences representing facts and rules we know about the world

Query: Sentence we want to know if it is provably True, provably False, or unsure.

Logical Agent Vocab: Recap

e Entail
* Does sentencel entail sentence2?
* Input: sentencel, sentence?2

e Output: True if each model that satisfies sentencel must also satisfy sentence2;
False otherwise

 "If | know 1 holds, then | know 2 holds"

 Satisfy
* Does model satisfy sentence?
* Input: model, sentence
e Output: True if this sentence is true in this model; False otherwise
» "Does this particular state of the world work?”

(Boolean) Satisfiability Problem (SAT)

e Satisfiable
e |s sentence satisfiable?
* Input: sentence

e Output: True ifw modelk\s@‘i_eus\sentence

* "Is it possible to make this sentence true?”

» SAT problem is the problem of determining the satisfiability of a sentence
e SAT is a typical problem for logical agents
e SAT is the first problem proved to be NP-complete
* |f satisfiable, we often want to know what that model is

SAT and Entailment

* A sentence is satisfiable if it is true in at least one world

e Suppose we have a hyper-efficient SAT solver; how can we use it to
test entailment?
* Suppose o |[=[3
* Then o = [is true in all worlds
* Hence —(a. = [3) is false in all worlds
* Hence a A —[3 is false in all worlds, i.e., unsatisfiable

* More generally, to prove a sentence is valid (i.e., true in all models),
introduce the negated claim and test for unsatisfiability; also known
as reductio ad absurdum (reduction to absurdity)

SAT and CSPs

* SAT problems are essentially CSPs with Boolean variables
e Can apply backtracking based algorithms
* Can apply local search algorithms

* Naive way to solve SAT: Truth table enumeration

* Efficient SAT solvers operate on conjunctive normal form
e Often based on backtracking and local search

Propositional Logical Vocab: Recap

Literal
* Atomic sentence: True, False, Symbol, —=Symbol

Clause
* Disjunction of literals: AV B vV =C

Definite clause
e Disjunction of literals, exactly one is positive
e JAVBV-AC

Horn clause
 Disjunction of literals, at most one is positive
e All definite clauses are Horn clauses

Conjunctive Normal Form (CNF)

* Every sentence can be expressed as a conjunction of clauses

* Each clause is a disjunction of literals
* Each literal is a symbol or a negated symbol

* We can convert a sentence to CNF through a sequence of standard
transformations

Conjunctive Normal Form (CNF)

* Original sentence:
c A= (B Q)
* Biconditional Elimination: Replace biconditional by two implications

e A= ((B=C) A (C= B))

* Implication Elimination: Replace o = [by_—.’oc_iﬁ
 —Alv ((_IB \' C) (ﬁC \Y B)) {\
f‘701<Q P Y

* Distribution: Distribute v over A, i.e., replace av (B A y) by (av B) A(avy)

(_IAV_IBVC)/\(_IAV_ICVB)

—_/

ak € o Y

Conjunctive Normal Form (CNF)
* Original sentence:
* (JAYB) v C) A (=C A A)
* De Morgan’s Law: Replace —(a v 3) by —maA—[3, and —(a A B) by —o v —f3

* (LAQBIYC) A (<C A A)

* Distribution: Distribute v over A, i.e., replace a v (B Ay) by (aav) A (avy)

° (_IAVC)/\(_IBVC)/\(_IC/\A)
M

Other Logical Equivalences

(AN (3) = (A «) commutativity of A
(V) = (Va) commutativity of V
(aANB)ANy) = (aA(BA7)) associativity of A
(aVB)Vy) = (aV(BVy)) associativity of V
—(—a) = a double-negation elimination
(¢ = () = (= = —a) contraposition
(« = () = (maV [3) implication elimination
(@ & B) = ((o« = B)AN (B = «)) biconditional elimination
—(aNB) = (—naV -8) DeMorgan
—(aV3) = (maA=3) DeMorgan
(N (BVY) = (aNp)V(aANvy)) dstributivity of A over V
(aV(BAY) = ((aVB3)AN(aVy)) dstributivity of V over A

DPLL Algorithm

e DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
* Early termination: stop if
* all clauses are satisfied; e.g., (A v B) A (A v —C) is satisfied by {A=true}

SAT solver can stop with partial models; no need to assign all variables (can
assign arbitrarily if a complete model is needed). -

Al
 any clause is falsified; e.g., (A v —C) is satisfied by {A=false, B=false}

Stop when a conflict is found. Similar to backtracking algorithm for general CSPs.

DPLL Algorithm

e DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
e Early termination

* Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

e E.g., Ais pure and positive in [A v B) A TA v —@l/\KC Vv ﬁBjso set it to true
A -'—f'vl‘cs(

Claim: If a sentence has a model to satisfy it, then it has a model in which the
pure symbols are assigned values that make their literals true. Why?

W.l.0.g., assume symbol A shows up in all clauses as A. Assume there is a
model satisfies the sentence with A=false. Then construct a new model

with A=true and everything else the same. Since there are no opposite sign
literals, making A=true that could make any clause be false.

DPLL Algorithm

e DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
e Early termination

* Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value \LTY’V"(Twe ©= talee

e E.g., Ais pure and positive in (A v B) A (A v —C) /\w so set it to true
___/—
C :1—7\/[5{

Note: In determining the purity of a symbol, the algorithm can ignore clauses
that are already known to be true in the model constructed so far

DPLL Algorithm

e DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

* Essentially a backtracking search over models with several tricks:
e Early termination
* Pure symbols

* Unit clauses: A unit clause is a clause in which all literals but one are already
assigned false by the model (i.e., left with a single literal that can potentially
satisfy the clause). Set the remaining symbol of a unit clause to satisfy it.

e E.g., if A=false and the sentence (in CNF) has a clause (A v B), then set B true
/—-_———-//—/

Similar to Generalized Forward Checking (nFCO) for general CSPs

* Unit propagation: Assigning values to the symbol in a unit clause can lead to
new unit clauses. lteratively find unit clauses until no more remains.

Similar to Constraint Propagation for general CSPs

v
DPLL Algorithm ,JY”"“L el

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true Terdreghon
if some clause in clauses is false in model then return false p =4’y termination

P, value <FIND-PURE-SYMBOL(symbols, clauses, model) .
if P is non-null then returnP/PL\L(cIauses, symbols—P, modelLJ{P=vaIugE)

P, value &FIND-UNIT-CLAUSE(clauses, model) |
if_ILis non-null then retur LL(¢lauses, symbols—P,modeIU£P=vaIue})

——

P & First(symbols)
rest & Rest(symbols)

return or(DPLL(clauses, rest, modelU{P=true}),
DPLL(clauses, rest, modelU{P=false}))

—— e s

Essentially backtracking

POLL Problem SR RA)

Is a sentences in CNF with the following clauses satisfiable?

A. Yes

X1V Xy 3. No

X1V —1x3 V —xg
AM) X1V Xg V X1
Xy V Xqq
—1X7 V X3 V Xg
—X7 V Xg V 1Xg
X7V Xg V —1Xq1g
X7V X109 V 1X1>

POLL Problem

Is a sentences in CNF with the following clauses satisfiable?

S%Q -V x Pure symbol x; =true
e Pure symbol x, =true
x1 _Ix3

VTS_\\// x::S x;l\/vﬂ;; \\// x_gS Pure symbol x; =false
X, \QC\ oV xp Pure symbol x, =true
\""—%1/ ‘ Pure symbol x;; =true
X7 V[7X3 V Xg —X7 V =3 V Xg
7 VRV s | 7 Vg Vs New pure symbol xg=true
;7\\//35@\\//_0;10 ‘;Cxl\\//;ﬁ \\//_0;10 New pure symbol x,=true
A ANC~S L 70T T All constraints satisfied

DPLL Algorithm

Clauses:
—aVbVc
avcvd
aVcV-d
aV-cvd
aV acV -d
—bV-acVvd
—aVbV-c
—aV -bVc

Assign a = true

DPLL Algorithm

Clauses:
—aVbVc
TTV v d Assign b = true
aVcVﬁd\
aV-cvd
laVv —cV -d
bV -acvd
—aVbV-c

—aV abVc

Assign a = true

DPLL Algorithm

Clauses:

—aVbVc
aVcVd Assign b = true

Assign a = true

aVvcV-d Find unit clause ma V =b V ¢, so c = true
aV-acvd

aV -cV -d
—>—bV-acvd

—aVbV-c
—?:gV:@VcZ

Foob

DPLL Algorithm

Clauses:
—aVbVc
aVvVecvd
aVcV-d
aV-cvd
aV -cV -d
—-bV-acVvd
— —
—aV bV -c
—aV abVc

Assign a = true
Assign b = true
Find unit clause ma VvV =b V ¢, so c = true

Find unit clause =bV =~cV d, sod = true

Backjumping

* Backjumping is a technique in backtracking algorithms
* Go up more than one level in the search tree when backtrack

A search tree visited by A backjump: the grey
regular backtracking node is not visited

https://en.wikipedia.org/wiki/Backjumping

https://en.wikipedia.org/wiki/Backjumping

Implication Graph

* A directed graph G = (V, E) composed of vertex set VV and directed
edge set E. Each vertex in IV represents the truth status of a Boolean
literal, and each directed edge from vertex u to vertex v represents
the implication "If the literal u is true then the literal v is also true".

Example: Given a clause (A v B), A=false implies B=true

o

—A

https://en.wikipedia.org/wiki/Implication graph

https://en.wikipedia.org/wiki/Implication_graph

Conflict Driven Clause Learning (CDCL)

* Use implication graph
* Use non-chronological backjumping

Conflict Driven Clause Learning (CDCL)

N

Select a variable and assign True or False

Apply unit propagation to build the implication graph

If there is any conflict

a) Find the cut in the implication graph that led to the conflict

b) Derive a new clause which is the negation of the assignments that led to
the conflict

c) Backjump to the appropriate decision level, where the first-assigned
variable involved in the conflict was assigne@

Otherwise continue from step 1 until all variable values are assigned

https://en.wikipedia.org/wiki/Conflict-driven clause learning

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Conflict Driven Clause Learning (CDCL)

X1V xéf/ Step 1 x1=0
X1 VvV —1X3 VvV —1Xg ;;
X1 VvV Xg VvV X12 Ry

X, V X1q
—1X7 V X3 V Xg
—%7 V Xg V —1Xg
X, V xg V 11X1
X7 V X10 V 21X1o

© x1=0

Conflict Driven Clause Learning (CDCL)

Step 2

*1 VX X1=0, x4=1
X1 \% —1X3 \% —1Xg /
F
X1 VvV Xg VvV X12 Py

X, V X1q
—1X7 V X3 V Xg
—%7 V Xg V —1Xg
X, V xg V 11X1
X7 V X10 V 21X1o

O x4=1

(41=u

Build the implication graph

Conflict Driven Clause Learning (CDCL)

X1V Xy Step 3

X1V X3V Xxg ; x1=0, x4=1

X2 VX1 x3) X3=1
_Ix7 V _IX3 V xg

_Ix7 V x8 V _ng *
x7 V x8 V _leo
x7 V x10 V _lez

@ x4=1

Cﬁun © x3=1

Conflict Driven Clause Learning (CDCL)

X1V Xy Step 4
X1 V —1X3 VvV —1Xg x1=0. x4=1
OQEES

xz Vx11 »

_Ix7 V _I.X'3 V X9 ® 13=1‘ x8=0

L

—1X7 V Xg V —1Xg “,
X7 V Xg V —1X10
X7 V X10 V —1X12

O x4=1

1=0 Q%

@ x8=0

Conflict Driven Clause Learning (CDCL)

X1V Xy

x1 V _Ix3 V _Ix8 StEP 9 0
x1 V x8 V xlz 7

XZ VX11 s’

X1=0, x4=1

— = —x; V ax3 V Xq x3=1, x8=0, x12=1

h_}7 _IX7 VX8 V _ng

X~ VvV Xg VvV —1X10 , x2=0, x11=1
x7 V x10 V _lez *,f
@ x4=1 =

1=0 x3=10) x7=1

Conflict Driven Clause Learning (CDCL)

X1V Xy

X1 VX3V Xg step 10 X120, x4=1
X1 Vxg VX,

xz V x11

x3=1, x8=0, x12=1

_Ix7 V _Ix3 V xg
_Ix7 V x8 V _ng

S

X7 V x10 V _Ix]_z

X7=1,x9=0, 1

There is a conflict!

Conflict Driven Clause Learning (CDCL)

X1V Xy
x1 V _Ix3 V _Ix8
x1 V x8 V x12
X2 V X11
_IX7 V _IX3 V xg

Step 11 x1=0, x4=1

x3=1, x8=0, x12=1

_IX7 V x8 V —|x9

x7 V x8 V _Ix10 3{2=0, x11=1
X7 V x10 V _lez
X7=1, x9=1
X4=1)
® X9=1
O x9=0

Find the cut and its corresponding literals: x5, X, —1xg
x12=1 Derive a new clause —x3 V —=x5 V xg. Why?

If x3 A x; A =xg, then there will be a conflict

~— e

Conflict Driven Clause Learning (CDCL)

X1V Xy
X1V X3V 1Xg Step 14
X1 Vxg VX,
Xy V Xq1
X7 V —1X3 V Xg
—1X7 V Xg V —1Xg
X7V XgV —Xqg
X7V X1V X1,
[—xs VEx)V xg |
S——

AS

Backjump to the level where the first-
assigned variable involved in the conflict
was assigned.

=1

Conflict Driven Clause Learning (CDCL)

X1V x4
X V =g V X Step 15 (x) | x1=0, xa=1
'y
XV Xg V Xps Py
Xp V X1q (x3) [x3=1, x8=0, x12=1,[x7=0|
—|X7 \% _IX3 \% XQ \\4

—1X7 V Xg V —1Xg
X7V XgV —Xqg
X7 VX190V 11X12
X3 V X, Vg |

Continue Unit propagation.

Backtrack to the level where the “problem” is
instead of merely trying to fix the “symptom”

x7=0

Conflict Driven Clause Learning (CDCL)

N

Select a variable and assign True or False

Apply unit propagation to build the implication graph

If there is any conflict

a) Find the cut in the implication graph that led to the conflict

b) Derive a new clause which is the negation of the assignments that led to
the conflict

c) Backjump to the appropriate decision level, where the first-assigned
variable involved in the conflict was assigned

Otherwise continue from step 1 until all variable values are assigned

Similar ideas can be applied to general CSPs

https://en.wikipedia.org/wiki/Conflict-driven clause learning

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Local Search Algorithms for SAT

\nf SrRAV
W\’(w‘)
* WALK-SAT J/
* Randomly choose an unsatisfied clause /7WMM ke
* With probability p, flip a randomly selected symbol in the clause

* Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

lau,% m\\)ln}w

WALKSA

function WALKSAT(clauses, p, max_flips) returns a model or failure

inputs: clauses, a set of clauses
p, the probability of choosing to do a random walk, typically around 0.5

max_flips, number of flips allowed before giving up

model €& a random assignment of true/false to the symbols in clauses
fori=1to max flips do
if model satisfies clauses then return model

e—————

clause <-a randomly selected clause from clauses that is false in model

e —

with probability p flip the value in model of
a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the # of satisfied clauses
return failure

Local Search Algorithms for SAT

* WALK-SAT

* Randomly choose an unsatisfied clause
* With probability p, flip a randomly selected symbol in the clause
e Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

e GSAT [Selman, Levesque, Mitchell AAAI-92]

 Similar to hill climbing but with random restarts and allows for
downhill/sideway moves if no better moves available

GSA

function GSAT(sentence, max_restarts, max_climbs) returns a model or failure
for i =1 to max restarts do
\/\

model < a random assignment of true/false to the symbols in clauses
forj=1to max climbs do
if model satisfies sentence then return model/

—

model < randomly choose one of the best successors
/
return failure

Avg. total flips

2000 50 variables, 215 3SAT clauses Greediness is not essential as long

1600 . :
1200 \/ as climbs and sideways moves are
800 preferred over downward moves.

400

max-climbs

100 200

44

Phase Transition of SAT

2N 2000 - /
L 1800 1 DPLL —+H—
03 L600 | WalkSAT ------
~ 1400 1
E 0.6 2 1200 1
Z £ 1000 1
3 04 Z 800 -
= 600 -
0.2 400 -
.. 20 -

0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n Clause/symbol ratio m/n

SAT Applications

ey

formal verification security bioinformatics planning and
. scheduling
[B N
[/o \ 00- 00
. [1 2d@l
- (1 2@l
train safety automated exploit term rewriting
theorem proving generation termination
ench’ SAT/SMT solver decode

Evolution of SAT Solvers

1200

mO

1000

A9k

*

CPU Time (in seconds)
I
S0 e

400

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
T T T

T T FT = - T T
Limmat (2002) 0 - ’ .
Zchaff (2002)) - a ¥ o 5]
Berkmin (2002) > . o
Forklift (2003) ‘o
Siege (2003) - g T e
Zchaff (2004) ; = a 7 @
SatELite (2005) # o - ¥ .“-P <
Minisat 2 (2006) S =4 -
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009
Clasp (2009)
Cryptominisat (2010
Lingelipg (2010)
Mirﬁsapgg (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)

/

20 40 60 80 100 120 140 160
Mumber of problems solved

180

Agent based on Propositional Logic

Percepts

Knowledge Base

Inference

Actions

Planning as Satisfiability (SATPlan)

* Given a hyper-efficient SAT solver, can we use it to make plans for an
agent so that it is guaranteed to achieve certain goals?

* For fully observable, deterministic case: Yes, planning problem is
solvable iff there is some satisfying assignment for actions etc. (No
sensor needed due to full observability; KB does not grow)

Wall

H - How can Pacman eat all food given that the ghost will

move South, then E, then N, then stop there? S%T

G- [nvert &

Planning as Satisfiability (SATPlan)

How can Pacman eat all food given that the ghost will move South, then E, then N,
then stop there?

Wall

Use symbols to represent the problem, including aspects of the
world that do not change over time (called “atemporal
variables”), e.g., Wallf}-, and aspects that change over time

(called as “fluent”, or “state variables”), e.g., location L’;fj and

action Nt, St Et, Wt vt =1, 2, @
1. Set up KB: Write down all the sentences in KB

2. Solve SAT: Find a model that satisfy all these sentences

\ What should be the value of T?

Recall Iterative Deepening. Gradually increase T if a
small value returns no solution

Planning as Satisfiability (SATPlan)

Tnax: Max length of planning horizon

function SATPLAN(nit. transition, goal,l ,,.«) returns solution or failure
inputs: init. transition, goal, constitute a description of the problem
I 11 ax, an upper limit for plan length

~—7|for T=0to 1 .« dol T is the length of planning horizon. Gradually increase.
cnf < TRANSLATE-TO-SAT(nit, transition, goal, T) | Set up the KB
modael «— SAT-SOLVER(cnf) | Run SAT solver
if model is not null then

Treturn EXTRACT-SOLUTION(model)
return failure

_——\

——

Planning as Satisfiability (SATPlan)

* How to set up the KB? KB often includes sentences describing

- Initial state

e.g., —|Wall12, Walllz,
2

/\/

- Domain constraints

e.g., Pacman cannot be at two Iocations at the same time J

@(Lh 2@ _'(L 1) A=(L1g AL1p) A=(Lip ALyy) .. !

Wall

ol -
€] -

Planning as Satisfiability (SATPlan)

* How to set up the KB? KB often includes sentences describing wall

- Transition model sentences up to time T
Write down how each fluent at each time gets its
value based on successor-state axiom:

F'™ o ActionCausesF' v (F' A = ActionCausesNotF*)

———— \
e.g., If “Stop” action is allowed, for L1, Pacman was at an

adjacent square at time 0 and moved fo (1,2) or was at (1,2) and
nothing causes to change its location

L}, ((L‘{1 ANO A —.Wall12 A)V)
V(L3 A - (504 AWall,) v -)

ol -
€] -

Planning as Satisfiability (SATPlan)

* How to set up the KB? KB often includes sentences describing wall

- Goalis achieved at time T , H -
e.g., no food leftat T :

—Food!; A =Foodl, A =Food, A =Food’,
1 2

I

SCORE: ()

SCORE: ()

SCORE: 0

Wumpus World

* The world is not fully observable
from the beginning

* KB consists of
* Facts
. Rules‘
* Percept and Actions

* Keep adding sentences to the KB
with new percepts and actions

* At any time step, we can Ask the
KB about the current state, e.g.,
whether a square is safe

SSSS Z Bra—
Stench ;&‘?ﬁ{_@;’
Z Blogsg —
%0 SSSS S RA——
:3:: éStelnché ’Bre@::'e gl
Vs
~[God\\”
éf;qqc;é Z Bréeze —
Stench P
"~ Blogze — ZBreorg —
M N
START

1

2

3

4

= breeze felt; S;; = stench smelt
P;; = pit here; W;; = wumpus here; G = gold

Hybrid Agent

* Plan actions by combining search and logical inference
* Maintain and update a KB as well as a current plan
* Construct a plan based on a decreasing priority of goals

* In Wumpus world
* Ask KB to work out which squares are safe and which have yet to be visited
* If there is glitter, construct a plan to grad the gold and go back safely

* If there is no current plan, use A* search to plan a route that only goes
through safe squares to the closest unvisited safe square

* |f no such safe squares to explore, ask questions to determine whether to
shoot at one of the possible wumpus locations

summary

* Many problems can be reduced to SAT

e Efficient SAT solvers operates on CNF and uses ideas in solving CSPs
such as backtracking and local search

* Can frame a planning problem as a satisfiability problem

Learning Objectives

* Describe the definition of (Boolean) Satisfiability Problem (SAT)
* Describe the definition of Conjunctive Normal Form (CNF)

* Describe the following algorithms for solving SAT
 DPLL, CDCL, WalkSAT, GSAT

* Determine whether a sentence is satisfiable

* Describe Successor-State Axiom

* Describe and implement SATPlan (Planning as Satisfiability)
e (Hybrid Agent)

