
Warm up

 Pick an agent among {Pacman, Blue Ghost, Red 

Ghost}. Design an algorithm to control your agent. 

Assume they can see each others’ location but can’t 

talk. Assume they move simultaneously in each step.
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Announcement

 Assignments

 HW12 (written) due 12/4 Wed, 10 pm

 Final exam

 12/12 Thu, 1pm-4pm

 Piazza post for in-class questions

Due 12/6 Fri, 10 pm
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AI: Representation and Problem Solving

Multi-Agent Reinforcement Learning

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu



Learning objectives

 Compare single-agent RL with multi-agent RL

 Describe the definition of Markov games

 Describe and implement 

 Minimax-Q algorithm

 Fictitious play

 Explain at a high level how fictitious play and double-oracle 

framework can be combined with single-agent RL algorithms 

for multi-agent RL
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Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

5



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response
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Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment
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Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment

 Infrastructure security / green security / cyber security
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Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment

 Infrastructure security / green security / cyber security

 Ridesharing
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Recall: Normal-Form/Extensive-Form games

 Games are specified by 

 Set of players

 Set of actions for each player (at each decision point)

 Payoffs for all possible game outcomes

 (Possibly imperfect) information each player has about the 

other player's moves when they make a decision

 Solution concepts

 Nash equilibrium, dominant strategy equilibrium, 

Minimax/Maximin strategy, Stackelberg equilibrium

 Approaches to solve the game

 Iterative removal, Solving linear systems, Linear programming
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Single-Agent → Multi-Agent

 Can we use these approaches to previous problems?

 Limitations of classic approaches in game theory

 Scalability: Can hardly handle complex problems

 Need to specify payoff for all outcomes

 Often need domain knowledge for improvement (e.g., 

abstraction)
11

Football Concert

Football 2,1 0,0

Concert 0,0 1,2
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Recall: Reinforcement learning

 Assume a Markov decision process (MDP):

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Looking for a policy (s) without knowing T or R

 Learn the policy through experience in the environment
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Single-Agent → Multi-Agent

 Can we apply single-agent RL to previous problems? How?

 Simultaneously independent single-agent RL, i.e., let every 

agent 𝑖 use Q-learning to learn 𝑄(𝑠, 𝑎𝑖) at the same time

 Effective only in some problems (limited agent interactions)

 Limitations of single-agent RL in multi-agent setting

 Instability and adapatability: Agents are co-evolving
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If treat other agents as part of 

environment, this environment 

is changing over time!



Single-Agent → Multi-Agent

 Multi-Agent Reinforcement Learning 

 Let the agents learn through interacting with the 

environment and with each other

 Simplest approach: Simultaneously independent single-agent 

RL (suffer from instability and adapatability)

 Need better approaches
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Multi-Agent Reinforcement Learning

 Assume a Markov game:

 A set of 𝑁 agents

 A set of states 𝑆

 Describing the possible configurations for all agents

 A set of actions for each agent 𝐴1, … , 𝐴𝑁
 A transition function 𝑇 𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑠

′

 Probability of arriving at state 𝑠′ after all the agents taking 
actions 𝑎1, 𝑎2, … , 𝑎𝑛 respectively

 A reward function for each agent 𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛)
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Piazza Poll 1

 You know that the state at time 𝑡 is 𝑠𝑡 and the 

actions taken by the players at time 𝑡 is 𝑎𝑡,1, … , 𝑎𝑡,𝑁. 

The reward for agent 𝑖 at time 𝑡 + 1 is dependent on 

which factors?

 A: 𝑠𝑡
 B: 𝑎𝑡,𝑖

 C: 𝑎𝑡,−𝑖 ≜ 𝑎𝑡,1, … , 𝑎𝑡,𝑖−1, 𝑎𝑡,𝑖+1, … , 𝑎𝑡,𝑁

 D: None

 E: I don’t know
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Multi-Agent Reinforcement Learning

 Assume a Markov game

 Looking for a set of policies {𝜋𝑖}, one for each agent, 
without knowing 𝑇, 𝑅𝑖 , ∀𝑖
 𝜋𝑖 𝑠, 𝑎 is the probability of choosing action 𝑎 at state 𝑠

 Each agent’s total expected return is  𝑡 𝛾
𝑡 𝑟𝑖
𝑡 where 

𝛾 is the discount factor

 Learn the policies through experience in the 
environment and interact with each other
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Multi-Agent Reinforcement Learning

 Descriptive

 What would happen if agents learn in a certain way?

 Propose a model of learning that mimics learning in real life

 Analyze the emergent behavior with this learning model 

(expecting them to agree with the behavior in real life)

 Identify interesting properties of the learning model
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https://youtu.be/kopoLzvh5jY
https://youtu.be/kopoLzvh5jY


Multi-Agent Reinforcement Learning

 Prescriptive (our main focus today)

 How agents should learn?

 Not necessary to show a match with real-world phenomena

 Design a learning algorithm to get a “good” policy

(e.g., high total reward against a broad class of other agents)
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DeepMind's AlphaStar beats 99.8% of human

https://youtu.be/6eiErYh_FeY
https://youtu.be/6eiErYh_FeY


Recall: Value Iteration and Bellman Equation
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 Value iteration

 With reward function 𝑅(𝑠, 𝑎)

 When converges (Bellman Equation)

𝑉𝑘+1 𝑠 = max
𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠
′ , ∀𝑠

𝑉𝑘+1 𝑠 = max
𝑎
𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑘 𝑠
′ , ∀𝑠

𝑉∗ 𝑠 = max
𝑎
𝑄∗(𝑠, 𝑎) , ∀𝑠

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ , ∀𝑎, 𝑠



Value Iteration in Markov Games

 In two-player zero-sum Markov game

 Let 𝑉∗(𝑠) be state value for player 1 (−𝑉∗(𝑠) for player 2)

 Let 𝑄∗(𝑠, 𝑎1, 𝑎2) be action-state value for player 1 when 

player 1 chooses 𝑎1 and player 2 chooses 𝑎2 in state 𝑠
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𝑄∗ 𝑠, 𝑎1, 𝑎2 =

𝑉∗ 𝑠 =

𝑉∗ 𝑠 = max
𝑎
𝑄∗(𝑠, 𝑎) , ∀𝑠

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ , ∀𝑎, 𝑠



Minimax-Q Algorithm

 Value iteration requires knowing 𝑇, 𝑅𝑖

 Minimax-Q [Littman94]

 Extension of Q-learning

 For two-player zero-sum Markov games

 Provably converges to Nash equilibria in self play
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A learning agent learns through interacting 

with another learning agent using the same 

learning algorithm



Minimax-Q Algorithm

Initialize 𝑄 𝑠, 𝑎1, 𝑎2 ← 1,𝑉 𝑠 ← 1, 𝜋1 𝑠, 𝑎1 ←
1

|𝐴1|
, 𝛼 ← 1

Take actions: At state 𝑠, with prob. 𝜖 choose a random action, and 

with prob. 1 − 𝜖 choose action according to 𝜋1 𝑠, 𝑎

Learn: after receiving 𝑟1 for moving from 𝑠 to 𝑠′ via 𝑎1, 𝑎2

Update 𝛼
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𝑉 𝑠 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2

𝑄 𝑠, 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑠, 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉 𝑠
′

𝜋1 𝑠,⋅ ← argmax
𝜋1
′ (𝑠,⋅)∈Δ(𝐴1)

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2



Minimax-Q Algorithm

 How to solve the maximin problem?
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Linear Programming: max
𝜋1
′ 𝑠,⋅ ,𝑣
𝑣

Get optimal solution 𝜋1
′∗ 𝑠,⋅ , 𝑣∗, update 𝜋1 𝑠,⋅ ← 𝜋1

′∗ 𝑠,⋅ , 𝑉 𝑠 ← 𝑣∗

𝑉 𝑠 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2

𝜋1 𝑠,⋅ ← argmax
𝜋1
′ (𝑠,⋅)∈Δ(𝐴1)

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2



Minimax-Q Algorithm

 How does player 2 chooses action 𝑎2?

 If player 2 is also using the minimax-Q algorithm

 Self-play

 Proved to converge to NE

 If player 2 chooses actions uniformly randomly, the algorithm 

still leads to a good policy empirically in some games
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Minimax-Q for Matching Pennies

 A simple Markov game: Repeated Matching Pennies

 Let state to be dummy: Player’s strategy is not 

dependent on past actions. Just play a mixed strategy 

as in the one-shot game

 Discount factor 𝛾 = 0.9
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Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Player 2

P
la

ye
r

1



Minimax-Q for Matching Pennies

Simplified version for this games with only one state

Initialize 𝑄 𝑎1, 𝑎2 ← 1, 𝑉 ← 1, 𝜋1 𝑎1 ← 0.5, 𝛼 ← 1

Take actions: With prob. 𝜖 choose a random action, and with 

prob. 1 − 𝜖 choose action according to 𝜋1 𝑎

Learn: after receiving 𝑟1 with actions 𝑎1, 𝑎2
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𝑄 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉

𝜋1 ⋅ ← argmax
𝜋1
′ (⋅)∈Δ2

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑎1 𝑄 𝑎1, 𝑎2

𝑉 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑎1 𝑄 𝑎1, 𝑎2

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Update 𝛼 = 1/ #times 𝑎1, 𝑎2 visited



Minimax-Q for Matching Pennies
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Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

𝑄 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉

max
𝜋1
′ 𝑠,⋅ ,𝑣
𝑣

𝑣 ≤  

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2 , ∀𝑎2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 = 1

𝜋1
′ 𝑠, 𝑎1 ≥ 0, ∀𝑎1



Piazza Poll 2

 If the actions are (H,T) in round 1 with a reward of -1 

to player 1, what would be the updated value of 

𝑄(𝐻, 𝑇) with 𝛾 = 0.9?

 A: 0.9

 B: 0.1

 C: -0.1

 D: 1.9

 E: I don’t know
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Minimax-Q for Matching Pennies

34

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1



How to Evaluate a MARL algorithm (prescriptive)?

 Brainstorming: how to evaluate minimiax-Q?

 Recall: Design a learning algorithm 𝐴𝑙𝑔 to get a “good”

policy (e.g., high total expected return against a broad class 

of other agents)
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How to Evaluate a MARL algorithm (prescriptive)?

 Training: Find a policy for agent 1 through minimax-Q

 Let an agent 1 learn with minimax-Q while agent 2 is

 Also learning with minimax-Q (Self-play)

 Using a heuristic strategy, e.g., random

 Learning using a different learning algorithm, e.g., vanilla Q-

learning or a variant of minimax-Q

 Exemplary resulting policy: 

 𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋1
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋1
𝑀𝑄

(Minimax-Q-trained-against-Q)

36

Co-evolving!



How to Evaluate a MARL algorithm (prescriptive)?

 Testing: Fix agent 1’s strategy 𝜋1, no more change

 Test again an agent 2’s strategy 𝜋2, which can be

 A heuristic strategy, e.g., random

 Trained using a different learning algorithm, e.g., vanilla Q-

learning or a variant of minimax-Q

 Need to specify agent 1’s behavior during training agent 2 

(random? Minimax-Q? Q-learning?), can be different from 

𝜋1 or even co-evolving

 Best response to player 1’s strategy 𝜋1
 Worst case for player 1

 Fix 𝜋1, treat player 1 as part of the environment, find the 

optimal policy for player 2 through single-agent RL
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How to Evaluate a MARL algorithm (prescriptive)?

 Testing: Fix agent 1’s strategy 𝜋1, no more change

 Test again an agent 2’s strategy 𝜋2, which can be

 Exemplary policy for agent 2: 

 𝜋2
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋2
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋2
𝑅(Random)

 𝜋2
𝐵𝑅 = 𝐵𝑅(𝜋1) (Best response to 𝜋1)
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Piazza Poll 3

 Only consider strategies resulting from minimax-Q algorithm 

and random strategy. How many different tests can we run? An 

example test can be:

 A: 1

 B: 2

 C: 4

 D: 9

 E: Other

 F: I don’t know
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𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay) vs 𝜋2

𝑅(Random)



Piazza Poll 3

 Only consider strategies resulting from minimax-Q algorithm 

and random strategy. How many different tests can we run? 

 𝜋1 can be

 𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋1
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋1
𝑅(Random)

 𝜋2 can be

 𝜋2
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋2
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋2
𝑅(Random)

 So 3*3=9
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Fictitious Play

 A simple learning rule

 An iterative approach for computing NE in two-player zero-

sum games

 Learner explicitly maintain belief about opponent’s strategy

 In each iteration, learner

 Best responds to current belief about opponent

 Observe the opponent’s actual play

 Update belief accordingly

 Simplest way of forming the belief: empirical frequency!
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Fictitious Play

 One-shot matching pennies
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Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Player 2

P
la

ye
r

1

Let 𝑤(𝑎)= #times opponent play 𝑎

Agent believes opponent’s strategy is 

choosing 𝑎 with prob. 
𝑤 𝑎

 
𝑎′
𝑤 𝑎′

Round 1’s action 2’s action 1’s belief 

in 𝑤(𝑎)
2’s belief

in 𝑤(𝑎)

0 (1.5,2) (2,1.5)

1 T T (1.5,3) (2,2.5)

2

3

4



Fictitious Play

 How would actions change from iteration 𝑡 to 𝑡 + 1?
 Steady state: whenever a pure strategy profile 𝐚 = (𝑎1, 𝑎2)

is played in 𝑡, it will be played in 𝑡 + 1

 If 𝐚 = (𝑎1, 𝑎2) is a strict NE (deviation leads to lower 

utility), then it is a steady state of FP

 If 𝐚 = (𝑎1, 𝑎2) is a steady state of FP, then it is a (possibly 

weak) NE in the game
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Fictitious Play

 Will this process converge?

 Assume agents use empirical frequency to form the briefs

 Empirical frequencies of play converge to NE if the game is 

 Two-player zero-sum

 Solvable by iterative removal

 Some other cases
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Fictitious Play with Reinforcement Learning

 In each iteration, best responds to opponents’ 

historical average strategy

 Find best response through single-agent RL

46

Basic implementation: Perform 

a complete RL process until 

convergence for each agent in 

each iteration

Time consuming 



(Optional) MARL with Partial Observation

 Assume a Markov game with partial observation (imperfect 
information):

 A set of 𝑁 agents

 A set of states 𝑆

 Describing the possible configurations for all agents

 A set of actions for each agent 𝐴1, … , 𝐴𝑁
 A transition function 𝑇 𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑠

′

 Probability of arriving at state 𝑠′ after all the agents taking 
actions 𝑎1, 𝑎2, … , 𝑎𝑛 respectively

 A reward function for each agent 𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛)

 A set of observations for each agent 𝑂1, … , 𝑂𝑁
 A observation function for each agent Ω𝑖(𝑠)
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(Optional) MARL with Partial Observation

 Assume a Markov game with partial observation

 Looking for a set of policies {𝜋𝑖 𝑜𝑖 }, one for each 
agent, without knowing 𝑇, 𝑅𝑖 or Ω𝑖

 Learn the policies through experience in the 

environment and interact with each other

 Many algorithm can be applied, e.g., use a simple 

variant of Minimax-Q
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Patrol with Real-Time Information

 Sequential interaction

 Players make flexible decisions instead of sticking to a plan

 Players may leave traces as they take actions

 Example domain: Wildlife protection

Tree markingLighters Poacher campFootprints

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan

Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19
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Patrol with Real-Time Information

Defender’s view

Footprints of defender 

Destructive tools

Footprints of attacker

Attacker' view

Features

STRAT

POINT
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Recall: Approximate Q-Learning

51

 Features are functions from q-state (s, a) to real numbers, e.g.,

 𝑓1(𝑠, 𝑎)=Distance to closest ghost

 𝑓2(𝑠, 𝑎)=Distance to closest food

 𝑓3(𝑠, 𝑎)=Whether action leads to closer distance to food

 Aim to learn the q-value for any (s,a)

 Assume the q-value can be approximated 
by a parameterized Q-function 

𝑄 𝑠, 𝑎 ≈ 𝑄𝑤 𝑠, 𝑎

𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

If 𝑄𝑤(𝑠, 𝑎) is a linear function of features: 



Recall: Approximate Q-Learning

Update Rule for Approximate Q-Learning with Q-Value Function:
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𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

If latest sample higher than previous estimate: 

adjust weights to increase the estimated Q-value

Previous estimate Latest sample

Need to learn parameters 𝑤 through interacting with the environment



(Optional) Train Defender Against Heuristic Attacker

 Through single-agent RL

 Use neural network to represent a parameterized Q function 

𝑄(𝑜𝑖 , 𝑎𝑖) where 𝑜 is the observation

Up Down Left Right Still
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(Optional) Train Defender Against Heuristic Attacker

Defender

Snares

Attacker

Patrol Post
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Compute Equilibrium: RL + Double Oracle

Compute 𝜎𝑑 , 𝜎𝑎 =
𝑁𝑎𝑠ℎ(𝐺𝑑 , 𝐺𝑎)

Train 𝑓𝑑 = 𝑅𝐿(𝜎𝑎)

Find Best Response to 

defender’s strategy

Compute Nash/Minimax 

Train𝑓𝑎 = 𝑅𝐿(𝜎𝑎)

Find Best Response 

to attacker’s strategy

Add 𝑓𝑑 ,𝑓𝑎 to 

𝐺𝑑 , 𝐺𝑎

Update bags of strategies
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(Optional) Other Domains: Patrol in Continuous Area

OptGradFP: CNN + Fictitious Play

DeepFP: Generative network + Fictitious Play

Policy Learning for Continuous Space Security Games using 

Neural Networks. Nitin Kamra, Umang Gupta, Fei Fang, 

Yan Liu, Milind Tambe. In AAAI-18

DeepFP for Finding Nash Equilibrium in Continuous 

Action Spaces. Nitin Kamra, Umang Gupta, Kai Wang, Fei 

Fang, Yan Liu, Milind Tambe. In GameSec-19
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AI Has Great Potential for Social Good

Artificial 

Intelligence

Machine Learning

Computational 

Game Theory

Security & Safety

Environmental 

Sustainability
Mobility

Societal Challenges
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