15-252
More Great Ideas in Theoretical Computer Science
Markov Chains

April 27th, 2018
Markov Chain

Andrey Markov (1856 - 1922)
Russian mathematician.
Famous for his work on random processes.

\[\Pr[X \geq c \cdot E[X]] \leq 1/c \text{ is Markov’s Inequality.} \]

A model for the evolution of a random system.

The future is independent of the past, given the present.
Cool things about Markov Chains

- It is a very general and natural model.

Applications in:
 - computer science, mathematics, biology, physics,
 - chemistry, economics, psychology, music, baseball,
...

- The model is simple and neat.

- Cilantro
The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications
The future is independent of the past, given the present.
Some Examples of Markov Chains
Example: Drunkard Walk

Salvador Dali (1922)
The Drunkard

Home
Example: Diffusion Process
Example: Weather

A very(!!) simplified model for the weather.

Probabilities on a daily basis:

\[
\begin{align*}
\text{Pr}[\text{sunny to rainy}] &= 0.1 \\
\text{Pr}[\text{sunny to sunny}] &= 0.9 \\
\text{Pr}[\text{rainy to rainy}] &= 0.5 \\
\text{Pr}[\text{rainy to sunny}] &= 0.5
\end{align*}
\]

Encode more information about current state for a more accurate model.
Example: Life Insurance

Goal of life insurance company:
 figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:

\[
\begin{align*}
\Pr[\text{healthy to sick}] &= 0.3 \\
\Pr[\text{sick to healthy}] &= 0.8 \\
\Pr[\text{sick to death}] &= 0.1 \\
\Pr[\text{healthy to death}] &= 0.01 \\
\Pr[\text{healthy to healthy}] &= 0.69 \\
\Pr[\text{sick to sick}] &= 0.1 \\
\Pr[\text{death to death}] &= 1
\end{align*}
\]
Example: Life Insurance

Goal of life insurance company:
figure out how much to charge the clients.

Find a model for how long a client will live.

Probabilistic model of health on a monthly basis:
Some Applications of Markov Models
Application: Algorithmic Music Composition

Nicholas Vasallo

Megalithic Copier #2: Markov Chains (2011)

written in Pure Data
Application: Image Segmentation
Random text generated by a computer (putting random words together):

“While at a conference a few weeks back, I spent an interesting evening with a grain of salt.”

Google: Mark V Shaney
Speech recognition software programs use Markov models to listen to the sound of your voice and convert it into text.
Application: Google PageRank

1997: Web search was horrible

Sorts webpages by number of occurrences of keyword(s).
Application: Google PageRank

Founders of Google

Larry Page Sergey Brin

$40Billionaires
Jon Kleinberg

Nevanlinna Prize
How does Google order the webpages displayed after a search?

2 important factors:

- Relevance of the page.

- Reputation of the page.

 The number and reputation of links pointing to that page.

Reputation is measured using PageRank.

PageRank is calculated using a Markov Chain.
The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications
The Setting

There is a system with \(n \) possible states/values \{1, 2, \ldots, n\}. At each time step, the state changes probabilistically.

Memoryless

The next state only depends on the current state.

Evolution of the system: random walk on the graph.
A **Markov Chain** is a digraph with $V = \{1, 2, \ldots, n\}$ such that:

- Each edge is labeled with a value in $(0, 1]$ (a probability).
 - self-loops allowed

- At each vertex, the probabilities on outgoing edges sum to 1.

(We usually assume the graph is strongly connected.
 i.e. there is a directed path from i to j for any i and j.)

The vertices of the graph are called **states**.

The edges are called **transitions**.

The label of an edge is a **transition probability**.
Given some Markov Chain with n states:

Define

$$\pi_t[i] = \text{probability of being in state } i \text{ after exactly } t \text{ steps.}$$

$$\pi_t = [p_1 \ p_2 \ \cdots \ p_n] \quad \quad \sum_{i} p_i = 1$$

Note that someone has to provide π_0.

Once this is known, we get the distributions π_1, π_2, \ldots
A Markov Chain with \(n \) states can be characterized by the \(n \times n \) transition matrix \(K \)

\[
\forall i, j \in \{1, 2, \ldots, n\} \quad K[i, j] = \Pr[i \to j \text{ in one step}]
\]

Note: rows of \(K \) sum to 1.
Some Fundamental and Natural Questions

What is the probability of being in state i after t steps (given some initial state)?

$$\pi_t[i] = ?$$

What is the expected time of reaching state i when starting at state j?

What is the expected time of having visited every state (given some initial state)?

How do you answer such questions?
Mathematical representation of the evolution

Suppose we start at state 1 and let the system evolve.

How can we mathematically represent the evolution?

\[
\pi_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \end{bmatrix}
\]

What is \(\pi_1 \)?

By inspection, \(\pi_1 = \begin{bmatrix} 0 & 1/2 & 0 & 1/2 \end{bmatrix} \).
Mathematical representation of the evolution

The probability of states after 1 step:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{1}{4} & \frac{3}{4} & 0 \\
\end{bmatrix}
\begin{bmatrix}
\pi_0 \\
\end{bmatrix}
=
\begin{bmatrix}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\end{bmatrix}
\begin{bmatrix}
\pi_1 \\
\end{bmatrix}
\]

the new state (probabilistic)
Mathematical representation of the evolution

The probability of states after 2 steps:

\[
\begin{bmatrix}
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{1}{4} & \frac{3}{4} & 0
\end{bmatrix}
= \begin{bmatrix}
0 & \frac{1}{8} & \frac{7}{8} & 0
\end{bmatrix}
\]

the new state (probabilistic)
Mathematical representation of the evolution

\[\pi_1 = \pi_0 \cdot K \]

\[\pi_2 = \pi_1 \cdot K \]

So \(\pi_2 = (\pi_0 \cdot K) \cdot K \]

\[= \pi_0 \cdot K^2 \]
Mathematical representation of the evolution

In general:
If the initial probabilistic state is \(\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} = \pi_0 \)

\(p_i = \) probability of being in state \(i \),

\(p_1 + p_2 + \cdots + p_n = 1 \),

after \(t \) steps, the probabilistic state is:

\[
\begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix} \begin{bmatrix} \text{Transition Matrix} \end{bmatrix}^t = \pi_t
\]
Remarkable Property of Markov Chains

What happens in the long run?

i.e., can we say anything about \(\pi_t \) for large \(t \) ?

Suppose the Markov chain is “aperiodic”.

Then, as the system evolves, the probabilistic state **converges** to a limiting probabilistic state.

As \(t \to \infty \), for any \(\pi_0 = [p_1 \ p_2 \ \cdots \ p_n] \):

\[
[p_1 \ p_2 \ \cdots \ p_n] \begin{bmatrix}
\text{Transition Matrix} \\
\end{bmatrix}^t \to \pi
\]
Remarkable Property of Markov Chains

In other words:

$$\pi_t \rightarrow \pi \quad \text{as} \quad t \rightarrow \infty.$$

Note:

$$\pi \begin{bmatrix} \text{Transition Matrix} \end{bmatrix} = \pi$$

stationary/invariant distribution

This π is unique.
Remarkable Property of Markov Chains

Stationary distribution is \[
\begin{bmatrix}
\frac{5}{6} & \frac{1}{6}
\end{bmatrix}.
\]

\[
\begin{bmatrix}
\frac{5}{6} & \frac{1}{6}
\end{bmatrix} \begin{bmatrix}
0.9 & 0.1 \\
0.5 & 0.5
\end{bmatrix} = \begin{bmatrix}
\frac{5}{6} & \frac{1}{6}
\end{bmatrix}
\]

In the long run, it is Sunny \(5/6\) of the time, it is Rainy \(1/6\) of the time.
Remarkable Property of Markov Chains

How did I find the stationary distribution?

\[
\begin{bmatrix}
0.9 & 0.1 \\
0.5 & 0.5
\end{bmatrix}^2 = \begin{bmatrix}
0.86 & 0.14 \\
0.7 & 0.3
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.9 & 0.1 \\
0.5 & 0.5
\end{bmatrix}^4 = \begin{bmatrix}
0.8376 & 0.1624 \\
0.812 & 0.188
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.9 & 0.1 \\
0.5 & 0.5
\end{bmatrix}^8 = \begin{bmatrix}
0.833443 & 0.166557 \\
0.832787 & 0.167213
\end{bmatrix}
\]

Exercise: Why do the rows converge to \(\pi \)?
Markov Chains can be characterized by the transition matrix K.

$$K[i, j] = \Pr[i \rightarrow j \text{ in one step}]$$

What is the probability of being in state i after t steps?

$$\pi_t = \pi_0 \cdot K^t \quad \pi_t[i] = (\pi_0 \cdot K^t)[i]$$
Theorem (Fundamental Theorem of Markov Chains):

Consider a Markov chain that is strongly connected and aperiodic.

- There is a unique invariant/stationary distribution π such that
 $$\pi = \pi K.$$

- For any initial distribution π_0,
 $$\lim_{t \to \infty} \pi_0 K^t = \pi$$

- Let T_{ij} be the number of steps it takes to reach state j provided we start at state i. Then,
 $$\mathbb{E}[T_{ii}] = \frac{1}{\pi[i]}.$$
The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications
How are Markov Chains applied?

2 common types of applications:

1. Build a Markov chain as a statistical model of a real-world process.

 Use the Markov chain to simulate the process.

 e.g. text generation, music composition.

2. Use a measure associated with a Markov chain to approximate a quantity of interest.

 e.g. Google PageRank, image segmentation
Generate a superficially real-looking text given a sample document.

Idea:
- From the sample document, create a Markov chain.
- Use a random walk on the Markov chain to generate text.

Example:
- Collect speeches of Obama, create a Markov chain.
- Use a random walk to generate new speeches.
1. For each word in the document, create a node/state.

2. Put an edge \texttt{word1} ---\texttt{word2} if there is a sentence in which \texttt{word2} comes after \texttt{word1}.

3. Edge probabilities reflect frequency of the pair of words.

The Markov Chain:

- \texttt{like} ---\texttt{a} (3/9)
 \texttt{like} ---\texttt{the} (4/9)
 \texttt{like} ---\texttt{to} (2/9)

- Edge probabilities:
 - \texttt{like a} 3 times
 - \texttt{like the} 4 times
 - \texttt{like to} 2 times
“I jumped up. I don't know what's going on so I am coming down with a road to opportunity. I believe we can agree on or do about the major challenges facing our country.”
Another use:

Build a Markov chain based on speeches of Obama.
Build a Markov chain based on speeches of Bush.

Given a new quote, can predict if it is by Obama or Bush.

(by testing which Markov model the quote fits best)
PageRank is a measure of reputation:

The number and reputation of links pointing to you.

The Markov Chain:
Google PageRank

PageRank is a measure of reputation:

The number and reputation of links pointing to you.

The Markov Chain:

1. Every webpage is a node/state.

2. Each hyperlink is an edge:

 if webpage A has a link to webpage B, \(A \rightarrow B \)

3a. If A has \(m \) outgoing edges, each gets label \(\frac{1}{m} \).

3b. If A has no outgoing edges, put edge \(A \rightarrow B \) \(\forall B \)

(jump to a random page)
A little tweak:

Random surfer jumps to a random page with 15% prob.

Stationary distribution:

probability of being at webpage A in the long run

PageRank of webpage A

=

The stationary probability of A
Google PageRank

B: 38.4%

C: 34.3%

A: 3.3%

D: 3.9%

E: 8.1%

F: 3.9%

1.6% 1.6% 1.6% 1.6%
Google:

“PageRank continues to be the heart of our software.”
The plan

Motivating examples and applications

Basic mathematical representation and properties

A bit more on applications