Closure properties of regular languages

Proposition:
Let \(\Sigma \) be some finite alphabet.
If \(L \subseteq \Sigma^* \) is regular, then so is \(\overline{L} = \Sigma^* \setminus L \).

Proof:
Closed under union

Theorem:
Let Σ be some finite alphabet.
If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is $L_1 \cup L_2$.

Proof:

The mindset

Step 1: Imagining ourselves as a DFA
Closed under union

Example

$L_1 = \text{strings with even number of 1's}$

$L_2 = \text{strings with length divisible by 3}$.

Input: 101001

Accept
Closed under union

Main idea:

Step 2: Formally defining the DFA
Closed under union

Proof: Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA deciding L_1 and $M' = (Q', \Sigma, \delta', q'_0, F')$ be a DFA deciding L_2. We construct a DFA $M'' = (Q'', \Sigma, \delta'', q''_0, F'')$ that decides $L_1 \cup L_2$, as follows:

More closure properties

- **Closed under union:**

- **Closed under concatenation:**

- **Closed under star:**

super awesome vs regular

What is the relationship between super awesome and regular?
super awesome vs regular

Theorem:
Can define regular languages recursively as follows:

Closed under concatenation

Theorem:
Let Σ be some finite alphabet.
If $L_1 \subseteq \Sigma^*$ and $L_2 \subseteq \Sigma^*$ are regular, then so is L_1L_2.

The mindset

Imagine yourself as a DFA.

Rules:
1) Can only scan the input once, from left to right.
2) Can only remember “constant” amount of information.

should not change based on input length
Step 1: Imagining ourselves as a DFA

Given $w \in \Sigma^*$, we need to decide if
$$w = uv \text{ for } u \in L_1, v \in L_2.$$

Problem: Don’t know where u ends, v begins.
When do you stop simulating M_1 and start simulating M_2?

Suppose you know u ends at w_3.

| | ... | 1 | 0 | 0 | 1 | 0 | 0 | 1 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>w_2</td>
<td>w_3</td>
<td>w_4</td>
<td>w_5</td>
<td>w_6</td>
<td>w_7</td>
<td>w_8</td>
<td>w_9</td>
<td>w_{10}</td>
</tr>
</tbody>
</table>

| q_0 | q_1 | q_1 | q_2 | q_2 | q_2 | q_1 | q_2 | q_2 | q_1 |

thread:
Step 2: Formally defining the DFA

\[M_1 = (Q, \Sigma, \delta, q_0, F) \quad M_2 = (Q', \Sigma, \delta', q'_0, F') \]

\[Q'' = \]

\[\delta'' : \]

\[q''_0 = \]

\[F'' = \]