15-251: Great Theoretical Ideas In Computer Science

Recitation 2 Solutions

Announcements

- Congrats on finishing the first HW! :)
- Solution session for HW 1 is 12:30pm Sunday, Gates 4303
- Regrade requests on HW 1 due by Wednesday

Training Manual

- **Deterministic Finite Automaton (DFA):** A DFA M is a machine that reads a finite input one character at a time in one pass, transitions from state to state, and ultimately accepts or rejects. Formally, M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where Q is the finite set of states, Σ is the finite alphabet, $\delta : Q \times \Sigma \to Q$ is the transition function, $q_0 \in Q$ is the starting state, and $F \subseteq Q$ is the set of accepting states.

- **Regular language:** A language L is regular if $L = L(M)$ for some DFA M (M recognizes L).

We have shown that if L_1 and L_2 are both regular languages over Σ^*, for some fixed Σ, then the following are all regular.
- L_1
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$ (the concatenation of two regular languages)

- **Turing Machine (TM):** A TM M is a machine that can read and write to an infinite tape containing the input, transition from state to state, and ultimately accept, reject, or loop infinitely. Formally, M is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$, where:
 - Q is the finite set of states,
 - Σ is the finite input alphabet with $\sqcup \notin \Sigma$,
 - Γ is the finite tape alphabet with $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function,
 - $q_0 \in Q$ is the starting state,
 - $q_{acc} \in Q$ is the accepting state,
 - and $q_{rej} \in Q, q_{rej} \neq q_{acc}$ is the rejecting state.

- **Decider TM:** A TM M is a decider if it halts on all inputs.

- **Decidable language:** A language L is decidable (or computable) if $L = L(M)$ for some decider TM M.
Drawing DFAs

(a) Draw a DFA recognizing the language \(L \) over \(\{a, b\} \) where \(L \) is the set of strings that begin and end with the same character.

(b) Draw a DFA that recognizes the language

\[L = \{ x : x \text{ has an even number of } 1\text{s and an odd number of } 0\text{s} \} \]

over the alphabet \(\Sigma = \{0, 1\} \).

We have 4 states, each representing having seen an even/even 0/1s, even/odd 0/1s, odd/even 0/1s, and odd/odd 0/1s, and transition accordingly.

A Santa Lived As a Devil At NASA!

Show that, if \(|\Sigma| > 1\), then

\[\text{PAL} = \{ x \mid x \in \Sigma^* \text{ and } x = x^R \} \]

is an irregular language, where \(x^R \) denotes the reverse of the string \(x \).

Assume for sake of contradiction that there exists a DFA with \(k \) states that decides PAL. Consider two symbols \(a, b \in \Sigma \) (since we assumed \(|\Sigma| > 1\)). Take the strings \(b^i a \) for \(i \in \{0, \ldots, k\} \). Since there are only \(k \) states, by the Pigeonhole Principle, there must exist some \(i, j \), \(0 \leq i < j \leq k \) such that \(b^i a \) and \(b^j a \) end in the same state. Thus, \(b^i a b^j \) and \(b^j a b^i \) must end in the same state.

However, since the first string is a palindrome while the latter is not, the two strings must end in different states. This is a contradiction.
Reversing Regular Languages

If A is a regular language over Σ, then show that A^R (the reversal of A) is regular by providing a DFA for it.

Let A be given. Since A is regular, we know there exists some DFA $M = (Q, \Sigma, \delta, q_0, F)$ which accepts only strings from A. We want to find a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ which accepts only strings from A^R.

Consider $Q' = \mathcal{P}(Q)$, $q'_0 = F$, and $F' = \{S \in Q'|q_0 \in S\}$. So every state in M' is a subset of states from M, the starting state of M' is the set of accepted states from M, and any state in M' which contains the starting state from M is an accepted state. The intuition here is that we want to work back from the accepted states of M to the starting state of M when reading our reversed string.

Define $\delta' : (Q', \Sigma) \mapsto Q'$ as:

$$\delta'(S, c) = \bigcup_{s \in S} \delta^{\leftarrow}(s, c)$$

Where δ^{\leftarrow} is the function that maps a state from M and a character from Σ to the largest set $S' \subset Q$ such that $\forall s' \in S', \delta(s', c) = s$.

Balance in All Things

Construct a TM that decides the language $L = \{x :$ the parentheses in x are balanced$\}$ over the alphabet $\Sigma = \{(,)\}$.

In q_0, we find an unmatched right parenthesis in the input and mark it with X. In q_1, we find the matching left parenthesis to that right parenthesis we just found, and mark that with X as well. We repeat the process until we reach either end of the input. If we find an unmatched right parenthesis, we reject. Otherwise, we check the tape from right to left in q_3, and accept iff there is no left parenthesis remaining.
Multiple Multiples (Extra Problem)

Let $\Sigma = \{0, 1\}$. For each $n \geq 1$, define

$$C_n = \{x \in \Sigma^* \mid x \text{ is a binary number that is a multiple of } n\}.$$

Show that C_n is regular for all n.

At a high level, we wish to have states corresponding to different remainders modulo n, and for a string corresponding to binary number w to end on state q_i if $w \equiv i \pmod{n}$. To this end, let $Q_n = \{q_{\text{init}}, q_0, q_1, \ldots, q_{n-1}\}$, and set $F = \{q_0\}$. Define δ_n such that $\delta(q_{\text{init}}, 0) = q_0, \delta(q_{\text{init}}, 1) = q_1, \delta(q_i, 0) = q_{2i}$, and $\delta(q_i, 1) = q_{2i+1}$, where indices are taken modulo n. We claim that δ transitions us accordingly, i.e. $M_n = (Q_n, \Sigma, \delta_n, q_{\text{init}}, F)$ decides C_n.

We can show this via induction on the length k of an input word (ignoring $k = 0$, which is clear). The base case $k = 1$ follows from the fact that the input 0 ends in q_0 and the input 1 ends in q_1. For induction, assume that for all strings w of length k, running M_n on w will end on the state q_i, where $i \equiv w \pmod{n}$. Let $w = a_1a_2\ldots a_{k+1}$ be a string of length $k + 1$, and let $u = a_1a_2\ldots a_k$. Treating these as binary numbers, we have $w \equiv 2u + a_{k+1} \pmod{n}$. By induction, running M_n on u ends on state q_i, where $i \equiv u \pmod{n}$. Hence, running M_n on $u0$ ends on state q_{2i} and running M_n on $u1$ ends on state q_{2i+1}; we conclude that running M_n on ua_k ends on state q_{2i+a_k}. Since $2i + a_k \equiv 2u + a_k \pmod{n}$, this proves the inductive claim, and so M_n decides C_n, as desired.