15-150
 Principles of Functional Programming Lecture 13

February 29, 2024
Michael Erdmannn Exceptions, n-Queens, \& more success continuations

Exceptions
Declaring
Raising
Handling
Exceptions are useful for signaling errors, including violations of invariants.
Exceptions can also be useful for control flow, analagous to continuations.

Declaring
exception Silly \uparrow keyword an exception constructor

This line of code declares a new exception (constructor) called Silly.
(If silly already exists, this new silly will shadow the earlier Silly.)

Raising

Example:
if $3=4$ then raise Silly else 9

- What is the type of this expression?
- What is the value to which the expression reduces?

Types
Silly: exp
the type for exceptions
raise Silly: 'a
So if $3=4$ then $\underbrace{\text { rate } a \text { to be int }}_{\text {raise Silly else } 9 \text { : int }}$ and the expression reduces to value 9 .

What about the type al value of if $3=3$ then raise Silly else 0 ?

The type is int.
The expression does not reduce to a value. Instead SML will print uncaught exception silly.
we will discuss handing exceptions shortly.

Declaring exceptions that take arguments
exception Riv of real $\underset{\substack{\text { exception } \\ \text { constructor }}}{\substack{\text { type of argument }}}$

Now \quad div : real \rightarrow exn
$\operatorname{Rdiv}(2.1)$: exn
raise Rdiv(2.1): 'a

Handling
General form of an exception handler for expressions:
e handle $p_{1} \Rightarrow e_{1}$

$$
\begin{aligned}
& \mid p_{2} \underset{\vdots}{\Rightarrow} e_{2} \\
& \mid p_{n} \stackrel{\vdots}{\Rightarrow} e_{n}
\end{aligned}
$$

e, e_{1}, \ldots, e_{n} are expressions: must have the same type. $p_{1, \ldots}, p_{n}$ are patterns; must match exceptions.
If e reduces to a value v, that value is returned. If e instead raises an uncaught exception E, the handler will try to match E against the patterns $P_{1} \ldots, P_{n}$ (in sequential order). If E matches P_{i}, then SML will evaluate e_{i}. If no pattern matches, Eréne ins. uncangint.
fun $f(x, 0)=$ raise $\operatorname{Rdiv}(x * x)$

$$
\left\lvert\, f(x, n)=\frac{\text { if } n<0 \text { then raise silly }}{\text { else } x /(\text { real } n)}\right.
$$

fun $g(x, n)=f(x, n)$ handle silly $\Rightarrow 0.0$

$$
\mid \operatorname{Rdiv}(v) \Rightarrow v
$$

What are the types of $f g$?
Both have type

$$
\text { real } * \text { int } \rightarrow \text { real }
$$

fun $f(x, 0)=$ raise $\operatorname{Rdiv}(x * x)$

$$
1 f(x, n)=\frac{\text { if }}{\text { else }} n<0 \text { then raise silly }
$$

fun $g(x, n)=f(x, n)$ handle silly $\Rightarrow 0.0$ $\mid \operatorname{Rdiv}(v) \Rightarrow v$
What are the values of:

$$
\begin{aligned}
& g(3.0,0) \longleftrightarrow 9.0 \\
& g(3.0,2) \longleftrightarrow 1.5 \\
& g(3.0, \sim 1) \longleftrightarrow 0.0
\end{aligned}
$$

fun $f(x, 0)=$ raise $\operatorname{Rdiv}(x * x)$

$$
\left\lvert\, f(x, n)=\frac{\text { if } n<0 \text { then }}{\text { else }} x /(\text { realise silly } n)\right.
$$

fun $g(x, n)=f(x, n)$ handle Silly $\Rightarrow 0.0$
Suppose g does not
What rove the values of:
$g(3.0,0)$ no value; uncaught exception Rdiv
$g(3.0,2) \longleftrightarrow 1.5$
$g(3.0, \sim 1) \longleftrightarrow 0.0$
n-Queens
Place n queens on a square $n \times n$ board without any two queens threatening each other.
(A queen threatens all locations in the same column, in the same row, and on lines with slope ± 1 that pass through the queen's position.)

Three Implementations

- Exceptions \quad - Options \quad Continuations $\quad\left\{\begin{array}{l}\text { we } \\ \text { will } \\ \text { use } \\ \text { these } \\ \text { programming } \\ \text { styles } \\ \text { for } \\ \text { search }\end{array}\right.$

Example: Place 4 queens on a 4×4 board:

Start by placing a queen in column 1 and row 1 :

Add a queen to column 2 by trying different rows:

Add a queen to column 2 by trying different rows:

Add a queen to column 2 by trying different rows:

Add a queen to column 2 by trying different rows:

Add a queen to column 2 by trying different rows:

Add a queen to column 2 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

Add a queen to column 3 by trying different rows:

OH NO! We cannot place the third queen!

OH NO! We cannot place the third queen! Let's backtrack to the placement of second queen.

Let's backtrack to the placement of second queen.

Let's try a new placement for the second queen.

Let's try a new placement for the second queen.

Again add a queen to column 3 by trying different rows:

Again add a queen to column 3 by trying different rows:

Again add a queen to column 3 by trying different rows:

Again add a queen to column 3 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

Add a queen to column 4 by trying different rows:

OH NO! We cannot place the fourth queen!

OH NO! We cannot place the fourth queen! Let's backtrack to the placement of third queen.

Let's backtrack to the placement of third queen.

Let's try new placements for the third queen.

Let's try new placements for the third queen.

Let's try new placements for the third queen.

Let's try new placements for the third queen.

OH NO! Again cannot place the third queen!

OH NO! Again cannot place the third queen! Again backtrack to the placement of second queen.

Again backtrack to the placement of second queen.

OH NO! We cannot place the second queen!

OH NO! We cannot place the second queen! Let's backtrack to the placement of first queen.

Let's backtrack to the placement of first queen.

Let's try a new placement for the first queen.

Let's try a new placement for the first queen.

Again add a queen to column 2 by trying different rows:

Eventually, placement of second queen succeeds:

Then placement of third queen succeeds:

Again add a queen to column 4 by trying different rows:

Eventually, placement of fourth queen succeeds:

Solution obtained:

Code Overview

- (i, j) refers to $i^{\text {th }}$ column $\& j^{\text {th }}$ row.
- Try to add a queen to column i, given threat-free queen placements in columns 1, ,o, $i-1$.
- Try successive rows, ie., positions (i,1), $(i, 2) \ldots$.
- If position (i, j) is threat-free, place $i^{\text {th }}$ queen there and move on to column $i+1$.
- If no position is threat-free in column i, backtrack to column $i-1$, undo the prior placement of a queen in that column and search for a new placement.
(* threat : int*int \rightarrow int*int \rightarrow bool Decide whether two queen positions threaten each other.
*)
fun threat $(x, y) \quad(a, b)=$ $x=a$ orelse $y=b$ orelse $x+y=a+b$ orelse $x-y=a-b$
(* threat : int*int \rightarrow int*int \rightarrow boo *)
fun threat $(x, y) \quad(a, b)=$ $x=a$ orelse $y=b$ orelse $x+y=a+b$ orelse $x-y=a-b$
(* Conflict : int* int \rightarrow (int*int) list \rightarrow bool Decide whether a given queen position is threatened by any queen position in a list of queen positions.
*)
fun conflict $p=$ List. exists (threat p)
List. exists : ('a \rightarrow bool) \rightarrow 'a list \rightarrow boil
(* addqueen : int *int * (int*int) list \rightarrow (int*int) list try : int \rightarrow (int*int) list
queens : int \rightarrow (int x int) list
- addqueen (i, n, Q) tries to place all remaining queens on an $n \times n$ board, starting in column i, assuming Q describes conflict-free queen placements in columns $1, \ldots, i-1$.
- addqueen uses local helper function try. try (j) starts its search from position (i, j).
- queens (n) tries to place all queens on an $n \times n$ board.
- These functions raise exception Conflict when
*) unsuccessful.
exception Conflict
fun addqueen $(i, n, Q)=$
let
fun try $j=$
(if conflict $(i, j) Q$ then raise Conflict else if $i=n$ then $(i, j):: Q$
else addqueen ($i+1, n,(i, j):: Q)$)
handle Conflict \Rightarrow if $j=n$
then raise Conflict
in try 1
else try $(j+1)$
end
fun queens $n=\operatorname{addqueen}(1, n,[])$
queens $4 \subset[(4,3),(3,1),(2,4),(1,2]$
queens $1 \longleftrightarrow[(1,1)]$
queens 2 does not return a value. Instead, exception Conflict is uncaught at top level.

Implementation using options
(* addqueen: int*int* (int*int) list \rightarrow (int * int) list option
try: int \rightarrow (int *int) list option
queens: int \rightarrow (int *int) list option
*)
fun addqueen $(i, n, Q)=$
let
fun try $j=$
(case (if conflict (i, j) Q then NONE else if $i=n$ then $\operatorname{SOME}((i, j):: Q)$ else addqueen $(i+1, n,(i, j):: Q))$
of NONE \Rightarrow if $j=n$ then NONE else try $(j+1)$ 1 result \Rightarrow result)
in try 1
end
fun queens $n=$ addqueen $(1, n,[])$

Implementation using continuations
(* addqueen : int*int* (int*int) list

$$
\begin{aligned}
& \left.\rightarrow(\text { (int } * \text { int }) \text { list } \rightarrow{ }^{\prime} a\right) \\
& \rightarrow\left(\text { unit } \rightarrow{ }^{\prime} a\right) \\
& \rightarrow{ }^{\prime} a
\end{aligned}
$$

try: int \rightarrow ' a
queens : int \rightarrow (int x int) list option
) (Here we have the top-level queens function again return a list option of queen placements. *)
fun addqueen (i, n, Q) sc $f_{c}=$
let
fun $\operatorname{try} j=$
let $_{f}$
fun $f_{c}^{\prime}()=$
if $j=n$ then $f c()$ else try $(j+1)$
in if conflict $(i, j) Q$ then $f_{c}^{\prime}()$
else if $i=n$ then $\operatorname{sc}((i, j):: Q)$
else addqueen $(i+1, n,(i, j):: Q)$ sc f_{c}^{\prime}
${ }^{\text {in }}$ try 1
end
end
fun queens $n=$
addqueen $(1, n,[])$ SOME $\left(f_{n}() \Rightarrow\right.$ NONE $)$

More powerful continuations
We will allow success continuations to take failure continuations as arguments.

Doing so increases expressive power.
We can then solve more problems simply by changing continuations slightly.
datatype 'a tree $=$ Empty / Node of 'a tree *'a*'a tree
(* find : ('a \rightarrow bool) \rightarrow 'a tree

$$
\begin{aligned}
& \rightarrow\left({ }^{\prime} a \rightarrow(\text { unit } \rightarrow \text { 'b }) \rightarrow{ }^{\prime} b\right) \\
& \rightarrow(\text { unit } \rightarrow \prime b) \\
& \rightarrow \text { ' } b
\end{aligned}
$$

*)
fun find p Empty sc $f_{c}=f_{c}()$ 1 find $p(\operatorname{Node}(l, x, r))$ sc $f c=$ let fun fonew ()$=$ find $p \& s c \quad\left(f n() \Rightarrow\right.$ find $\left.p r s c f_{c}\right)$ in if $p(x)$ then sc x fonew
else fenew () The success continuation receives element end x and the failure continuation (fcnew says what to do if $p(x)$ had been false).
fun even $n=(n \bmod 2=0)$
(* find first even integer encountered in pre-order traversals)
fun find first $T=$
find even $T \quad\left(f_{n} x \Rightarrow f_{n} f \Rightarrow \operatorname{SOME}(x)\right)$

$$
(\underline{f}() \Rightarrow \text { NONE })
$$

(* accumulate list of all even integers.*)
fun findall $T=$
find even $T \quad\left(f_{n} x \Rightarrow f_{n} f \Rightarrow x:: f()\right)$

$$
\left(\underline{f_{n}}() \Rightarrow[]\right)
$$

(* count all the even integers. *)
fun count $T=$
find even $T \quad\left(f_{n} x \Rightarrow f_{n} f \Rightarrow 1+f()\right)$
$(\ln () \Rightarrow 0)$

That is all.

Please enjoy Spring Break.

See you the Tuesday after, when we will talk about regular expressions.

