
15-150 Fall 2023

©Stephen Brookes

Lecture 6
Sorting lists of integers

1

1 Outline

In this lecture we put together the themes introduced so far

• recursive function definition

• inductive proof techniques

• specifications, correctness, and efficiency

and we develop functional programs that implement the insertion sort and
mergesort algorithms for sorting lists of integers. You should be able to do
similarly with other well known sorting algorithms, such as quicksort. Later
we will generalize to sorting lists of other data, with respect to different
orderings; and we’ll talk about sorting trees and other structured data. We’ll
even develop some parallel sorting functions.

For now, it would help to review your knowledge of basic properties of
the integers and the “usual” < ordering. If you are not familiar with the
notation and basic facts you should consult a discrete math text or look
online! You have probably been using many of these properties without
much thought, but here we will need to be explicit so that you see their
relevance in proving correctness of programs. In particular, for each pair
of integers m and n exactly one of the following three relationships holds:
either m < n, or n < m, or m = n. We write x ≤ y for x < y or x = y,
and we call ≤ the less-than-or-equal-to relation. It satisfies the “transitive”
property: x ≤ y & y ≤ z implies x ≤ z. It is also anti-symmetric, in that
x ≤ y & y ≤ x implies x = y. Note also that for any pair of integers we
always have either x ≤ y or y ≤ x; Wikipedia calls this the connex property,
but I am unfamiliar with that terminology! I prefer to call it “totality” of
the ≤ relation. In summary, this combination of properties (anti-symmetry,
transitivity, and totality) characterizes what is known as a linear (or total)
ordering. So what we’re saying is that the usual less-than-or-equal relation
on the integers is a total ordering.

It’s often more convenient to refer to < (the strictly less-than relation)
instead of ≤, but the two notions are intimately connected so there shouldn’t
be any confusion. Of course, the < relation on the integers also satisfies
transitivity: x < y and y < z implies x < z.

And it’s common to use the word “order” instead of “ordering”, and I
reserve the right to use these terms interchangeably since I’ve been doing
that for years now!

2

2 Remarks

In the code below we provide accurate specifications but we don’t always use
the REQUIRES and ENSURES format. In Lecture 5 we discussed much of
this code. These notes supplement what was said and done in class, offering
a different perspective and often more explicit detail. Some of the discussion
of work in these notes may occur in Lecture 6, depending on time.

3 Background

Comparison in ML

We introduce the following type and function; each is already pre-defined
in SML, but we give explicit definitions since we use them here for the first
time. (Actually the function compare is called Int.compare in SML. We
give it a shorter name just for convenience.)

datatype order = LESS | EQUAL | GREATER

(* A comparison function for integers *)

(* compare : int * int -> order *)

fun compare(x:int, y:int):order =

if x<y then LESS else

if y<x then GREATER else EQUAL

(* compare(x,y)=LESS if x<y *)

(* compare(x,y)=EQUAL if x=y *)

(* compare(x,y)=GREATER if x>y *)

The first line above is a simple form of datatype definition. It introduces
a user-defined type named order. Later in the semester we will see more
sophisticated datatype definitions. The ability to define your own types like
this, and have them fit in seamlessly with the rest of the ML type discipline,
is a very powerful feature of the programming language.

The type order has just three (syntactic) values, written LESS, EQUAL,
and GREATER, each in all-caps. You can test expressions of type order for
equality (using ML =) or use one in a case-expression to do different things

3

based on a comparison result. (The type order is an equality type.) ML also
allows the use of <> (“not equal to”) on values of an equality type.

By the way, the infix < operator in ML, of type int * int -> bool,
behaves just like the “usual” less-than ordering on the integers in math. In
math we write x ≤ y for “x is less-than-or-equal-to y”, but in ML we use
x <= y. Of course int is also an equality type, so we can use ML = to test
for equality of integer expressions.

Linear ordering

The ≤ relation on integers has some well known properties. These are crucial
in the design and analysis of sorting algorithms. In particular, ≤ is a linear
ordering. This means that for all integers x, y, z:

• x ≤ y & y ≤ x implies x = y (antisymmetry)

• x ≤ y & y ≤ z implies x ≤ z (transitivity)

• x ≤ y or y ≤ x (totality)

The property called “totality” is also known as “connectivity”.

Sorted lists

A list of integers is sorted if each item in the list is ≤ all items that occur
later in the list. Here is an ML function that checks for this property.
We only use this function in specifications!

(* sorted : int list -> bool *)

fun sorted [] = true

| sorted [x] = true

| sorted (x::y::L) =

(compare(x,y) <> GREATER) andalso sorted(y::L)

(* REQUIRES L is an integer list *)

(* ENSURES sorted L = true iff L is a sorted list *)

The expression compare(x,y) <> GREATER evaluates to true if the value
of compare(x, y) is LESS or EQUAL, and evaluates to false if x > y.

4

Examples:

sorted [1,2,3] = true

sorted [3,2,1] = false

Make sure you notice the relevance of the linear ordering properties here:
they are the reason why this sorted function behaves as described! They
also justify why it’s not necessary in the third clause of the function to check
that x is not greater than all the elements of L; the term sorted(y::L) checks
that y is less-than-or-equal to the elements of L, and the knowledge that x ≤ y

is enough (because of transitivity) to then imply that x is less-than-or-equal
to all items in L.

From now on we will say that an integer list L is sorted if and only if
sorted(L) evaluates to true. We will assume you remember the basic prop-
erties described above, and we will take advantage of “obvious” properties,
such as: an integer list of length 1 is sorted, and an integer list of form [x, y]
is sorted if and only if x ≤ y. Usually any facts that we deem “obvious”
are easy to prove from the definition of sortedness, and rely on the basic
properties of linear orderings.

4 Insertion sort

Here is a function that implements the well known insertion sort algorithm.
This algorithm is often (informally) described as building up its sorted output
by starting with an empty list and successively inserting the items from the
input list, at each stage maintaining the correct sorted order. Unfortunately
this kind of description is a bit too too vague to be precise, using fuzzy words
like “building up” and “successively”. A better (more precise) description
would be:

To insertion sort a list: if the list is empty, do nothing; otherwise,
(recursively) insertion sort the tail of the list and then insert the
head.

(This version is clearer about order of evaluation.) Of course we need a helper
function for inserting an item into a list, and we can see from the above that
we will only need to do insertion into an already sorted list, and we need
maintain sortedness when we do so!

5

Let’s code this algorithm in SML. We won’t need to use ML functions for
extracting heads and tails of lists; instead we’ll use pattern matching.

First we define a helper function for inserting an integer into its proper
place in a sorted list. To be clear about what this means, we refer to the
familiar notion of permutation. An integer list A is a permutation of a list B if
A contains the same items as B, possibly in a different order, and each integer
occurs the same number of times in A as in B. For example, [1,2,3,1] is a
permutation of [2,1,3,1] and a permutation of 1::(1::2::[3]), but not
a permutation of [1,2,3].

(* ins : int * int list -> int list *)

(* REQUIRES L is a sorted list of integers *)

(* ENSURES ins (x, L) = a sorted permutation of x::L *)

fun ins (x, []) = [x]

| ins (x, y::L) = case compare(x, y) of

GREATER => y::ins(x, L)

| _ => x::y::L

Examples:

ins (2, [1,3]) = [1,2,3]

ins (2, [3,1]) = [2,3,1]

ins (2, [1,2,3]) = [1,2,2,3]

As the ins function does a three-way comparison but does the same thing in
two outcomes it would be just as acceptable stylistically to use an if-then-else
with a single < test:

fun ins (x, []) = [x]

| ins (x, y::L) = if x > y then y::ins(x, L) else x::y::L

Using ins as a helper, we can implement insertion sort as follows:

(* isort : int list -> int list *)

(* REQUIRES L is an integer list *)

(* ENSURES isort(L) = a sorted permutation of L *)

fun isort [] = []

| isort (x::L) = ins (x, isort L)

6

In the lecture slides we sketched a proof that ins satisfies its specification,
and that isort satisfies its specification. Be sure to study these proofs (and
fill in any missing details). They are a very useful exercise in understanding
how recursion and induction work.

Efficiency analysis for isort

It’s easy to see that the work to evaluate ins(x, L) when x and L are values
of type int and int list depends on the length of L (and on the results
of the comparisons between x and the items in L). We want to assume the
worst, to get an upper bound on evaluation time. It’s easy to see that the
worst case actually happens when x is greater than all items in L. Let Wins(n)
be the (worst-case) work to evaluate ins(x, L) when L ranges over lists of
length L. We can extract the following recurrence from the definition of ins
(and simplifying by choosing constants to be 1):

Wins(0) = 1
Wins(n) = 1 + Wins(n− 1) for n > 0

Clearly this implies that Wins(n) is O(n). Similarly the work for isort L

when L is a value depends on the length of L, and we can derive the following
recurrence for Wisort(n), the worst case work for isort L as L ranges over
lists of length n:

Wisort(0) = 1
Wisort(n) = Wins(n− 1) + Wisort(n− 1) for n > 0

= O(n) + Wisort(n− 1)

and this tells us that Wisort(n) is O(n2).
To summarize: isort is a correct sorting function for integer lists (because

we proved that it satisfies the sorting spec); but its running time (for list
values of length n) is quadratic, i.e. proportional to n2. As you must know
by now, there are other sorting algorithms with better efficiency. We’ll discuss
some soon. But first there’s still some mileage to be squeezed out of insertion
sort.

7

A variation

Just for interest, here is a slight variation on the insertion sort theme:

(* isort2 : int list -> int list *)

fun isort2 [] = []

| isort2 [x] = [x]

| isort2 (x::L) = ins (x, isort2 L)

It looks the same except that we’ve written in an explicit clause for singleton
lists (and changed the function’s name so we can distinguish it from the
original isort). We can show easily that this isort2 function is extensionally
equivalent to isort as defined above. (So the singleton clause is irrelevant.)
Indeed, it is very straightforward to prove, by induction on n, that:

For all n ≥ 0 and all integer values x1, . . . , xn,

isort [x1, . . . , xn] = isort2 [x1, . . . , xn].

• For n = 0, we have isort [] = [] = isort2 [].

• For n = 1, we have

isort [x1] = ins(x1, isort []) by def of isort
= ins(x1, []) by def of isort
= [x1] by def of ins
= isort2 [x1] by def of isort2

• For the inductive step, suppose n > 1 and the property holds for all
lists of length n− 1, i.e.

(IH): For all integer values y1, . . . , yn−1,

isort [y1, . . . , yn−1] = isort2 [y1, . . . , yn−1].

Let L be an integer list of length n, of the form [x1, . . . , xn]. By the
function definitions we have

isort [x1, . . . , xn] = ins(x1, isort [x2, . . . , xn]) by def of isort
= ins(x1, isort2 [x2, . . . , xn]) by IH
= isort2 [x1, x2, . . . , xn]) by def of isort2

8

Permutations

Here are some SML functions to help understand permutations:

mem : int * int list -> bool

del : int * int list -> int list

perm : int list * int list -> bool

fun mem(x:int, []) = false

| mem(x, y::L) = (x=y) orelse mem(x,L)

(* ENSURES mem(x,L) = true if x occurs in L, false otherwise *)

fun del(x, y::R) = if x=y then R else y::del(x,R)

(* REQUIRES x occurs in L *)

(* ENSURES del(x,L) = a list containing all items in L except for

the first occurrence of x *)

fun perm([], []) = true

| perm(_::_, []) = false

| perm([], _) = false

| perm(x::L, R) = mem(x, R) andalso perm(L, del(x,R))

(* ENSURES perm(L,R) = true if L is a permutation of R, false otherwise *)

We say that L is a permutation of R if the two lists have the same elements
(the same number of times, for each one) but possibly in a different relative
order. This is the case if and only if perm(L, R) = true.

Some pretty obvious facts:

• The only permutation of [] is []. Every list is a permutation of itself.

• x :: P is a permutation of L if and only if x is a member of L and P is
a permutation of del(x, L).

• If P is a permutation of L, then x :: P is a permutation of x :: L.

• (x::A)@(y::B) is a permutation of x::y::(A@B)

• If P is a permutation of L, then length P = length L.

• If P is a permutation of L and Q is a permutation of P , then Q is a
permutation of L. (Loosely speaking, “A permutation of a permutation
is a permutation.”)

We allow use of these facts without proof.

9

5 Mergesort

As is well known, mergesort is an algorithm that sorts lists of n integers
in time O(n log n). Let’s implement the algorithm in ML and prove its
correctness, then confirm the work estimate.

To mergesort a list of integers, if it is empty or a singleton do nothing
(it’s already sorted); otherwise split the list into two lists of roughly equal
length, mergesort these two lists, then merge these two sorted lists.

Obviously we need helper functions for splitting and merging.

(* split : int list -> int list * int list *)

(* REQUIRES true *)

(* ENSURES split(L) = a pair (A, B) of lists such that

(* length(A) and length(B) differ by at most 1 *)

(* and A@B is a permutation of L. *)

fun split [] = ([], [])

| split [x] = ([x], [])

| split (x::y::L) = let val (A, B) = split L in (x::A, y::B) end

Example: split [1, 2, 3, 4, 5] = ([1, 3, 5], [2, 4]).
We can prove that split meets its specification, by induction on the

length of the list being split. In the proof we appeal to some obvious facts
about permutations.

• For L of length ≤ 1 the result holds obviously.

• Let L be a list of length n > 1. Then we can express L in the form
x::y::R for some integers x and y and a list R of shorter length than
n. By induction hypothesis, split R evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by at most 1, and A@B is
permutation of R. But then split L = (x :: A, y :: B), and these two
lists have the same length difference as A and B; and (x::A)@(y::B) is
a permutation of x::y::(A@B), hence also a permutation of L.

• That completes the proof.

Note that the spec is a bit more precise than the informal English that we
used to introduce the algorithm.

10

The helper function for merging is only going to be used on a pair of
sorted lists, and is used to produce another sorted list containing all of the
items in both of the input lists. However, it would be terribly inefficient
to call the sorted function here; we don’t need to check that the inputs
are sorted lists, provided we prove that the merge function only ever gets
applied to pairs of sorted lists. And we can design the merge function so
that it automatically builds a sorted result, so again there is no need to
verify this property explicitly by calling sorted!

(* merge : int list * int list -> int list *)

(* REQUIRES A and B are sorted lists of integers *)

(* ENSURES merge(A, B) = a sorted permutation of A@B *)

fun merge ([], B) = B

| merge (A, []) = A

| merge (x::A, y::B) = case compare(x,y) of

LESS => x :: merge(A, y::B)

| EQUAL => x::y::merge(A, B)

| GREATER => y :: merge(x::A, B)

Examples:

merge([1,3,5], [2,4]) = [1,2,3,4,5]

merge([5,3,1], [2,4]) = [2,4,5,3,1]

We prove that merge meets its spec by induction on the sum of the lengths of
A and B. This strategy should work, because in each recursive call the length
of at least one of the two lists decreases by 1 (and the other one is either
the same as before or shorter); in all cases the sum of the two list lengths
is smaller. Here are the proof details. You might expect us to use as the
“base case” in this proof the case where the sum of the list lengths is 0, i.e.
when both lists are empty. However, because the of the way the function
is written, it is actually simpler to base our inductive case analysis on the
function definition, as follows.

Note that the spec asserts that merge(A,B) is equal to a sorted perm of
A@B. This is the same as asserting that merge(A,B) evaluates to a sorted
perm of A@B.

• Assume that A and B are sorted lists.

11

• If A or B is the empty list, then merge(A,B) returns B or A, respectively.
In both cases the result is sorted, and since []@B = B and A@[] = A in
each case the result is equal to (and thus a permutation of) A@B.

• Inductive step: suppose that A and B are non-empty lists, and that
merge satisfies the specification on all pairs of sorted lists whose length
sum is smaller than that of A and B. Let A = x :: A′ and B = y :: B′.
Just like the function definition (third clause), our proof branches on
the result of comparing x and y.

– If x < y, merge(A, B) = x :: merge(A′, B). By assumption that
x :: A′ is sorted, x is ≤ every item in A′. And by assumption
that A is sorted, so is A′. The length of A′ is one less than the
length of A. So by the induction hypothesis, merge(A′, B) evaluates
to a sorted list (say M) that is a permutation of A′@B. We have
merge(A, B) = x::M. Since x < y and we assumed that y :: B′ is
sorted, x is ≤ every item in B. So x is ≤ every item in M. Hence
x :: M is a sorted permutation of x :: (A′@B).

– The case analysis for when x = y or x > y is similar and we omit
the details.

• We covered pairs in which one (or both) of the lists is empty in the
first case; and the inductive step covers cases where both of the lists
are non-empty. Thus we have shown by induction that for all sorted
lists A,B, merge(A, B) evaluates to a sorted permutation of A@B.

Digression

The spec given here for merge only talks about what happens when the
function gets applied to a pair of sorted lists. Of course the function can be
used on any pair of integer lists whatsoever, but the specification doesn’t tell
us anything about what will happen. Here’s what can happen:

val merge = fn : int list * int list -> int list

- merge ([2,1],[4,3]);

val it = [2,1,4,3] : int list

The input wasn’t a pair of sorted lists and the output wasn’t sorted. This
doesn’t clash with the spec, and doesn’t cause any problems because we will
only use the function by applying it to sorted lists!

12

Now we have the ingredients, we can define a mergesort function:

(* msort : int list -> int list *)

(* REQUIRES true *)

(* ENSURES msort(L) = a sorted permutation of L *)

fun msort [] = []

| msort [x] = [x]

| msort L =

let

val (A, B) = split L

in

merge(msort A, msort B)

end

Note how closely the function definition resembles the informal algorithm
description! And as promised, we’ve only used merge in a place where (it
will be shown that) its arguments are sorted lists!

We now prove by induction on the length of L that msort meets this
specification, for all integer lists L. Of course, we will make use here of the
results (already established) that split and merge satisfy their specifications.
Take note where (at the point labelled (*)) we establish that merge is being
applied to sorted lists, which justifies our use of the proven spec for merge!

• Base case: When L is empty or a singleton list, msort L = L, and this
is trivially a sorted list and a permutation of L.

• Inductive step: Assume that L is a list of length n > 1 and that
msort satisfies the spec for lists of length less than n. From above,
we know that split L evaluates to a pair of lists (A, B) such that
0 ≤ length(A)− length(B) ≤ 1 and A@B is a permutation of L. Hence,
the length of A and length of B are both less than length of L. (The
maximum possible length for A is n div 2 if n is even, n div 2 + 1 if
n is odd, and since n > 1 in each case this is less than n.) So, by the
induction hypothesis, msort A evaluates to a sorted permutation of A,
and msort B evaluates to a sorted permutation of B. So the values of
msort A and msort B are sorted lists (*), and by the spec for merge it
follows that merge(msort A, msort B) evaluates to a sorted permutation
of A@B. This must also be a permutation of L, because “a permutation
of a permutation is a permutation”. End of proof.

13

Digression

Just for interest again, consider the following slight variant:

fun msort’ [] = []

| msort’ L =

let

val (A, B) = split L

in

merge(msort’ A, msort’ B)

end

If we drop the singleton clause, like this, we get a function that loops on lists
of length 1. Hence it also loops on any non-empty list. See where the above
proof goes wrong if we try to use it to prove this code correct.

Efficiency of msort

The work (sequential running time) of msort(L) depends on the length of
L, but not on the integers that occur in L. We can derive, from the function
definition, a recurrence relation for the work Wmsort(n) of msort(L) when L

has length n. To get an asymptotic estimate of the work for msort, we must
also analyze the work of split and merge.

It seems pretty obvious that split(L) looks at each item in L successively,
dealing them out into the left- or right-hand component of the pair of lists
being constructed. So Wsplit(n) is O(n). We can reach the same conclusion
by extracting a recurrence relation from the definition of split:

Wsplit(0) = 1
Wsplit(1) = 1
Wsplit(n) = 1 + Wsplit(n− 2) for n > 1

It is easy to show that the solution Wsplit(n) to this recurrence relation is
O(n).

Similarly, when A and B are lists of length m and n, the running time of
merge(A, B) is linear in m + n. (The output list has length m + n.)

Apart from the empty and singleton cases, msort(L) first calls split(L),
then calls msort recursively twice, each time on a list of length about half
of the original list’s length, then calls merge on a pair of lists whose lengths

14

add up to length(L). Hence, the work of msort on a list of length n is given
inductively by:

Wmsort(0) = 1
Wmsort(1) = 1
Wmsort(n) = Wsplit(n) + 2Wmsort(n div 2) for n > 1

= O(n) + 2Wmsort(n div 2)

Using a table of standard solutions, or ootherwise, it follows that Wmsort(n)
is O(n log n). So the work for msort on a list of length n is O(n log n).

What about the span for msort L? If we have the ability to run multiple
processors to evaluate independent pieces of code, can we get a speed-up?
You might think that the mergesort function is well suited for parallelism,
because it makes two independent recursive calls on lists of half the length,
used to build the two components of a pair. Hence calling msort(L) gives
rise to a tree-shaped pattern of recursive calls, e.g.

msort [3,4,1,2]

/ \

msort [3,1] msort [4,2]

/ \ / \

msort [3] msort [1] msort [4] msort [2]

and in general the height of this call tree is O(log n), where n is the length of
the original list. So maybe mergesort has logarithmic span? Unfortunately,
no! First we use split to deal the list out into two piles. There is no
parallelism here, since we deal the elements out one by one, so we have to wait
at least O(n) timesteps in this phase, even if we have as much computational
power as we need. This is bad. So the span of split(L) is linear in the
length of L. For the same reason, the recurrence for the span of split is
the same as the recurrence for the work of split, because the function is
inherently sequential:

Ssplit(n) = 1 + Ssplit(n− 2) for n > 1

Thus, Ssplit(n) is O(n). Similarly, since merge is inherently sequential, the
span of merge is (like the work) linear in the sum of the lengths of the lists.
However, for msort we get, for n ≥ 2,

Smsort(n) = Ssplit(n) + max(Smsort(n div 2), Smsort(n div 2)) + Smerge(n)
= Ssplit(n) + Smsort(n div 2) + Smerge(n)
= O(n) + Smsort(n div 2)

15

We use max here because the two recursive calls are independent, and can
be calculated in parallel; since the recursive calls are both on lists of approx-
imately half the length, we end up counting just one of them towards the
span. We do need the additive terms for the span of split and the span of
merge, because of the data dependencies: first the split happens, then the
two parallel sorts, then the merge.

Expanding, and replacing the O(n) term by cn (for some positive constant
c) to simplify our calculations, we see that:

Smsort(n) = cn + Smsort(n div 2)
= cn + cn/2 + cn/4 + cn/8 + cn/16 + · · ·+ cn/2log2 n

= cn(1 + 1/2 + 1/22 + · · ·+ 1/2log2 n)
≤ 2cn

The series sum here is always less than 2, and converges to 2 as n tends to
infinity. (Technically,

∑∞
n=0

1
2n

= 2.) So the span of msort is therefore O(n).
This is less than ideal. Ignore the constant factors, because a similar

example can be chosen no matter what they are. Suppose you want to sort a
billion numbers on 64 processors. Note that log 109 is about 30, so the total
work to do here is 30 billion steps. On 64 processors, this should take less
than half a billion timesteps, if you divide the work perfectly among all 64
processors. However, our span estimate says that the length of the longest
critical path is still a billion, so you can’t actually achieve this division of
labor! This problem gets worse as the number of processors gets larger.

The real issue here is that lists are bad for parallelism. The list data
structure does not admit an efficient enough implementation of split and
merge to exploit all the parallelism that might have been available.

In the next lecture we will discuss a more suitable data structure for
parallel sorting.

16

6 The Joy of Specs

The mergesort example shows the benefits of designing helper functions with
clear specifications, chosen carefully to make appropriate assumptions about
the arguments to which the functions will be applied, and to make strong
enough assertions about the results produced by these functions.

To illustrate the potential problems caused by inappropriate helper specs,
note that the merge function also satisfies the specification:

For all integer lists L and R,

merge(L,R) evaluates to a permutation of L@R.

This spec is not strong enough to help prove that msort sorts.
Note also that we can replace split by any other function with the same

type that satisfies the same specification as we used above, without affecting
the correctness of msort (defined as above, but using the replacement split
function). The new split function doesn’t need to be extensionally equivalent
to the old one; it just needs to satisfy the same specification! For example
we could have used

fun split [] = ([], [])

| split [x] = ([], [x])

| split (x::y::L) = let val (A, B) = split L in (x::A, y::B) end

Exercises

• Check that this split function satisfies the same specification as before.

• Show that this function is not extensionally equivalent to the original
split. (Hint: what is split [1,2,3]?) For which integer lists L do
the two split functions produce exactly the same result?

17

7 Self-test

1. Let T (n) for n ≥ 1 be given by the following recurrence:

T (1) = 1
T (n) = 2T (n div 2) + n2 for n > 0

Show that for all k ≥ 1, T (2k) ≤ 22k+1. This is an easy induction!
This result implies, by extrapolating, that T (n) is O(n2).

Contrast what happens here with the behavior of U(n), given by

U(1) = 1
U(n) = 2U(n div 2) + n for n > 0

Show that for all k ≥ 1, U(2k) ≤ k2k+1.
It follows that U(n) is O(n log n).

2. Prove by induction on the length of L that sorted L = true if every
item in L is ≤ all later items in L, and sorted L = false otherwise.
Indicate clearly when you appeal to the characteristic properties of <
as a linear ordering. Explain why the work to evaluate sorted L when
L is a list value of length n is O(n).

3. A self-classified smart friend(?) suggests that you implement a form of
mergesort that checks first to see if the list is already sorted, to avoid
all the recursive effort in that case. Here is their version:

fun silly_msort [] = []

| silly_msort [x] = [x]

| silly_msort L = if (sorted L) then L else

let

val (A, B) = split L

in

merge (silly_msort A, silly_msort B)

end

What’s the work for a list of length n? Is your friend smart, after all?

18

4. Another, rather insecure, friend suggests new_msort, which calls the
old msort function only if it really needs to recurse (when the list is
non-trivial and isn’t already sorted).

fun new_msort [] = []

| new_msort [x] = [x]

| new_msort L = if (sorted L) then L else

let val (A, B) = split L in merge (msort A, msort B) end

What’s the work for new_msort L when L is a list of length n? Any
better, asymptotically, than your smart friend?

5. When the expression ins(3,ins(2,ins(1,[]))) is evaluated, in what
order do the insertions occur? How about ins(1,ins(2,ins(3,[])))?

6. What kind of argument values for ins cause the evaluation of ins(x,L)
to take the most steps? These are called worst-case arguments for ins.
Give a recurrence for the work of ins(x,L) when L is a list of length
n. Solve the recurrence and give an asymptotic classification. Estimate
the work for isort L when L is a list of length n.

7. The definition of perm given earlier has 4 clauses. Does it make any
difference to the applicative behavior of the function if we change the
clause order? Rewrite the perm function to use fewer than 4 clauses.

8. Write an ML function

split : int list -> int list * int list

such that for all integer lists L, split(L) evaluates to a pair of lists
(A, B) with A@B = L and |length(A)− length(B)| ≤ 1. Here |x| means
the absolute value of x. Would the code for msort still satisfy the
sorting specification if we replace its split function with this one?
How about the asymptotic work?

19

