15-150 Fall 2023

Stephen Brookes

Lecture 5

Work and span
Efficiency analysis

Today

- Work and span
 - sequential and parallel runtime
- Recurrences
 - exact and asymptotic solutions
- Designing efficient code

what matters

Correctness

```
TYPE f: t_1 \rightarrow t_2
REQUIRES x such that ...
ENSURES f x \Rightarrow^* v such that ...
```

Efficiency

Information about evaluation time

$$f \times \Longrightarrow (h(x) \text{ steps}) \vee$$

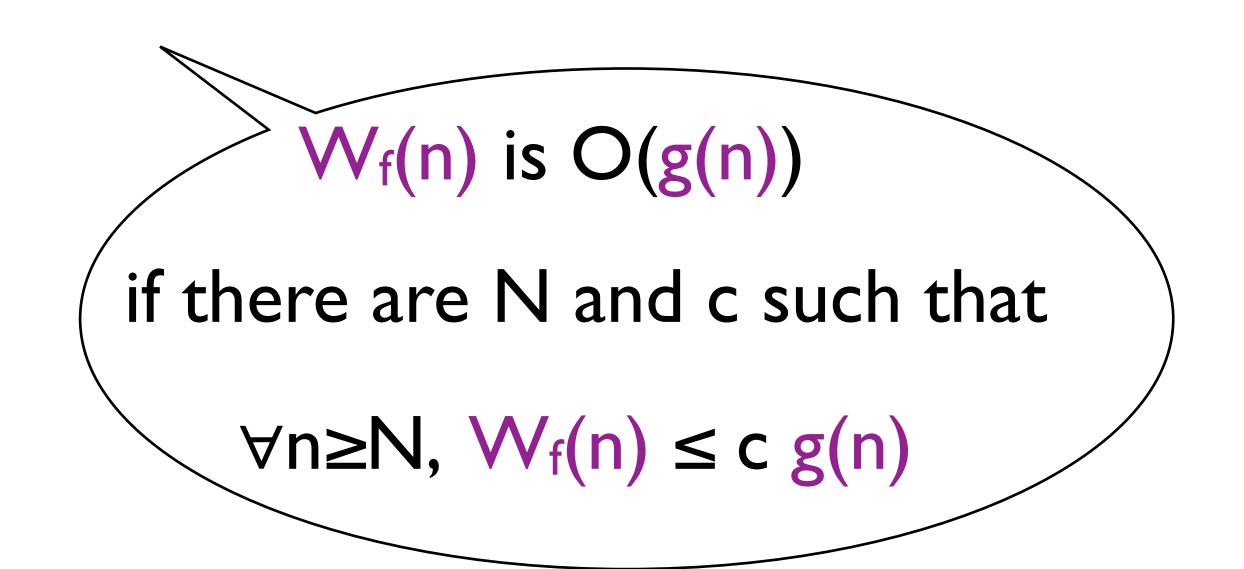
- number of steps h(x) depends on x and definition of f

An asymptotic estimate is good enough!

- h(x) is O(g(size x)) for some notion of size

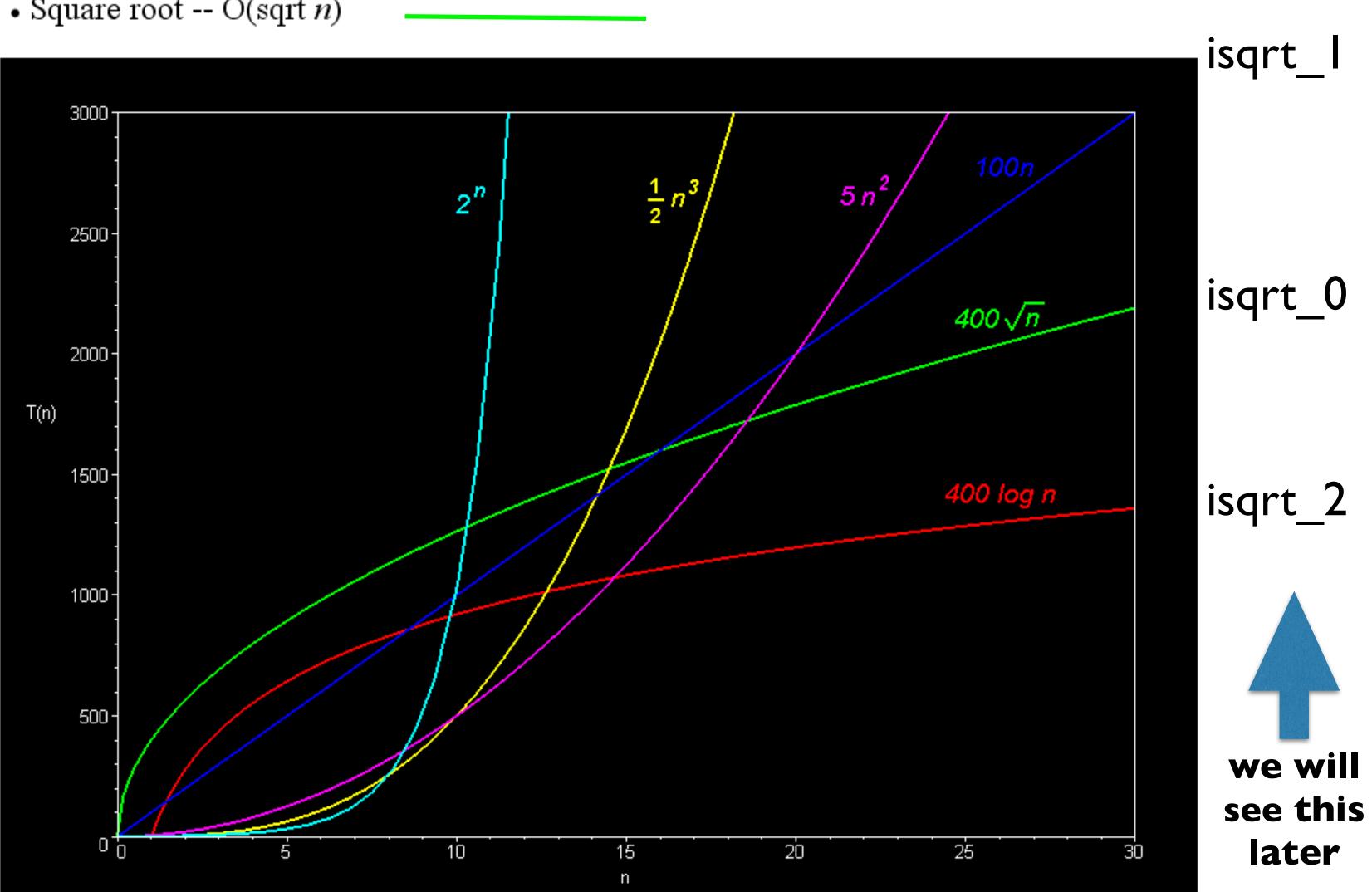
asymptotic

- We want to estimate the runtime $W_f(n)$ for evaluating f(n), for large n
 - basic operations take constant time
- We will give a big-O classification



The graph below compares the running times of various algorithms.

- Linear -- O(*n*)
- Quadratic -- $O(n^2)$
- Cubic -- $O(n^3)$
- Logarithmic -- O(log n)
- Exponential -- $O(2^n)$
- Square root -- O(sqrt n)



asymptotically

• Ignore additive constants

$$n^5 + 1000000$$
 is $O(n^5)$

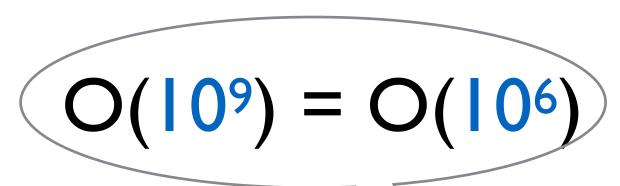
• Absorb multiplicative constants

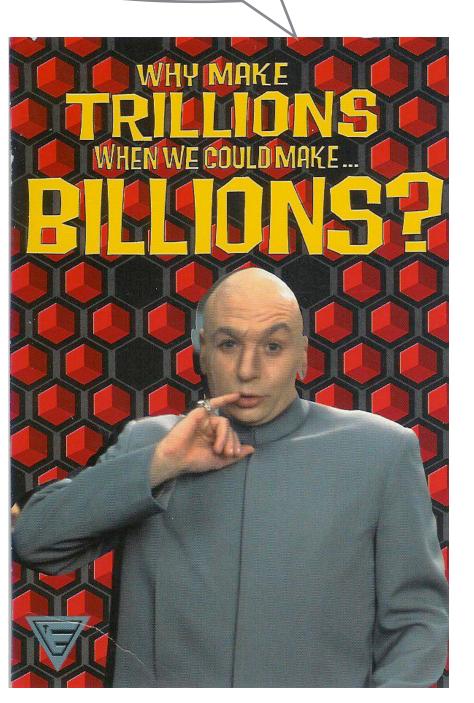
$$1000000n^5$$
 is $O(n^5)$

• Be accurate

$$O(n^2) \subset O(n^3) \subset O(n^4)$$

 Use common terminology constant time, logarithmic, linear, quadratic, polynomial, exponential





recurrences

To calculate the applicative work or span for a recursive function we can use a recurrence relation.

$$W_{fact}(0) = c_0$$

$$W_{fact}(n) = c_1 + W_{fact}(n-1) \quad n > 0$$
for some constants $c_0, c_1 > 0$

recurrences

$$W_f(n) = k * W_f(n-1) + c$$

where $k > 1, c > 0$ are constants

• Additive constants **don't** matter

$$W_f(n)$$
 is $O(k^n)$ for ANY choice of c WLOG let $c = 1$

• Multiplicative constants do matter

$$W_f(n)$$
 is $O(k^n)$... depends on k $O(2^n)$ is not the same as $O(3^n)$

Work

- W(e), the work of e, is the time to evaluate e sequentially, on a single processor
- Given a function f and a notion of size we may want the applicative work $W_f(n)$
 - The work of f v, when v is a value of size n

span

• S(e), the span of e, is the time to evaluate e, using parallel evaluation for independent code

 Often we have a function f and a notion of size for argument values, and want
 S_f(n), the span of f(v) when v has size n

rules of thumb

- Most primitive operations are constant-time
 - but not @ on lists (it does a bunch of :: operations)
- To calculate work,
 - add the work for sub-expressions
- To calculate span,
 - max the span for independent sub-expressions
 - add the span for dependent sub-expressions

dependent

• if b then e₁ else e₂

b before e₁ or e₂

• $(fn x => e_2) e_1$

- e₁ before [x:v₁] e₂
- let val $x = e_1$ in e_2 end
- e₁ before [x:v₁] e₂

independent

• $(e_1, ..., e_n)$

tuple components

 \bullet e₁ + e₂

summands

work rules

```
W(n) = 0
        W(e_1 + e_2) = We_1 + We_2 + I
W((e_1, e_2)) = We_1 + We_2
           W(e_1@e_2) = We_1 + We_2 + length e_1 + length e_2 + length e_2 + length e_3 + length e_4 + length e_4 + length e_5 + length e_6 + le
                  W (if b then e<sub>1</sub> else e<sub>2</sub>)
                                                                             \leq W b + max(W e<sub>1</sub>, W e<sub>2</sub>) + I
```

span rules

```
S(n) = 0
S(e_1 + e_2) = max(Se_1, Se_2) + I
S((e_1, e_2)) = max(Se_1, Se_2)
S(e_1@e_2) = max(Se_1, Se_2) + length e_1 + length e_2
S (if b then e<sub>1</sub> else e<sub>2</sub>)
       \leq Sb + max(Se_1, Se_2) + I
```

work and evaluation

• An evaluation step $e \implies e'$ represents a basic op, so the work for e is the number of steps

If
$$e \Longrightarrow (k) \lor then W(e) = k$$

$$(2+2)+(2+2) \Longrightarrow 4+(2+2)$$

$$\Longrightarrow 4+4$$

$$\Longrightarrow 8$$

$$W((2+2) + (2+2)) = 3$$

$$W(e_1+e_2) = W(e_1) + W(e_2) + I$$

work and application

If
$$e_1 \Rightarrow^* (\mathbf{fn} \times => e)$$
 and $e_2 \Rightarrow^* v$,
then $W(e_1 e_2) = W(e_1) + W(e_2) + W([x:v]]e) + I$

$$(\mathbf{fn} \times => \times + \times) (2+2)$$

$$\Rightarrow (\mathbf{fn} \times => \times + \times) 4$$

$$\Rightarrow 4+4$$

$$\Rightarrow 8 \qquad (3 \text{ steps})$$

```
W ((fn \times => x+x) (2+2))
= 0 + 1 + W(4+4) + 1
= 0 + 1 + 1 + 1
= 3
```

exp

```
fun exp (n:int):int =
  if n=0 then | else 2 * exp (n-|)
```

Let M be (fn n = if n = 0 then | else 2 * exp(n-1))

```
M 4 \Longrightarrow if 4=0 then ...
                                                                         \implies if false then ...
\exp 4 \longrightarrow (1) M 4
                                                                         \Rightarrow 2 * exp (4-1)
                                                                         \rightarrow 2 * M (4-1)
            \Longrightarrow (5) 2 * (M 3)
                                                                         \rightarrow 2 * (M 3)
            \implies (5) 2 * (2 * (M 2))
                                                                              M 3 \Longrightarrow^{(5)} 2 * (M 2)
            \implies (5) 2 * (2 * (2 * (M I)))
             \longrightarrow (5) 2 * (2 * (2 * (2 * (M 0)))
             \implies (3) 2 * (2 * (2 * (2 * 1)))
            \Longrightarrow (4) | 6
                                                                   \exp 4 \Longrightarrow (28) 16
```

exp

It's not hard to prove that for all $n \ge 0$,

exp n \Longrightarrow (6n+4) k, where k is the numeral for 2ⁿ

But it's tedious, and why be so accurate?

Does 6n+4 really tell us about actual *runtime* in milliseconds?

No! But it does tell us runtime is linear.

big-O is big-OK

- It's best to classify runtimes asymptotically
- This ignores irrelevant constants... (which may be machine-dependent, so not very significant)
- ... and ignores runtime on small inputs (which may have been special-cased in the code)

$$exp n \Longrightarrow^{O(n)} 2^n$$

If we double n, the runtime... doubles

recurrences

- Given a recursive definition for function f and a non-negative **size** function that decreases in every recursive call
- Extract a recurrence relation for the applicative work of f

worst-case work, over all values of size n

 $W_f(n)$ = work of f v on values v of size n

Idea: express $W_f(n)$ in terms of $W_f(m)$, $0 \le m \le n$

Q:When can this method succeed?

A: If the work of $f \lor depends only on the size of <math>\lor (!)$

solving a recurrence

WLOG let additive constants be 1

Try to find a *closed form* solution for W(n) (usually, by guessing and *induction*)

- OR Code the recurrence in ML, test for small n, look for a common pattern
- OR Find solution to a simplified recurrence with the same asymptotic properties
- OR Appeal to table of standard recurrences

exp

For
$$n \ge 0$$
, exp $n \Longrightarrow^* 2^n$

Let $W_{exp}(n)$ be the runtime for exp(n)

$$W_{exp}(0) = c_0$$
 $W_{exp}(n) = W_{exp}(n-1) + c_1$ for n>0

for some constants co and ci

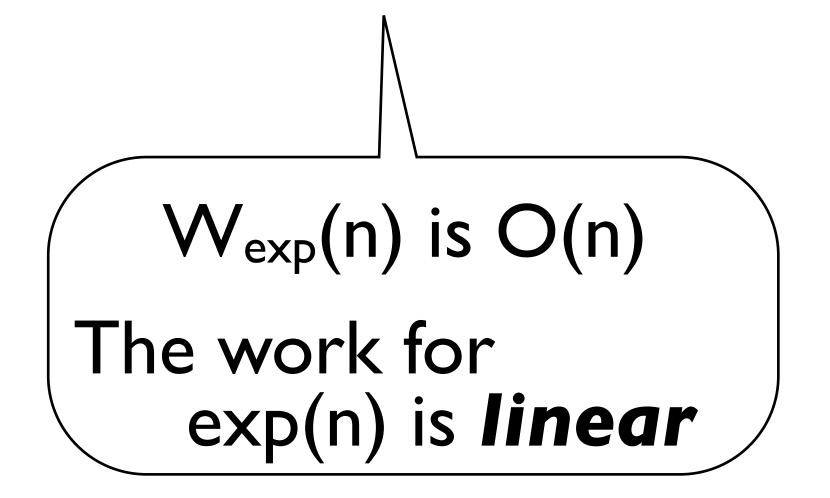
 c_0 : cost for test n=0

c₁: cost for test n=0, multiply by 2

solution

• Easy to prove by induction on n that

$$W_{exp}(n) = c_0 + n c_1$$
 for $n \ge 0$



comment

If we'd simplified by letting constants be 1,

$$W_{exp}(0) = I$$

$$W_{exp}(n) = W_{exp}(n-1) + 1$$
 for $n > 0$

we'd have gotten $W_{exp}(n) = 1 + n$

The simpler recurrence has the same solution, asymptotically

summary

- We've shown that for n ≥ 0,
 exp n computes the value of 2ⁿ in O(n) steps
- This fact is independent of machine details (assuming that basic operations are constant time)
- Can we do better?

use parallelism?

(with the same exp function)

```
fun exp (n:int):int =
if n=0 then | else 2 * exp (n-||)
```

• The recurrence for the span of exp n

will be *identical* to the recurrence we gave for work, with the same asymptotic solution... why?

No speed-up here using parallel evaluation!

a faster method?

• The definition of exp relies on the fact that

$$2^{n} = 2 (2^{n-1})$$
 when $n > 0$

Everybody knows that

$$2^n = (2^{n \text{ div } 2})^2$$
 when n is even

Let's define

fastexp

```
fun square(x:int):int = x * x
fun fastexp (n : int) : int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
                  else 2 * fastexp(n-1)
   fastexp 4 = square(fastexp 2)
             = square(square (fastexp I))
             = square(square (2 * fastexp 0))
             = square(square (2 * 1))
             = square 4 = 16
```

is it faster?

```
fun fastexp (n) =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

This code design leads to a recurrence...

```
\begin{split} W_{fastexp}(0) &= k_0 \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div 2}) + k_1 \text{ for n>0, even} \\ W_{fastexp}(n) &= W_{fastexp}(n-1) + k_2 \text{ for n>0, odd} \\ \text{for some constants } k_0, k_1, k_2 \end{split}
```

 k_0 : cost for test n=0 k_1 : cost for tests n=0, n mod 2 = 0, squaring k_2 : cost for tests n=0, n mod 2 = 0, multiplication by 2

is it faster?

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

Expand, then set constants to 1

$$\begin{split} W_{fastexp}(0) &= I \\ W_{fastexp}(I) &= I \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div } 2) + I & \text{for } n > I, \text{ even} \\ W_{fastexp}(n) &= W_{fastexp}(n \text{ div } 2) + I & \text{for } n > I, \text{ odd} \end{split}$$

(asymptotically same as original recurrence)

approx solution

W_{fastexp}(n) is defined like log₂(n)

```
log<sub>2</sub> n =
if n=1 then 0 else log<sub>2</sub> (n div 2) + 1

W<sub>fastexp</sub>(n) =
if n<2 then 1 else W<sub>fastexp</sub>(n div 2) + 1
```

• It follows that $W_{fastexp}(n)$ is O(log n)

it's really faster

- Work of exp(n) is O(n)
- Work of fastexp(n) is O(log n)
- O(log n) is a proper subset of O(n)
- fastexp is asymptotically faster than exp

even more faster?

• The definition of fastexp relies on

$$2^{n} = (2^{n \text{ div } 2})^{2}$$
 if n is even
 $2^{n} = 2(2^{n-1})$ if n is odd

• A moment's thought tells us that

$$2^n = 2 (2^{(n \operatorname{div} 2)})^2$$
 if n is odd

Let's define

based on this idea...

POW

```
fun pow (n:int):int =
 case n of
   0 => 1
          val k = pow(n div 2)
         in
          if n mod 2 = 0 then k*k else 2*k*k
         end
```

work of pow(n)

$$W_{pow}(0) = I$$

 $W_{pow}(I) = I$
 $W_{pow}(n) = I + W_{pow}(n \text{ div } 2) \text{ for } n > I$

Same recurrence as W_{fastexp}

Same asymptotic behavior

pow(n) is O(log n)

badpow

```
fun badpow (n:int):int =
                                      bad idea:
  case n of
                                      does same
    0 => 1
                                     recursive call
                                        twice
           val k = badpow(n div 2)*badpow(n div 2)
          in
           if n mod 2 = 0 then k else 2*k
          end
```

work of badpow(n)

```
W_{badpow}(0) = I

W_{badpow}(1) = I

W_{badpow}(n) = I + 2 W_{badpow}(n \text{ div } 2)

for n>1
```

• This implies that $W_{badpow}(n)$ is O(n)

But
$$W_{pow}(n)$$
 is $O(log n)$ (faster!)

Bad code design leads to poor performance

list reversal

```
fun rev [] = []
| rev (x::L) = (rev L) @ [x]
```

For list values A and B, $W_@(A, B)$ is linear in the length of A

Runtime of rev(L)
depends on *length* of L
but not the contents of L

length(rev L)= length(L)

work of rev

```
fun rev [] = []
        rev(x::L) = (rev L) @ [x]
Let W_{rev}(n) be work of rev L when length L = n
        W_{rev}(0) = I
        W_{rev}(n) = W_{mex}(m-1) + mn-1 + 1
                                           for n>0
                 = W_{rev}(n-2) + (n-1) + n
                =1 + 2 + ... + (n-1) + n
             W_{rev}(n) is O(n^2)
```

faster rev

Surely O(n) should be feasible...

 Use an extra argument to accumulate the reversed list

revver: int list * int list -> int list

Instead of append after the recursive call,
 do a cons before the recursive call

faster rev

```
For all L,A, revver(L, A) = (rev L) @ A
```

For all L, Rev L = rev L

Explain why $W_{Rev}(n)$ is O(n)

Hint: analyze W(revver (L, A))

summary

Use recurrences for work/span

- recurrence form *mimics* function syntax
- OK to be sloppy with additive constants
 - let c = 1, or add/subtract 1

Asymptotic estimates are robust

- independent of architecture
- give information about scaling

exercise

Recall the functions

```
isqrt_0 : int -> int
isqrt_l : int -> int
isqrt_2 : int -> int
```

• Figure out the asymptotic work for

```
isqrt_0 n
isqrt_l n
isqrt_2 n
using
recurrences
```

Try them out on large values of n and see the differences!

isqrt_0

```
fun isqrt_0 (n : int) : int =
   if n=0 then 0 else
   let
     fun loop i = if n < i*i then i-l else loop(i+l)
   in
     loop l
   end</pre>
```

- $W_{isqrt} 0(0) = I$
- $W_{isqrt_0}(n) = W_{loop}(1)$ for n>0

How can this be? RHS doesn't seem to use n

isqrt_0

The loop function used by isqrt_0(n)
 does use the value of n

```
fun loop i = if n < i*i then i-l else loop(i+l)
```

• Let k be the integer square root of n, so

$$| ^{2} \le 2^{2} \le ... \le k^{2} \le n \le (k+1)^{2}$$

$$W_{loop}(i) = | + W_{loop}(i+1) \quad \text{for } i=1, ..., k$$

$$W_{loop}(k+1) = | \quad \text{Hence} \quad W_{loop}(1) \quad \text{is } O(k)$$

So
$$W_{isqrt_0}(n)$$
 is $O(\sqrt{n})$

isqrt_I

```
fun isqrt_l(n) =
  if n=0 then 0 else
  let
    val r = isqrt_l(n - l) + l
  in
    if n<r*r then r-l else r
  end</pre>
```

•
$$W_{isqrt_I}(0) = I$$

•
$$W_{isqrt_I}(n) = I + W_{isqrt_I}(n - I)$$

for
$$n > 0$$

$$W_{isqrt_I}(n)$$
 is $O(n)$

isqrt_2

```
fun isqrt_2(n) =
  if n=0 then 0 else
  let
    val r = 2 * isqrt_2(n div 4) + 1
  in
    if n<r*r then r-1 else r
  end</pre>
```

```
• W_{isqrt_2}(0) = I
```

•
$$W_{isqrt_2}(n) = I + W_{isqrt_2}(n \text{ div } 4)$$
 for $n > 0$

$$W_{isqrt_2}(n)$$
 is $O(log n)$

summary

Asymptotic work analysis
 "explains" runtime experience

$$O(log\ n) \subset O(\sqrt{n}) \subset O(n)$$
 is qrt_0 is qrt_1