
Function Definitions
15-110 – Friday 09/10

Announcements

• Feedback is now released for Check1
• To view your feedback, open your assignment in Gradescope, then click on the

question name on the right sidebar that you want to see feedback for.

• Note that all rubric items are displayed by default; the rubric items applied to your
submission should be highlighted.

• If you find a grading error, use the Request Regrade button to ask the Lead TAs to
take a second look

• Hw1 is due Monday at noon
• For Hw1 – Programming, work primarily in the editor, not the interpreter!

2

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace the call stack to understand how Python keeps track of nested
function calls

3

Function Definitions

4

Function Definitions Run on Abstract Input

Now that we have all the individual components of functions, we can
write new function definitions ourselves.

To write a function, you need to determine what algorithm you want to
implement. You'll convert that algorithm into code that runs on
abstract input.

5

Core Function Definition

Let's start with a simple function that
has no explicit input or output;
instead, it has a side effect (printed
lines).

def helloWorld():

print("Hello World!")

print("How are you?")

helloWorld()

def is how Python knows the following code is a
function definition

helloWorld is the name of the function. This is
how we'll call it.

The colon at the end of the first line, and the
indentation at the beginning of the second and third,
tell Python that we're in the body of the function.

The body holds the algorithm. When the indentation
stops, the function is done.

In this example, the last line calls the function we've
written.

6

Parameters are Abstracted Arguments

To add input to the function definition, add parameters inside the parentheses next
to the name.

These parameters are variables that are not given initial values. Their initial values
will be provided by the arguments given each time the function is called.

def hello(name):
print("Hello, " + name + "!")
print("How are you?")

hello("Stella")
hello("Dippy")

7

Return Provides the Returned Value Output

To make our function have a non-None output, we need to have a return
statement. This statement specifies the value that should be substituted for
the function call when the function is called on a specific input.

def makeHello(name):
return "Hello, " + name + "! How are you?"

s = makeHello("Scotty")

As soon as Python returns a value, it exits the function. Python ignores any
lines of code after a return statement.

8

Activity: Write a Function

You do: write a function convertToQuarters that takes a number of
dollars and converts it into quarters, returning the number of quarters.

For example, if you call convertToQuarters on 2 ($2), the function
should return 8 (8 quarters).

9

Control Flow

Writing code with function definitions introduces a new concept to our
programs – control flow. This is the order that statements are executed in as
we run a program.

Before, all our programs ran sequentially from the first statement to the last.
But with function definitions, Python will need to redirect the control flow
whenever we call a function that we've defined.

Control flow is an incredibly useful tool, but it also makes it more difficult to
read and comprehend a program. In particular, when you read code with a
function definition, you have to keep in mind that that definition will not
influence the program until it is called.

10

Analyzing Functions

When a function you've defined is called, you can figure out what it will evaluate to by
tracing through the definition.

def addTip(cost, percentToTip):

return cost + cost * percentToTip

total = addTip(20.00, 0.17)

For example, in this function call, we know the inputs (20.00 and 0.17), so the output
must be 20.00 + 20.00 * 0.17, which is 23.4.

Note that this only works because we defined addTip before we called it! Python will still
execute all the statements in order.

11

Activity: Analyze the function

You do: what are the arguments and returned value of this function call,
given the definition?

def distance(x1, y1, x2, y2):
xPart = (x2 - x1)**2
yPart = (y2 - y1)**2
print("Partial Work:", xPart, yPart)
return (xPart + yPart) ** 0.5

result = distance(0, 0, 3, 4)

12

Scope

13

Variables Have Different Scopes

All the work done in a function is only accessible in that function. In other
words, if we make a variable in a function, the outer program can't access it;
the only way to transmit its value is to return it.

def addItUp(x, y, z):
answer = x + y
answer = answer + z

print(answer) # NameError!

The variable answer has a local scope and is accessible only within the
function addItUp.

14

Everything Can Access Global Variables

On the other hand, if a function is told to use a variable it hasn't defined, the function
automatically looks in the global scope (outside the function at the top level) to see if the
variable exists there.

x = 5

def test():
y = x + 2
return y

print(test() - x)

If you change a global variable in a function, that's a side effect! It's unlikely that you'll
want to use this, but good to know for debugging.

15

Scope is Like Names

You can think of the scope of a variable
as being like its last name. For example,
consider the following code:

x = "bar"

def test():

x = "foo"

print("A", x)

test()

print("B", x)

x exists in both the local and the global
scope, but the two x variables are
separate and have different values.

Analogy: knowing two people both
named Andrew. They have the same
first name, but different last names.

In the code above, the last name of the
function's x would be test, while the last
name of the top-level x would be global.

In general, it's best to keep variable
names different to avoid confusion.

16

Activity: Local or Global?

Which variables in the following code snippet are global? Which are local?

For the local variables, which function can see them?

name = "Farnam"

def greet(day):
punctuation = "!"
print("Hello, " + name + punctuation)
print("Today is " + day + punctuation)

def leave():
punctuation = "."
print("Goodbye, " + name + punctuation)

greet("Monday")
leave()

17

Function Call Stack

18

Function Calls in Function Definitions

It isn't too hard to trace a function call when it
goes through a single definition, but it gets a lot
harder when that definition calls another
function.

When the code to the right calls the function
outer, outer will run a bit of code, then call the
function inner.

Python needs to keep track of which variables are
in scope at any given point, and where returned
values should be sent. It does this with a call stack.

We'll primarily use the call stack to help us trace
and read code.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

19

Tracing the Code

When Python runs through this code, it
adds outer to its state, then it adds
inner.

When it reaches the last line, it must
call outer to evaluate the expression.
Python puts this line on the stack to
keep track of where it was before.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

20

Call Stack

print(outer(4))

Tracing the Code

Python traces through the outer
function normally until it reaches
the call to inner.

Now it needs to add another layer
to the stack, to keep track of
where it is in outer.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

21

Call Stack

print(outer(4))

return inner(2.0) + 3

Tracing the Code

Python is able to fully execute inner
without calling another function.

When it reaches the return statement, it
looks to the most recent part of the
stack to see where to go next. The
returned value is substituted for the call
there.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

22

Call Stack

print(outer(4))

return inner(2.0) + 33.0

Tracing the Code

When the value has been returned,
that layer is removed from the stack.

Python is able to finish running the
outer function, and the return
statement goes back to the first layer
of the stack. We'll then print 6.0 and
be done!

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

23

Call Stack

print(outer(4))6.0

return inner(2.0) + 33.0

Analogy: Baking with Bookmarks

You can think of the call stack like a series of
bookmarks that help you keep your place as
you trace the code.

For example, perhaps I'm following a recipe to
make an apple tart. One step of the recipe tells
me to make a frangipane (custard), but I don't
know how to do that!

I can put a bookmark on my current step and
find another cookbook with a recipe for making
frangipane, then start following that recipe.

Maybe that recipe tells me to cream the butter
and sugar, and I have to look in yet another
cookbook to learn how to do that. Each new
recipe is another layer on the stack.

24

Call Stack

makeAppleTart(ingredients)

makeFrangipane(subIngredients)

creamButterSugar(butter, sugar)

[if time] Activity: Trace the Function Calls

You do: given the code to the right, use
a call stack to trace through the
execution of the code.

It can be helpful to jot down the current
variable values as well, so you don't
have to hold them all in your head.

What will be printed at the end?

def calculateTip(cost):

tipRate = 0.2

return cost * tipRate

def payForMeal(cash, cost):

cost = cost + calculateTip(cost)

cash = cash - cost

print("Thanks!")

return cash

wallet = 20.00

wallet = payForMeal(wallet, 8.00)

print("Money remaining:", wallet)

25

Call Stacks in Error Messages

Call stacks will show up naturally in your
code whenever you encounter an error
message.

The call stack shows you exactly which
function calls led to the location where
the error occurred.

If we insert an error into the middle of
the code, you can see how each level of
the stack is listed out.

def outer(x):
y = x / 2
return inner(y) + 3

def inner(a):
b = a + 1
print(oops) # will cause an error
return b

print(outer(4))

26

Traceback (most recent call last):
File "example.py", line 10, in <module>

print(outer(4))
File "example.py", line 3, in outer

return inner(y) + 3
File "example.py", line 7, in inner

print(oops) # will cause an error
NameError: name 'oops' is not defined

Learning Objectives

• Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

• Recognize the difference between local and global scope

• Trace the call stack to understand how Python keeps track of nested
function calls

Feedback: https://bit.ly/110-f21-feedback

27

https://bit.ly/110-f21-feedback

