

UNIT 9A

Randomness in Computation: Random Number Generators

Course Announcements

- We are in the process of setting up the tutoring help system.
- PS7 is due Wednesday $3 / 20$ in class
- Midterm 2 (written) is Wed March 27
* Pa7-3128

- Determinism -- in all algorithms and programs we have seen so far, given an input and a sequence of steps, we get a unique answer. The result is predictable.
- However, some computations need steps that have unpredictable outcomes
- Games, cryptography, modeling and simulation, selecting samples from large data sets
- We use the word "randomness" for unpredictability, having no pattern

Defining Randomness

- Philosophical question
-Are there any events that are really random?
- Does randomnessrepresent lack of knowledge of the exact conditions that would lead to a certain outcome?

Obtaining Random Sequences

- Definition we adopt: A sequence is random if, for any value in the sequence, the next value in the sequence is totally independent of the current value.
- If we need random values in a computation, how can we obtain them?

$$
f(x)=2 x+1
$$

Obtaining Random Sequences

- Precomputed random sequences. For example, A Million Random Digits with 100,00 Normal Deviates (1955): A 400 page reference book by the RAND corporation
- 2500 random digits on each page
- Generated from randomelectronic putses

True Random Number Generators (TRNG)

- Extract randomness from physical phenomena such as atmospheric noise, times for radioactive decay
- Pseudo-random Number Generators (PRNG)
- Use a formula to generate numbers in a deterministic way but the numbers appear to be random

Random numbers in Ruby

- To generate random numbers in Ruby, we can use the rand function.
- The rand function take a positive integer argument (n) and returns an integer between 0 and $\mathrm{n}-1$.
>> rand(15110)
=> 1239
>> rand(15110)
=> 7320
>> rand(15110)
=> 84

Is rand truly random?

- The function rand uses some algorithm to determine the next integer to return.
- If we knew what the algorithm was, then the numbers generated would not be truly random.
- We call rand a pseudo-random number generator (PRNG) since it generates numbers that appear random but are not truly random.

Creating a PRNG

- Consider a pseudo-random number generator prng1 that takes an argument specifying the length of a random number sequence and returns an array with that many "random" numbers.
>> prng1 (9)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8]
- Does this sequence look random to you?

Creating a PRNG

- Let's run prng1 again: >> prng1 (15)
=> $[0,7,2,9,4,11,6,1,8,3$, 10, 5, 0, 7, 2]
- Now does this sequence look random to you?
- What do you think the $16^{\text {th }}$ number in the sequence is?

Another PRNG

- Let's try another PRNG function:
=> prng2 (15)
>> $[0,8,4,0,8,4,0,8,4,0$, 8, 4, 0, 8, 4]
- Does this sequence appear random to you?
- What do you think is the $16^{\text {th }}$ number in this sequence?

PRNG Period

- Let's define the PRNG period as the number of values in a pseudo-random number generator sequence before the sequence repeats.

$$
\begin{aligned}
& {[0,7,2,9,4,11,6,1,8,3,} \\
& 10,5,0,7,2] \\
& \text { period }=12
\end{aligned}
$$

$[0,8,4,0,8,4,0,8,4,0$, 8, 4, 0, 8, 4]
period $=3$ next number $=($ last number +8$) \bmod 12$

Looking at prng1

```
def prng1(n)
    seq = [0] ; seed (starting value)
    for i in 1..n-1 do
    seq << (seq.last + 7) % 12
    end
    return seq
end
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
        10, 5, 0, 7, 2]
```


Looking at prng2

def prng2 (n)

for i in 1..n-1 do
seq << (seq.last +8) \% 12
end
return seq
end
>> prng2 (15)
$=>[0,8,4,0,8,4,0,8,4,0$,
8, 4, 0, 8, 4]

Linear Congruential Generator (LCG)

- A more general version of the PRNG used in these examples is called a linear congruential generator.
- Given the current value x_{i} of PRNG using the linear congruential generator method, we can compute the next value in the sequence, x_{i+1}, using the formula $x_{i+1}=\left(a x_{i}+c\right)$ modulo m where a, c, and m are predetermined constants.
- prng1:

$$
\begin{aligned}
& a=1, c=7, m=12 \\
& a=1, c=8, m=12
\end{aligned}
$$

Picking the constants $\mathrm{a}, \mathrm{c}, \mathrm{m}$

- If we choose a large value for m, and appropriate values for a and c that work with this m, then we can generate a very long sequence before numbers begin to repeat.
- Ideally, we could generate a sequence with a maximum period of m.

Picking the constants a, c, m

- Theorem: The LCG will have a period of m for all seed values if and only if:
- c and m are relatively prime (i.e. the only positive integer that divides both c and m is 1)
- $a-1$ is divisible by all prime factors of m
- if m is a multiple of 4 , then a- 1 is also a multiple of 4
- Example: prng1 ($\mathrm{a}=1, \mathrm{c}=7, \mathrm{~m}=12$)
- Factors of $\mathrm{c}: 1,7$ Factors of $\mathrm{m}: 1,2,3,4,6,12$
- 0 is divisible by all prime factors of $12 \rightarrow$ true
- if 12 is a multiple of 4 , then 0 is also a multiple of $4 \rightarrow$ true

Example

$x_{i+1}=\left(a x_{i}+c\right)$ modulo m
$x_{0}=(4) a=5$
$c=3 \quad m=8$
$\left(x_{1}\right)=(5 * 4+3)^{\circ} / \%=8=7 \quad\left(x_{2}\right)=(5 \times 7+3) \% 8$

- Compute x_{1}, x_{2}, \ldots, for this LCG formula. $=6$
period
- What is the period of this formula?

$$
476 \ldots 476
$$

- If the period is maximum, does it satisfy the three properties for maximal LCM?

LCMs in the Real World

- glibc (used by the c compiler gcc): $a=1103515245, c=12345, m=2^{32}$
- Numerical Recipes (popular book on numerical methods and analysis):
$\mathrm{a}=1664525, \mathrm{c}=1013904223, \mathrm{~m}=2^{32}$
- Random class in Java:
$\mathrm{a}=25214903917, \mathrm{c}=11, \mathrm{~m}=2^{48}$
- The PRNG built into Ruby has a period of 2^{19937}.

Rest of the Week

- Uses of PRNG in games
- Cellular automata and psedorandomness

