DR
oooooooo

.QO..Q..
SRR SRR
SOe 666

UNIT 10A
Multiprocessing & Deadlock

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

Why Multiprocessing ?

* Everything happens at once in the world. Inevitably,
computers must deal with that world.

— Traffic control, process control, banking, fly by wire, etc.

* |tis essential to future speed-up of any computing
process.

— Google, Yahoo, etc. use thousands of small computers, even
when a job could be done with one big computer.

— Chips can’t run any faster because they would generate too
much heat.

— Moore’s law will allow many processors per chip.

3/26/2013

Moore’s Law vs. Clock Speed

nts 1071-2011 & Moons's Law

=i

Source: Wikimedia Commons http://tinyurl.com/3d7gqf3m

" Source: Bob Warfield http://tinyurl.com/3pt6we9

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

A Ruby Multiprocessor Model

The processors run

independently. ProgramO

Shared Memory

Private
memory0

The shared memory is
used for communication.

Only one processor at a ‘%O 7
. . Q
time may execute a line _/ Y

of Ruby that touches the

shared memory. The Programil

memory hardware makes

the others wait. Private
memoryl

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

3/26/2013

Multiprocessing is very hard.

e Only a tiny percentage of practicing
programmers can do it.

* |t requires art and mathematics.
— It’s like digital hardware design.
— It needs proofs.

e Conventional debugging doesn’t work.

— If you stop the program to observe, you change the
behavior.

— Testing is futile because the number of possible
execution sequences for the same input explodes.

There are many ways to execute
two sequences in parallel.

S1 S1

S2 S2

S3 S3
S1 S1 S1 S1 S1 S1 S1
S2 S2 S2 S2 S1 S1 S1
S3 S1 S1 S1 S2 S2 S2
S1 S3 S2 S2 S3 S2 S2
S2 S2 S3 S3 S2 S3 S3
S3 S3 S3 S3 S3 S3 S3
S1 S1 S1 S1 S1 S1 S1
S1 S1 S1 S1 S1 S1 S1
S2 S2 S2 S2 S2 S2 S2
S2 S2 S3 S3 S2 S2 S2
S3 S3 S2 S2 S3 S3 S2
S3 S3 S3 S3 S3 S3 S2
S1 S1 S1 S1 S1 S1
S1 S1 S2 S2 S2 S2
S2 S2 S1 S1 S1 S3
S2 S3 S2 S2 S3 S1
S3 S2 S3 S3 S2 S2
S3 S3 S3 S3 S3 S3

3/26/2013

Streams: One process
sends, another receives.

Shared
@full = false
@box = nil

=

Consumer 1

Producer O _
while true do Wh"? true do -
N - while 1@full do #nothing
mail0 = whatever() end
while @full do #nothing - _
maill = @box
end _
_ - @full = false
@box = mail0 rocess(maill)
@full = true P
end
end

15110 Principles of Computing, Carnegie 7

Mellon University - MORRIS

A Typical Execution Pattern

Shared
@full = false
@box = nil
P;q?ucer 0 while true do
while true do while 1@full do #nothing
mail0 = whatever() end
while @full do #nothing maill = @box
end B . @full = false
@box = mailoO process(maill)
@full = true end
end
Producer The producer creates item 1 and puts in it in

box the box while the consumer waits.

1
Consumer -

15110 Principles of Computing, Carnegie 3
Mellon University - MORRIS

3/26/2013

3/26/2013

A Typical Execution Pattern

Shared
@full = false
@box = nil
é/””’//””/// # Consumer 1
Producer 0 while true do
while true do while 1@full do #nothing
mail0 = whatever() end
while @full do #nothing maill = @box
end) @full = false
@box = mailo process(maill)
@Full = true end
end

Producer 1 2 . .
The producer creates item 2 while the
box

consumer processes item1. The consumer

i i
happens to finish first so it waits until
Consumer - I producer puts item 2 into the box.

A Typical Execution Pattern

Shared
@full = false
@box = nil

e T

Consumer 1

P;9?ucer 0 while true do

while true do while 1@full do #nothing
mail0 = whatever() end
while @full do #nothing maill = @box
end B . @full = false
@box = mailoO process(maill)
@full = true end

end

Producer -- - The producer finishes item 3 and puts it 3
into the box while the consumer still
processes item 2 ...

I

15110 Principles of Computing, Carnegie 10
Mellon University - MORRIS

Shared
@full
@box = n

= false

T

Producer 0
while true do
mail0 = whatever()
while @full do #nothing

end

@box = mailo

@Ffull = true
end

15110 Principles of Computing, Carnegie

Consumer 1

while true do
while 1@full do #nothing
end
maill = @box
@full = false
process(maill)

end

The producer starts on item 4 while the
consumer still works on item 2. Iltem 3
waits in the box.

11

Mellon University - MORRIS

Shared
@full
@box = n

= false

T

Producer 0
while true do
mail0 = whatever()
while @full do #nothing

end

@box = mail0

@Ffull = true
end

15110 Principles of Computing, Carnegie

Consumer 1

while true do
while 1@full do #nothing
end
maill = @box
@full = false
process(maill)

end

The consumer finishes item 2, picks
up item 3 and starts working on it
while the producer continues to work
on item 4.

12

Mellon University - MORRIS

3/26/2013

Shared
@full = false
@box = nil

/\

Producer O
while true do
mail0 = whatever()
while @full do #nothing

end

@box = mailo

@Full = true
end

15110 Principles of

Consumer 1

while true do
while 1@full do #nothing
end
maill = @box
@full = false
process(maill)

end

The producer finishes item 4 and puts
it in the box while the consumer
continues to work on item 3.

C ting, Ca i
omputing, Carnegie 13

Mellon University - MORRIS

Shared
@full
@box = n

= false

T

Producer 0
while true do
mail0 = whatever()
while @full do #nothing

end

@box = mail0

@Ffull = true
end

Consumer 1

while true do
while 1@full do #nothing
end
maill = @box
@full = false
process(maill)

end

while the consumer continues

to work on item 3. Item 4 waits

Consumer

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

14

3/26/2013

Shared
@full = false
@box = nil

T

Consumer 1

while true do
while 1@full do #nothing
end
maill = @box

Producer 0
while true do
mail0 = whatever()
while @full do #nothing

end
B i @full = false
820?|_—millo process(maill)
ol ull = true end

The producer finishes
item 5, but the box is
still full so it waits
while the consumer
continues to work on
item 3.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

15

Shared
@full = false
@box = nil

/\

Consumer 1
while true do
while 1@full do #nothing

Producer 0O
while true do
mail0 = whatever() end
while @full do #nothing maill = @box

end @full = false

g?O?IZ_millo process(maill)
u = rue end

end

The consumer finishes item 3, takes item
4 from the box, and starts working on it.
The producer puts item 5 in the box and
starts working on item 6.

G |

15110 Principles of Computing, Carnegie

16
Mellon University - MORRIS

3/26/2013

Shared
@full = false
@box = nil

/\

Consumer 1
Producer 0O while true do

while true do while 1@full do #nothing
mail0 = whatever() end

while @full do #nothing maill = @box

end @full = false

g?O?IZ_millo process(maill)
u = rue end

end

The producer finishes working on item 6, but item 5
is still in the box so it waits while the consumer
continues to work on item 4.

2 El I

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

Shared
@full = false
@box = nil

T

Consumer 1
Producer 0 while true do

while true do = H
while 1@full do #nothin
mail0 = whatever() end 0 9

while @full do #nothing maill = @box

end
B i @full = false
ggo?l—_millo process(maill)
ol ull = true end

The consumer finishes item 4, picks up item 5 from the box, and
starts working on it. The producer puts item 6 in the box and starts
working on item 7. And they live happily ever after!

G

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

3/26/2013

Streams with a Race Condition

The order of accesses to @box and @full is very important!

Producer # Consumer
while true do while true do
mail0 = whatever() while 1@full do #nothing
while @full do #nothing end
end maill = @box
@full = true BUG! @full = fa!se
@box = mail0 process(maill)
end end
@full = true @full = true . .
@box = mailo = 1 while 10full An unfortunate interleaving of
while 1@full maill = @box = 1 process steps leads to a
maill = @box = 1 ofull = f"f‘lse mistake.
efull = false @box = mail0 = 2

oEN

--I- Item 1 is processed twice!

19

Critical Sections

e Often, a process really needs exclusive
access to some data for more than one line.

e Acritical section is a sequence of two or
more lines that need exclusive access to the
shared memory.

e Real Life Examples
— Crossing a traffic intersection
— A bank with many ATMs
— Making a ticket reservation

15110 Principles of Computing, Carnegie

2
Mellon University - MORRIS 0

3/26/2013

10

Critical Section Example

e Consider a bank with multiple ATM’s.
* At one, Mr. J requests a withdrawal of $10.

» At another, Ms. J requests a withdrawal of $10 from the
same account.

* The bank’s computer executes:

For Mr. J, verify that the balance is big enough.
For Ms. J, verify that the balance is big enough.
Subtract 10 from the balance for Mr. J.
Subtract 10 from the balance for Ms. J.

A wnN e

» The balance went negative if it was less than $20!

Critical Sections in Ruby

Locate the the J's account data
containing the balance

if balance < 10
Critical error
Section —> else
balance = balance — 10
end

!

‘ Dispense $10 from ATM ‘

What can we do to prevent one processor from entering
the critical section while another is in it?

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

22

3/26/2013

11

Careful Driver Method

Don’t enter the intersection
unless it’'s empty.

In shared memory: @free = true #initially unlocked

#Process 1 #Process 2

while true do while true do
Non-Critical_Section Non-Critical_Section
while !'@free do #nothing while !'@free do #nothing
end end
@free = false @free = false
Critical_Section Critical_Section
@free = true free = true

end @end

Interference is possible!

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

23

Computers vs. Real Life

e The careful driver method works in real life
because

— The number of times in your life you cross the
intersection is low. Twice a day for forty years is
about 29,000.

— The chance of two drivers arriving at the
intersection simultaneously is low.

— Cars move slowly enough that if you don’t see
anyone coming, you’ll get across before anyone
comes.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

24

3/26/2013

12

The Probability of a Collision

while true do
Non-Critical_Section
while !'@free do #nothing
end
@free = false
Critical_Section
@free = true

A Collision

end
Average time to perform Non-Critical Section: 1,000 nanoseconds
Average time to perform Critical Section: 10 nanoseconds
Average time to test and change @free: 3 nanoseconds

Probability of one collision: 1/1,000 = 0.001
Iterations of outer loop in one second: 1,000,000,000/1,013 = 987,166
Probability of no collisions in 1 second: (1-0.001)987.166 = (0.999)987.166 =

15110 Principles of Computing, Carnegie

. . 25
Mellon University - MORRIS

The Stop Sign Method

BS000 Faw Soall Works

1. Signal your intention (by stopping).

2. Wait until cross road has no one waiting or crossing.
3. Cross intersection.

4. Renounce intention (by leaving intersection).

15110 Principles of Computing, Carnegie

Mellon University - MORRIS %

3/26/2013

13

The Stop and Look Method

Shared Memory
@free[0] = true
sign
@free[1] = true
Processgr)
while true do
Non-Critical Section
@Ffree[0] = false
while !@free[1] do
end
Critical_Section
@Free[0] = true
end

#P0O is not stopped at

#P1 is not stopped at
Process 1
while true do
Non-Critical_Section

@free[l1l] = false
while 1@free[0] do
end
Critical_Section
@Free[1] = true

end

Deadlock is possible!

15110 Principles of Computing, Carnegie

27

Mellon University - MORRIS

Deadlock

 Deadlock is the condition when two or more
processes are all waiting for some shared
resource, but no process actually has it to
release, so all processes to wait forever
without proceeding.

e It’s like gridlock in real traffic.

15110 Principles of Computing, Carnegie

Mellon University - MORRIS

3/26/2013

14

The Stop Sign Method
with Tie Breaking

BS000 Faw Soll Works

1. Signal your intention (by stopping).
2. Wait until cross road has no one else waiting or crossing.
3. If two of you are both waiting, yield to the car to your

right.
4. Cross intersection.
5. Renounce intention (By leaving-intérsection). 2

Stop Sign with Tie Breaking

@free[1] = true
@free[2] = true
Process 1 # Polite-Process 2
while true while true do
Non-Critical_Sectionl Non-Critical_Section2
@free[1] = false @free[2] = false
while 1@free[2] do while !@free[1] do
end @free[2] = true
Critical_Sectionl while !@free[1] do
@free[1] = true end
end @Ffree[2] = false
end

Critical _Section2
@Ffree[2] = true
end

Process 2 backs off when it detects a conflict.

30

3/26/2013

15

Types of Race Condition Bugs

In decreasing order of seriousness:

1. Interference: multiple process in critical
section.

2. Deadlock: two processes idle forever,
neither entering their critical or non-
critical sections.

3. Starvation: one process needlessly idles
forever while the other stays in its non-
critical section.

4. Unfairness: a process has lower priority for
no reason.

Peterson’s algorithm avoids all bugs!

@free[0] = true
@free[1] = false
priority = 0
Process 0O # Process 1
while true do while true do
Non-Critical _SectionO Non-Critical_Sectionl
@free[0] = false @free[l1l] = false
priority = 1 priority = 0O
while !@free[l1l] and while 1@free[0] and
priority==1 do priority==0 do
end end
Critical_Section0 Critical_Sectionl
@free[0] = true @free[l1l] = true
end end

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

32

3/26/2013

16

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[l1] = false @free[2] = false
whille 1'@free[2] do whille '@free[1] do
@free[l1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1] = true @free[2] = true
end end
I
I

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 3

A Probabilistic Approach

Process 1 # Process 2
while true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[1] = false @free[2] = false
while !'@free[2] do while '@free[1] do
@free[1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nt =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1l] = true @free[2] = true
end end
]
I

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 34

3/26/2013

17

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[l1] = false @free[2] = false
whille 1'@free[2] do whille '@free[1] do
@free[l1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1] = true @free[2] = true
end end
[
I}] |

15110 Principles of Computing, Carnegie

Mellon University - MORRIS »

A Probabilistic Approach

Process 1 # Process 2
while true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[1] = false @free[2] = false
while !'@free[2] do while '@free[1] do
@free[1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nt =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1l] = true @free[2] = true
end end
|
I N

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 36

3/26/2013

18

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[l1] = false @free[2] = false
whille 1'@free[2] do whille '@free[1] do
@free[l1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1] = true @free[2] = true
end end
[
I I N N —

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 37

A Probabilistic Approach

Process 1 # Process 2
while true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[1] = false @free[2] = false
while !'@free[2] do while '@free[1] do
@free[1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nt =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1l] = true @free[2] = true
end end
N ——
[N N —

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 3

3/26/2013

19

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[l1] = false @free[2] = false
whille 1'@free[2] do whille '@free[1] do
@free[l1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1] = true @free[2] = true
end end

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 3

A Probabilistic Approach

Process 1 # Process 2
while true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[1] = false @free[2] = false
while !'@free[2] do while '@free[1] do
@free[1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nt =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1l] = true @free[2] = true
end end

15110 Principles of Computing, Carnegie

Mellon University - MORRIS 40

3/26/2013

20

A Probabilistic Approach

Process 1 # Process 2
whille true while true
Non_Critical_Sectionl Non_Critical_Section2
nl = 0.000001 #microsecond n2 = 0.000001
@free[l1] = false @free[2] = false
whille 1'@free[2] do whille '@free[1] do
@free[l1] = true @free[2] = true
sleep(rand(nl)) sleep(rand(n2))
nl =2 *nl n2 =2 *n2
@free[l1] = false @free[2] = false
end end
Critical_Sectionl Critical_Section2
@free[l1] = true @free[2] = true
end end

The probability of dithering is vanishingly small, proportional to 1/2N for N

collisions.
15110 Principles of Computing, Carnegie

Mellon University - MORRIS 4

New Vocabulary

» Stream: A programming pattern in which one
process sends data to another process
sequentially

* Race Condition: A multiprocessing bug in which
proper functioning depends upon luck

» Deadlock: A condition in which all processes are
stalled waiting for each other

» Starvation: A condition in which a process is
needlessly stalled

15110 Principles of Computing, Carnegie

42
Mellon University - MORRIS

3/26/2013

21

Takeaways

» Multiprocessing is very hard because controlling
events in the real world is very hard.

* Sequential programming was a great invention
because it made controlling simple things very
easy.

» Leave it to the Engineers and hope they get it
right.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

Afterthoughts

Some counter-intuitive ideas about bugs and risks.

15110 Principles of Computing, Carnegie
Mellon University - MORRIS

44

3/26/2013

22

This man removed all the traffic
lights and signs!

15110 Principles of Computing, Carnegie

45
Mellon University - MORRIS

Why did Jared Diamond sleep under a tree
when his aborigine companion wouldn’t?

3/26/2013

23

Why is a 1% chance of a bug biting
better than a 0.1% chance?

* If there is a 1% chance of error, the bug will
show up during 100 days of testing.

e |f thereis a 0. 1% chance, the bug will show
up after three years when the system is
deployed.

15110 Principles of Computing, Carnegie

47
Mellon University - MORRIS

Economics as Multiprocessing

A national economy could be looked at a system with 1B
independent processes representing buyers and sellers of goods.
Consider the following economic maladies:

A.Depression

B. Bubbles

C.Income Inequality

D.Wasted productive resources

How do these problems correspond to the four multiprocessing
problems?

1. Interference
2. Deadlock
3. Starvation
4. Unfairness
Hint: Think of entering a critical section as buying a good.

48

3/26/2013

24

