Fair Shares?

A wealthy patron of the arts Phelio has two sons, Aqualo and Lipido. Aqualo likes water colors and Lipido likes oils. Phelio has n water color paintings whose values are a_1, a_2, \ldots, a_n where $a_i \in \{1, 2, \ldots, n\}$ for $i = 1, 2, \ldots, n$. Similarly, Phelio has n oil paintings whose values are b_1, b_2, \ldots, b_n where $b_i \in \{1, 2, \ldots, n\}$ for $i = 1, 2, \ldots, n$.

Phelio has decided to choose two non-empty sets $A, B \subseteq \{1, 2, ..., n\}$ and give water color paintings $i \in A$ to Aqualo and oil paintings $i \in B$ to Lipido. There is a constraint. The values of the two sets of paintings are $W = \sum_{i \in A} a_i$ and $O = \sum_{i \in B} b_i$. If $W \neq O$ there will be all hell to pay. Can Phelio always make a gift that avoids such a catastrophe?

Solution:

Phelio can always make a gift that avoids such a catastrophe: Without loss of generality, let us assume that

$$\sum_{i=1}^{n} a_i \ge \sum_{i=1}^{n} b_i. \tag{1}$$

(Otherwise swap A and B)

Now, for any *j* it is always possible to express $\sum_{i=1}^{j} b_i$ as $\sum_{i=1}^{j} b_i = \sum_{i=1}^{k} a_i + R_j$ $R_j \in [0, n-1]$ for some $k = k(j) \in [0, n]$. (When k = 0 this means that $\sum_{i=1}^{j} b_i \in [0, n-1]$). This is true because all the elements in A and B belong to the set [1, n]. Indeed, either $\sum_{i=1}^{j} b_i < a_1$ and then we can directly see that $\sum_{i=1}^{j} b_i = R_j < a_1 \in [1, n]$. Otherwise, take the largest k such that $S_k = \sum_{i=1}^{j} b_j - \sum_{i=1}^{k} a_i \ge 0$. Now k < n by assumption (1). If $S_k \ge n$ then $S_{k+1} \ge 0$, contradiction.

Consider the set of values R_j , for $j \in [1, n]$. If $R_j = 0$, for some j then we are done since $\sum_{i=1}^{j} b_i = \sum_{i=1}^{k(j)} a_i$. If not, there are only n-1 possible values for the n quantities R_1, \ldots, R_n and so there exist $j_1 < j_2$ such that $R_{j_1} = R_{j_2}$. But then

$$\sum_{i=1}^{j_1} b_i - \sum_{i=1}^{k(j_1)} a_i = R_{j_1} = R_{j_2} = \sum_{i=1}^{j_2} b_i - \sum_{i=1}^{k(j_2)} a_i$$

and therefore,

$$\sum_{i=j_1}^{j_2} b_i = \sum_{i=k(j_1)}^{k(j_2)} a_i$$

Hence, it is always possible for Phelio to make a gift to avoid a catastrophe of unfair shares. In fact Phelio can give a contiguous sub-set, which would make Aqualo and Lipido all the more happy.

Acknowledgements: Karthik Singaram Lakshmanan gave the solution in this form. Anand Sinha gave a very similar description.