Fair Shares?

A wealthy patron of the arts Phelio has two sons, Aqualo and Lipido. Aqualo likes water colors and Lipido likes oils. Phelio has n water color paintings whose values are $a_{1}, a_{2}, \ldots, a_{n}$ where $a_{i} \in\{1,2, \ldots, n\}$ for $i=1,2, \ldots, n$. Similarly, Phelio has n oil paintings whose values are $b_{1}, b_{2}, \ldots, b_{n}$ where $b_{i} \in\{1,2, \ldots, n\}$ for $i=1,2, \ldots, n$.
Phelio has decided to choose two non-empty sets $A, B \subseteq\{1,2, \ldots, n\}$ and give water color paintings $i \in A$ to Aqualo and oil paintings $i \in B$ to Lipido. There is a constraint. The values of the two sets of paintings are $W=\sum_{i \in A} a_{i}$ and $O=\sum_{i \in B} b_{i}$. If $W \neq O$ there will be all hell to pay. Can Phelio always make a gift that avoids such a catastrophe?

Solution:

Phelio can always make a gift that avoids such a catastrophe:
Without loss of generality, let us assume that

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \geq \sum_{i=1}^{n} b_{i} \tag{1}
\end{equation*}
$$

(Otherwise swap A and B)
Now, for any j it is always possible to express $\sum_{i=1}^{j} b_{i}$ as $\sum_{i=1}^{j} b_{i}=\sum_{i=1}^{k} a_{i}+R_{j}$ $R_{j} \in[0, n-1]$ for some $k=k(j) \in[0, n]$. (When $k=0$ this means that $\left.\sum_{i=1}^{j} b_{i} \in[0, n-1]\right)$. This is true because all the elements in A and B belong to the set $[1, n]$. Indeed, either $\sum_{i=1}^{j} b_{i}<a_{1}$ and then we can directly see that $\sum_{i=1}^{j} b_{i}=R_{j}<a_{1} \in[1, n]$. Otherwise, take the largest k such that $S_{k}=\sum_{i=1}^{j} b_{j}-\sum_{i=1}^{k} a_{i} \geq 0$. Now $k<n$ by assumption (1). If $S_{k} \geq n$ then $S_{k+1} \geq 0$, contradiction.

Consider the set of values R_{j}, for $j \in[1, n]$. If $R_{j}=0$, for some j then we are done since $\sum_{i=1}^{j} b_{i}=\sum_{i=1}^{k(j)} a_{i}$. If not, there are only $n-1$ possible values for the n quantities R_{1}, \ldots, R_{n} and so there exist $j_{1}<j_{2}$ such that $R_{j_{1}}=R_{j_{2}}$. But then

$$
\sum_{i=1}^{j_{1}} b_{i}-\sum_{i=1}^{k\left(j_{1}\right)} a_{i}=R_{j_{1}}=R_{j_{2}}=\sum_{i=1}^{j_{2}} b_{i}-\sum_{i=1}^{k\left(j_{2}\right)} a_{i}
$$

and therefore,

$$
\sum_{i=j_{1}}^{j_{2}} b_{i}=\sum_{i=k\left(j_{1}\right)}^{k\left(j_{2}\right)} a_{i}
$$

Hence, it is always possible for Phelio to make a gift to avoid a catastrophe of unfair shares. In fact Phelio can give a contiguous sub-set, which would make Aqualo and Lipido all the more happy.
Acknowledgements: Karthik Singaram Lakshmanan gave the solution in this form. Anand Sinha gave a very similar description.

