
Hat Problems

Here are some problems with hats. The scenarios are all very similar. At the
start there are n people wearing hats.
Problem 1 Each hat is black or white. The people are standing in line. Person i

can only see which types of hat persons 1, 2, . . . , i−1 are wearing. The inquisitor
starts with person n and goes down the line, n, n − 1, . . . , 1 asking each person
in turn what sort of hat they are wearing. Each person hears all the previous
answers to the question but nothing more i.e. he/she does not hear directly
whether a previous answer was correct. A wrong answer leads to elimination,
which is painful and is to be avoided at all costs. The n people can decide on
a strategy before the inquisition begins. Devise a strategy that will lead to as
few eliminations as possible.
Solution: The following strategy results in at most one person being eliminated.
When person n is interrogated he says his hat is black if the number of black
hats he can see is odd and white otherwise. The answer might be wrong, but
everybody has now been informed of the parity pn of the number of black hats
in front of n. Since person n − 1 now knows pn as well as pn−1, he can derive
the color of his own hat. Similarly person n − 2 knows pn−1 and pn−2 and can
derive the color of his own hat. All players after n can correctly state the color
of their own hat.
Problem 2 Now our n hat wearing friends are standing in a circle and so
everyone can see everybody else’s hat. The hats have been assigned randomly
and each allocation of hat colors is equally likely. At a certain moment in time
each person must simultaneously shout “my hat is black” or “my hat is white”
or “I haven’t a clue”. The team wins a big prize if at least one person gets
the color of his hat right and no one gets it wrong (saying “I haven’t a clue”
is not getting it wrong). Of course, if anyone gets it wrong, the whole team is
eliminated and this is painful. The prize is big enough to risk the pain and so
devise a strategy which gives a good chance of success.
Try the same problem assuming there a q colors for the hats.
Solution Our solution uses the probabilistic method to prove the existence of
a solution for which the our friends win with probability 1 − O( ln n

n
). (The

logarithm is not essential, see [2]).
Suppose that we partition Qn = {0, 1}n into 2 sets W,L which have the property
that L is a cover i.e. if x = x1x2 · · ·xn ∈ W = Qn\L then there is y1y2 · · · yn ∈ L

such that h(x, y) = 1 where

h(x, y) = |{j : xj 6= yj}|

is the Hamming distance between x and y.
Assume that 0 ≡ White and 1 ≡ Black. Person i knows xj for j 6= i (color of
hat j) and if there is a unique value of xi which places x in W then person i

will declare that their hat has color i.
If indeed x ∈ W then there is at least one person who will be in this situation
and any such person will guess correctly.
Let p = ln n

n
. Choose L1 randomly by placing y ∈ Qn into L1 with probability

p. Then let L2 be those z ∈ Qn which are not at Hamming distance ≤ 1 from
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some member of L1. Clearly L = L1 ∪ L2 is a cover and

E(|L|) = 2np + 2n(1 − p)n+1 ≤ 2n(p + e−np) ≤ 2n 2 ln n

n
.

So there must exist a cover of size at most 2n 2 ln n
n

and the players can win with

probability at least 1 − 2 ln n
n

.
This argument is taken from [1] where using a similar argument, it is shown
how to deal with q colors.
Problem 3 Our n hat wearing friends are again in a circle but this time the
hats have been placed on their heads by Agar the Adversary who would like
nothing better than to eliminate the lot of them. The hat wearers are allowed
to think and there is a clock and after each minute passes, anybody is allowed
to shout out what sort of hat they are wearing. Time is up after n minutes and
anyone who hasn’t declared will be eliminated. Also, if anyone declares wrongly,
the whole group will be eliminated. Can they survive with any certainty?
Now consider the same situation where someone rushes into the room and truth-
fully shouts “there is someone wearing a black hat” or “you are all wearing white
hats” before Agar can silence him. How does this help?
Solution Without the intruder it would be impossible to tell the difference say
between one person wearing a Black hat and nobody wearing a Black hat.
Suppose then that there is an intruder. Assume that the intruder shouts there is
someone wearing a black hat. Each person counts the number of Black hats that
he sees. The strategy is: After k minutes have elapsed, if no-one has shouted
then everyone who sees k − 1 Black hats announces that he/she is wearing a
Black hat.
The paradox to contemplate here is this: Suppose there are two or more black
hats. Then the intruder’s statement “there is someone wearing a black hat”
is a fact that is known by everybody there! So of what value is it? How can
making a statement that everybody knows already cause this chain of events
to unfold? The answer is that the fact that there is at least one hat is known
by everybody. But the announcement by the intruder becomes what is called
common knowledge. That is, everybody knows it, and everybody knows that
everybody knows it and everybody knows that everybody knows that everybody
knows it, etc. This meta-information is used by the participants to derive the
color of their own hat.

Acknowledgement Thanks are due to the people who sent in solutions: Michael
Schuresko, Ralf Brown, Chris Snook, Serge Mason, and Ajay Tirumala.

This is the last puzzle by Alan and Danny. The puzzle page is being taken over
by the PUZZLE TOAD.
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