Here comes Santa

Santa has been working hard all year and is now waiting at the bottom left corner $(0,0)$ of Gridville, sacks loaded with presents, ready to deliver them to the children waiting at the top edge $\{(x, n): 0 \leq x \leq n\}$. Santa laid off too many elves last year and now things are running late. There are only $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ days to Xmas.The Grinch see his chance to mess things up. Santa's reindeer love Magic Reindeer Food (made from sugar, oatmeal and glitter) and the Grinch sprinkles $F_{i, j}$ days worth of food on grid square (i, j) for $1 \leq i, j \leq n$. Magic Reindeer Food is in short supply and the Grinch can only afford to spread one days supply on each row i.e. $\sum_{j=1} F_{i, j}=1$ for $1 \leq j \leq n$. If Santa's journey takes him to square (i, j) then he will have to spend $F_{i, j}$ of a day there while the reindeer's eat the food that the Grinch has left.
Santa starts at $(1,1)$ and waits $F_{1,1}$ days and then moves to $(2,1)$ or $(2,2)$. In general, if Santa is at (i, j), then after waiting $F_{i, j}$ of a day, he moves to one of $(i+1, j-1),(i+1, j),(i+1, j+1)$. (Of course if $j=1$ or n only 2 of these moves are allowed).
Santa can make all his deliveries after reaching a square (n, j) (and waiting $F_{n, j}$) because he can mount a non-deterministic delivery service from this time on. Can he make it in time, or will the Grinch ruin Xmas?

Solution: Let $D_{i, j}$ be the shortest distance from (0,0) to (i, j) (including the wait at $(i, j))$. Let $S_{i}=\sum_{j=1}^{n} D_{i, j}$.
Claim: $S_{i+1} \leq 1+S_{i}+\frac{1}{i} S_{i}$ for $1 \leq i<n$.
Proof of Claim Fix i and suppose that $D_{i, j^{*}}=\min D_{i, j}$. Define the following $\operatorname{map} f:[i+1] \rightarrow[i]$.

$$
f(j)= \begin{cases}j & j \leq j^{*} \\ j-1 & j>j^{*}\end{cases}
$$

Now we have

$$
D_{i+1, j} \leq D_{i, f(j)}+F_{i+1, j}
$$

and so by summing over j

$$
S_{i+1} \leq 1+S_{i}+D_{i, f\left(j^{*}\right)} \leq 1+S_{i}+\frac{1}{i} S_{i} .
$$

From the claim we get that

$$
\frac{S_{i+1}}{i+1} \leq \frac{1}{i}+\frac{S_{i}}{i}
$$

from which we deduce that

$$
\frac{1}{n} S_{n} \leq H_{n}
$$

The result follows now from

$$
\min _{j} D_{n, j} \leq \frac{1}{n} S_{n} \leq H_{n}
$$

Acknowledgements: Thanks to Robert Kleinberg for supplying the problem. Y. Madhusudhan sent in a solution. Thanks also to Lyle Ramshaw for spotting some annoying typo's.

