
Turn on the lights

Toad Hall at OMG University is illuminated by a 4 × 4 array of powerful
lights. There is a corresponding bank of 4× 4 switches that are suppose to turn
each light off and on. All the lights are currently off and a porter has been sent
to turn them on. This should be simple, but the electrics at Toad Hall were
recently re-wired by the Acme Electric Company. They are cheap, but they
hire ex-comedians. Now when a switch is flipped, all neighboring switches are
inadvertently switched too. So, for example, if the current situation is as in the
first array and we flip switch (2,2) then the situation becomes as in the second
array. You can interpret 0 as off and 1 as on.

To clarify possible confusions, if the switch corresponds to a boundary light,
then there will be fewer than four neighbors. Also, by neighbr, we mean hori-
zontal or vertical neighbor, not diagonal.









0 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1
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0 0 1 1
0 1 1 1
0 1 1 1
1 1 0 1









Is it possible to get all of the lights on?
Now imagine the same problem at Imperial Hall where there is an array of

100× 100 lights!
Solution: We begin with a solution to the specific 4× 4 problem. Pressing

the switches below will turn on all of the lights: Thanks to Eric Shrader for
pointing this one out.









0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0









Now we prove a theorem by Sutner [1]: Let G = (V,E) be an arbitrary
graph. Suppose that each vertex carries a label ℓ(v) = 0 or 1. Suppose that
if v ∈ V , the transformation T (v) flips the values at v and all of its neighbors.
(Flip from 0 to 1 and vice-versa). Suppose that initially, ℓ(v) = 0 for all v ∈ V .
We show that there exists a set S ⊆ V such that applying T (v), v ∈ S in any
order makes ℓ(v) = 1 for v ∈ V . This shows that we can turn on all the lights
in Imperial Hall.

Observe first that applying T (v) and then T (w) achieves the same effect as
applying T (w) and then T (v) i.e. the order of application of the transformations
does not matter. Let A be the 0-1 adjacency matrix of G i.e. let A(v, w) = 1
iff w ∈ N(v). In addition put A(v, v) = 1 for v ∈ V . The set of transformations
corresponding to S will turn on all of the lights iff A1S = 1V where 1S is the
0-1 vector indexed by V such that there is a 1 in component v iff v ∈ S.

Our claim amounts to saying that there exists S such that A1S = 1V where
calculations are done in the binary field. If there is no such 1S then basic linear
algebra theory tells us that there exists x such that xTA = 0 and xT 1V 6= 0.
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Since A is symmetric, this means that Ax = 0 as well. Let x = 1S . Then S has
the following properties:

(a) |S ∩N(v)| is odd for all v ∈ V . This is a consequence of Ax = 0.

(b) |S| is odd. This is a consequence of xT 1V 6= 0.

Now consider the sub-graph of G induced by S. Every vertex has odd degree
by (a). But in any graph, the number of odd vertices is even. Contradiction.
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