## Turn on the lights

Toad Hall at OMG University is illuminated by a $4 \times 4$ array of powerful lights. There is a corresponding bank of $4 \times 4$ switches that are suppose to turn each light off and on. All the lights are currently off and a porter has been sent to turn them on. This should be simple, but the electrics at Toad Hall were recently re-wired by the Acme Electric Company. They are cheap, but they hire ex-comedians. Now when a switch is flipped, all neighboring switches are inadvertently switched too. So, for example, if the current situation is as in the first array and we flip switch $(2,2)$ then the situation becomes as in the second array. You can interpret 0 as off and 1 as on.

To clarify possible confusions, if the switch corresponds to a boundary light, then there will be fewer than four neighbors. Also, by neighbr, we mean horizontal or vertical neighbor, not diagonal.

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Is it possible to get all of the lights on?
Now imagine the same problem at Imperial Hall where there is an array of $100 \times 100$ lights!

Solution: We begin with a solution to the specific $4 \times 4$ problem. Pressing the switches below will turn on all of the lights: Thanks to Eric Shrader for pointing this one out.

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Now we prove a theorem by Sutner [1]: Let $G=(V, E)$ be an arbitrary graph. Suppose that each vertex carries a label $\ell(v)=0$ or 1 . Suppose that if $v \in V$, the transformation $T(v)$ flips the values at $v$ and all of its neighbors. (Flip from 0 to 1 and vice-versa). Suppose that initially, $\ell(v)=0$ for all $v \in V$. We show that there exists a set $S \subseteq V$ such that applying $T(v), v \in S$ in any order makes $\ell(v)=1$ for $v \in V$. This shows that we can turn on all the lights in Imperial Hall.

Observe first that applying $T(v)$ and then $T(w)$ achieves the same effect as applying $T(w)$ and then $T(v)$ i.e. the order of application of the transformations does not matter. Let $A$ be the $0-1$ adjacency matrix of $G$ i.e. let $A(v, w)=1$ iff $w \in N(v)$. In addition put $A(v, v)=1$ for $v \in V$. The set of transformations corresponding to $S$ will turn on all of the lights iff $A \mathbf{1}_{S}=\mathbf{1}_{V}$ where $\mathbf{1}_{S}$ is the $0-1$ vector indexed by $V$ such that there is a 1 in component $v$ iff $v \in S$.

Our claim amounts to saying that there exists $S$ such that $A \mathbf{1}_{S}=\mathbf{1}_{V}$ where calculations are done in the binary field. If there is no such $\mathbf{1}_{S}$ then basic linear algebra theory tells us that there exists $x$ such that $x^{T} A=0$ and $x^{T} 1_{V} \neq 0$.

Since $A$ is symmetric, this means that $A x=0$ as well. Let $x=1_{S}$. Then $S$ has the following properties:
(a) $|S \cap N(v)|$ is odd for all $v \in V$. This is a consequence of $A x=0$.
(b) $|S|$ is odd. This is a consequence of $x^{T} 1_{V} \neq 0$.

Now consider the sub-graph of $G$ induced by $S$. Every vertex has odd degree by (a). But in any graph, the number of odd vertices is even. Contradiction.

Acknowledgement: We thank Mayur Deolasse, Michael Perrone, Eric Shrader and Kuang Simeng for their comments.

## References

[1] K. Sutner, Linear Cellular Automata and the Garden of Eden, Mathematical Intelligencer 11 (1989) 49-53.

