Solution: Erdős will win this game.
We provide two solutions. Many people produced something very similar to the following:
Notation: If integer x is the N digit number $\sum_{i=0}^{N} d_{i} 10^{i}$ with $d_{N} \neq 0$ then we write $x=x^{\prime}+x^{\prime \prime}$ where $n=\lfloor N / 2\rfloor$, i.e. $x^{\prime}=\sum_{i=0}^{n=0} d_{i} 10^{i}$ and $x^{\prime \prime}=x-x^{\prime}$. We can assume that $d_{0} \neq 0$. Once $d_{0}=d_{1}=\cdots=d_{t}=0$ then Erdős can maintain this.
Given x and $N>2$, Erdős will present Oleg with $y=x^{\prime \prime}+10^{n+1}-x^{\prime}$. Oleg's choices are $2 x^{\prime \prime}+10^{n+1}$ or $\left|2 x^{\prime}-10^{n+1}\right|$. In either case we can replace N by $\leq\lceil(N+1) / 2\rceil$. After at most 11 rounds, we will have $N \leq 2$.
When $N=2$ we essentially are dealing with $a=10 x+y, x, y \neq 0$ and after one more round we find $a=10(x+1)$ or $|10-2 y|$. In both cases $N=1$ and we can easily finish in 8 more rounds, e.g. by following the strategy proposed below:

The following solution is a little different and is due to David Wagner.
Say that a number x is n-nice if it can be written as $x=\left(p_{1}+\ldots+p_{n}\right) / n$ where $\left|p_{j}\right|$ is a power of 10 for $j=1,2, \ldots, n$

Lemma 1 With r rounds left to go, Erdős can guarantee a win if the current value a_{20-r} is 2^{r}-nice.

Proof By induction on r. $r=0$ is trivial.
Suppose it's true for r, and suppose a is 2^{r+1}-nice. Then a can be written as the average $a=\left(q+q^{\prime}\right) / 2$, where q and q^{\prime} are both 2^{r}-nice and where $q \geq q^{\prime}$. If Erdős is smart (and he is), he will choose $b=q-a$ which is non-negative. Now Oleg is stuck. If Oleg chooses to add then he gets to $a+b=q$, which by induction lets Erdős win in r rounds. If Oleg chooses to subtract then he gets to $|a-b|=\left|q^{\prime}\right|$, which is also 2^{r}-nice and thus by induction lets Erdős win in r rounds. Either way Oleg loses after $r+1$ rounds.

Lemma 2 Every legal choice for a_{1} is 2^{20}-nice.
Proof Let $A=2^{20} a_{1}$. Then A is non-negative and has at most 1008 digits. It can be expressed as a sum of at most 9×1008 powers of 10 : suppose the i-th digit in the decimal expansion of A is d_{i}, so that $A=\sum_{i} d_{i} 10^{i}$; then writing $d_{i} 10^{i}=10^{i}+\ldots+10^{i}$ (with d_{i} terms in the sum) shows that A can be expressed as a sum of at most 9×1007 powers of 10 , say n of them.
If n is odd, we can make it even by using the relation $10^{i+1}=10^{i}+\ldots+10^{i}$ (with 10 terms) or the relation $1=10-1-1-\ldots-1$. This replaces 1 term in the sum with 10 terms, so the number of terms in the sum increases from n to $n+9$.
After all this, we can arrange for A to be expressed as the sum of n powers of 10 (or their negations), where $n \leq 9 \times 1008$ and n is even.
Finally, pad out the sum to ensure we have exactly 2^{20} terms in the sum by adding $p\left(2^{20}-n\right) / 2$ times and subtracting p the same number of times, where p is any power of ten.

Acknowledgement: We thank Tim Clifford, Wenjie Fu, Karthik Lakshmanan, Victor Miller, C. Raptopoulos, Michael Schuresko, Sai Venkateswaran, David Wagner for sending in solutions.

