Teaching Network Infrastructure to High School Students

David Nassar
Winchester Thurston School

The next 90 minutes...

- Background information
- The class
- Projects
 - Mapping project
 - Chat programming
- Processing
- Questions

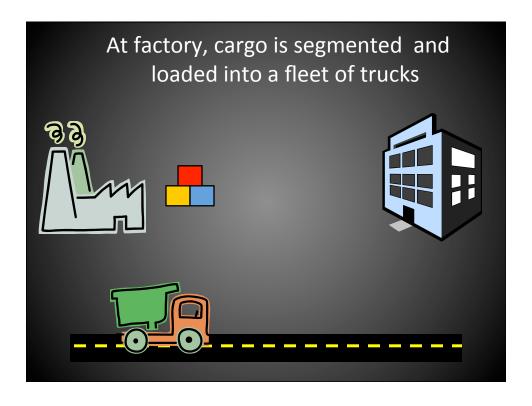
Winchester Thurston School

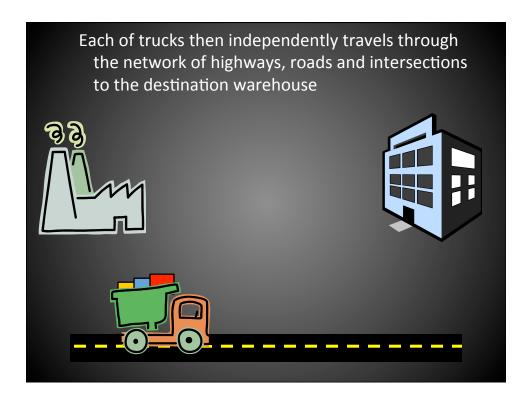
- Independent School
- Located in Pittsburgh, PA
- ~240 students in HS

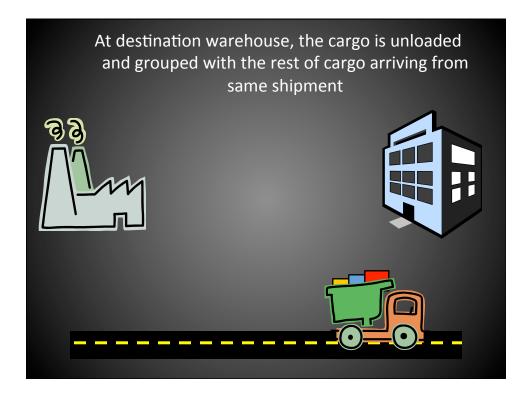
Scope and Sequence

- Technical Foundations
- 4 Trimester Electives
 - Technical Programming
 - Robotics and Engineering
 - Technical Design
 - Technical Infrastructures
- AP Computer Science
- Advanced CS Innovations

Technical Infrastructures


- Offered third trimester of 2012
- Requirements:
 - Teach network infrastructure concepts to High School students
 - Prepare them for AP Computer Science




What is the Internet?

The Internet is a computer network that interconnects millions of computing devices throughout the world

The Analogy

 Packet switched networks (which transport packets) are in many ways similar to transportation networks of highways, roads, and intersections (which transport vehicles).

The Analogy Explained...

- Packets = trucks
- Communication links = highways and roads
- Packet switches = intersections
- End systems = buildings
- Trucks take path through transportation network, packet takes path through computer network

First project

- Show the traveling packets using tracert command
- The command will show the IP addresses associated with the hops along the route to the destination

- > tracert www.google.com produces the following:
- Tracing route to www.google.com [74.125.115.99] over a maximum of 30 hops:

```
1 2 ms 1 ms 192.168.1.1
2 9 ms 12 ms 96.179.232.1
3 10 ms 16 ms 9 ms ge-6-16-ur02.pittsburgh.pa.pitt.comcast.net [68.85.234.13]
4 22 ms 9 ms 8 ms te-8-1-ur01.pennhills.pa.pitt.comcast.net [68.87.173.58]
5 13 ms 15 ms 10 ms te-0-11-0-1-ar03.mckeesport.pa.pitt.comcast.net [68.85.75.41]
6 22 ms 36 ms 20 ms pos-1-4-0-0-cr01.ashburn.va.ibone.comcast.net [68.86.94.161]
7 21 ms 17 ms 19 ms pos-0-5-0-0-pe01.ashburn.va.ibone.comcast.net [68.86.87.14]
8 22 ms 22 ms 78 ms 75.149.231.62
9 47 ms 25 ms 24 ms 209.85.252.80
10 32 ms 32 ms 31 ms 209.85.243.114
11 34 ms 32 ms 33 ms 64.233.174.117
12 31 ms * 59 ms 209.85.253.185
13 39 ms 33 ms 34 ms vx-in-f99.1e100.net [74.125.115.99]
```

Trace complete.

```
• The idea of project:

1 2ms 1ms 1ms 192168.1.1
2 9ms 12ms 18 ms 96.179.232.1
3 10ms 16ms 9ms ge-6-16-ur02 pittsburgh.pa.pitt.comcast.net [68.85.234.13]
4 22ms 9ms 8 8m te-9-11-01-ar03.mckeesport.pa.pitt.comcast.net [68.85.173.58]
5 13ms 15ms 10 ms te-0-11-01-ar03.mckeesport.pa.pitt.comcast.net [68.85.754]
6 22ms 36ms 20 ms pos-14-00-cr01.ashburn.va.ibone.comcast.net [68.85.744]
8 22ms 22ms 19 pos-0-0-0-0-pe01.ashburn.va.ibone.comcast.net [68.85.744]
8 22ms 22ms 38ms 56.4233.174.117
12 31 ms * 59 ms 209.85.253.185
13 39 ms 33 ms 34 ms vx-in-199.1e100.net [74.125.115.99]
```

> tracert www.google.com produces the following: Tracing route to www.google.com [74.125.115.99] over a maximum of 30 hops: 2 ms 1 ms 1 ms 192.168.1.1 9 ms 12 ms 18 ms 96.179.232. 10 ms 16 ms 9 ms ge-6-16-ur02.pittsburgh.pa.pitt.comcast.net [68.85.234.13] 22 ms 9 ms 8 ms te-8-1-ur01.pennhills.pa.pitt.comcast.net [68.87.173.58] 13 ms 15 ms 10 ms te-0-11-0-1-ar03.mckeesport.pa.pitt.comcast.net [68.85.75.41] 20 ms pos-1-4-0-0-cr01.ashburn.va.ibone.comcast.net [68.86.94.161] 22 ms 36 ms 19 ms pos-0-5-0-0-pe01.ashburn.va.ibone.comcast.net [68.86.87.14] 21 ms 17 ms 22 ms 22 ms 78 ms 47 ms 25 ms 24 ms 10 32 ms 32 ms 31 ms 209.8 34 ms 32 ms 33 ms 64.233 31 ms * 59 ms 209 39 ms 33 ms 34 ms vx-in-f99.1e100.net [74.125.115.99] Trace complete.

 These highlighted numbers are the IP addresses for the stops along the way to the destination.

```
1 2 ms 1 ms 1 ms 192.168.1.1
2 9 ms 12 ms 18 ms 96.179.232.1
3 10 ms 16 ms 9 ms ge-6-16-ur02.pittsburgh.pa.pitt.comcast.net [68.85.234.13]
4 22 ms 9 ms 8 ms te-8-1-ur01.pennhills.pa.pitt.comcast.net [68.87.173.58]
5 13 ms 15 ms 10 ms te-0-11-0-1-ar03.mckeesport.pa.pitt.comcast.net [68.85.75.41]
6 22 ms 36 ms 20 ms pos-1-4-0-0-cr01.ashburn.va.ibone.comcast.net [68.86.94.161]
7 21 ms 17 ms 19 ms pos-0-5-0-0-pe01.ashburn.va.ibone.comcast.net [68.86.87.14]
8 22 ms 22 ms 78 ms 75.149.231.62
9 47 ms 25 ms 24 ms 209.85.252.80
10 32 ms 32 ms 31 ms 209.85.243.114
11 34 ms 32 ms 33 ms 64.233.174.117
12 31 ms * 59 ms 209.85.253.185
13 39 ms 33 ms 34 ms vx-in-f99.1e100.net [74.125.115.99]
```

Copy these numbers down

- 1. 192.168.1.1
- 2. 96.179.232.1
- 3. 68.85.234.13
- 4. 68.87.173.58
- 5. 68.85.75.41
- 6. 68.86.94.161
- 7. 68.86.87.14
- 8. 75.149.231.62
- 9. 209.85.252.80
- 10. 209.85.243.114
- 11. 64.233.174.117
- 12. 209.85.253.185
- 13. 74.125.115.99

Convert the addresses to a number using the following formula:

- 192.168.1.1 1.
- 96.179.232.1 2.
- 3. 68.85.234.13
- 4. 68.87.173.58
- 5. 68.85.75.41
- 6. 68.86.94.161
- 7. 68.86.87.14
- 8. 75.149.231.62
- 9. 209.85.252.80
- 10. 209.85.243.114 11. 64.233.174.117
- 12. 209.85.253.185
- 13. 74.125.115.99

- IPNUM = 16777216*w + 65536*x + 256*y + z where
- IP Address = w.x.y.z

The reverse of this formula is

w = int (ipnum / 16777216) % 256;

x = int (ipnum / 65536) % 256;

y = int (ipnum / 256) % 256;

z = int (ipnum) % 256;

Where % is the mod operator.

Converted numbers look like this:

- 1. 3232235777
- 2. 1622403073
- 3. 1146481165
- 4. 1146596666
- 5. 1146440489
- 6. 1146511009
- 7. 1146509070
- 8. 1268115262
- 9. 3512073296
- 10. 3512071026
- 11. 1089056373
- 12. 3512073657
- 13. 1249735523

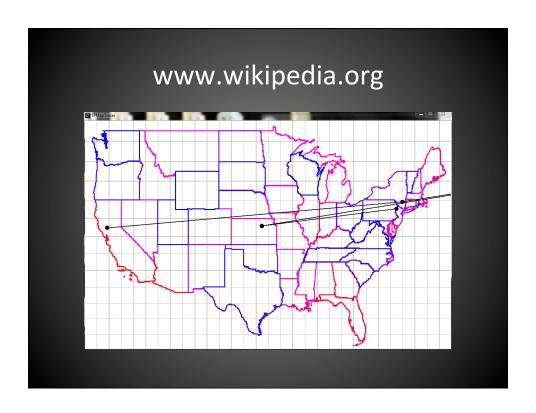
 Take each number and look it up in chart provided on USB drive called:

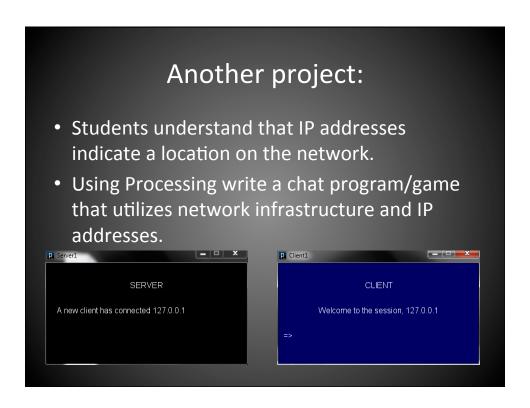
GeoLiteCity-Blocks.csv

 This will provide you with a location number for each IP Number

Location Numbers for each IP Number

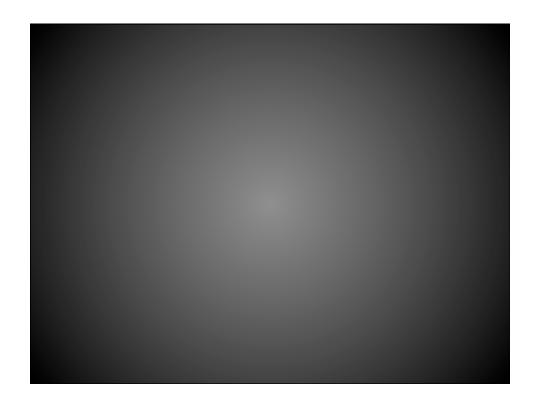
- 1. 3232235777
- 2. 1622403073
- 3. 1146481165
- 4. 1146596666
- 5. 1146440489
- 6. 1146511009
- 7. 1146509070
- 8. 1268115262
- 9. 3512073296
- 10. 3512071026
- 11. 1089056373
- 12. 3512073657
- 13. 1249735523


From each location number, you can look up the corresponding latitude and longitude


ın

GeoLiteCity-Location.csv

From these Latitudes and Longitudes, you can display them on a map!



Processing

- Processing is a Java variant that scaffolds well to Java
- Quick creation of UI and graphical projects
- Uses Java syntax
- Students are well prepared for AP Computer Science from their use of Processing

Statistics

- 13 students took class
 - 3 females/10 males
 - 3 females/5 males went on to take AP CS
- Of 8 that took AP CS, 7 got a 4 or 5
 - 1 was unable to take it due to medical reasons
- Of 13 taking class, five students had NO programming experience
 - Of those five with no prior experience programming, 2 took AP CS and both earned 4s on the test

Questions

- If you were to teach a networking concept at your school, where/when would you teach it?
- What length of time would you have to teach this module on networking?
- What would you be interested in teaching the students?
- Yours?

