

Computer Science Unplugged

Dr. Tom Cortina
Carnegie Mellon University

Computer Science Unplugged

Created by

Tim Bell, Ian H. Witten and Mike Fellows

Adapted for classroom use by
Robyn Adams and Jane McKenzie

- CS Unplugged is a book of activities that illustrate computer science principles without using a computer.
- Activities are short and are designed to be easily integrated into classes and include exercises and lesson plans for teachers.

CS UNPLUGGED

- The basic edition of Computer Science Unplugged has 12 classroom exercises for you to use with your students.
- Each exercise has a number of extensions, activities and background information.
- All activities can be done without the use of computers, but they all demonstrate fundamental principles used in computers today.

TWENTY GUESSES

- How much information is there in a 1000-page book? Is there more information in a 1000-page telephone book, or in Tolkien's *Lord of the Rings*?
 - If we can measure this, we can estimate how much space is needed to store the information.
- This activity introduces a way of measuring information content.

TWENTY GUESSES

- Can you read the following sentence?

Ths sntnc hs th vwls mssng.

- You probably can, because there is not much "information" in the vowels.

TWENTY GUESSES

- I am thinking of a number between 1 and 100.
- I will start you off with 20 pieces of candy.
- You may only ask questions that have a "yes" or "no" answer.
- For each incorrect guess, you will lose one piece of candy.
- Once you guess correctly, you can keep whatever candy remains.

TWENTY GUESSES

- To pick a number between 0 and 100, you only need 7 guesses.
 - Always shoot for the middle number of the range and eliminate half the possibilities!
 - This concept is called binary search.
- If the number was between 0 and 1000, you would only need 3 additional guesses.
- You can guess a number between 0 and 1 million in only 20 guesses!

LIGHTEST & HEAVIEST

- Computers are often used to put lists into some sort of order (e.g. names into alphabetical order, appointments or e-mail by date, etc.)
 - If you use the wrong method, it can take a long time to sort a large list into order, even on a fast computer.
- In this activity children will discover different methods for sorting, and see how a clever method can perform the task much more quickly than a simple one.

LIGHTEST & HEAVIEST

- Start with 8 containers with different amounts of sand or water inside. Seal tightly.
- Children are only allowed to use the scales to compare the relative weights of two containers.
- Only two containers can be compared at a time.

LIGHTEST & HEAVIEST

- METHOD 1 is called Selection Sort.
- METHOD 2 is called Quick Sort.
- Generally, quick sort is a lot faster than selection sort is.

BATTLESHIPS

- Computers are often required to find information in large collections of data.
- Computer scientists study quick and efficient ways of doing this.
- This activity demonstrates three different search methods so children can compare them.

BATTLESHIPS

- Battleships are lined up at sea.
- Each battleship has a number that is hidden.
- How many guesses does it take for you to find a specific battleship?
 - The number of guesses is the child's score.
 - The lowest score wins.

BATTLESHIPS

GAME 1: Ships are randomly ordered.

Your Ships

Number of Shots Used:

A decorative banner at the top of the page. It features a repeating pattern of blue and black triangles pointing to the right. Below this pattern, the letters of the alphabet are arranged in two rows: A, B, C, D, E, F, G, H, I, J, K, L, M in the top row, and N, O, P, Q, R, S, T, U, V, W, X, Y, Z in the bottom row. The letters are in a bold, black, sans-serif font.

FIND SHIP # 717

1A

BATTLESHIPS

GAME 2: Ships are in increasing order.

Your Ships

Number of Shots Used:

33	183	730	911	1927	1943	2200	2215	3451	3519	4055	5548	5655
A	B	C	D	E	F	G	H	I	J	K	L	M
5785	5897	5905	6118	6296	6625	6771	6831	7151	7806	8077	9024	9328
N	O	P	Q	R	S	T	U	V	W	X	Y	Z

FIND SHIP # 5897

2A

BATTLESHIPS

GAME 3: Ships are ordered into 10 groups based on a mystery function.

Your Ships

Number of Shots Used:

0	1	2	3	4	5	6	7	8	9
A	E	H		L		O	R	V	Y
B	F	I	K	M		P	S	W	Z
C	G	J		N		Q	T	X	
D						U			

FIND SHIP # 8417

3A

BATTLESHIPS

- These three games illustrate
 - linear search
 - binary search
 - hashing
- What is the maximum number of guesses required for each of these search techniques
 - for 26 battleships?
 - for n battleships?

THE MUDDY CITY

- Our society is linked by many networks: telephone, utilities, roads
- For a particular network, there is usually some choice about where the links can be placed.
- This exercise examines a complete network to determine the links necessary to connect all the components of the network at minimal cost.

THE MUDDY CITY

THE MUDDY CITY

THE MUDDY CITY

THE MUDDY CITY

THE MUDDY CITY

THE MUDDY CITY

- This exercise illustrates how to build what we call the “minimal spanning tree”.
 - A tree does not have any cycles where you can get back to where you were before.
- This exercise does not give us the shortest path from one location to another.
 - But there is another algorithm for that!

BEAT THE CLOCK

BEAT THE CLOCK

- This activity illustrates structures used in parallel sorting networks.
- Kids sort data by walking through a sorting network laid out on the floor.
- The network simulates how a parallel network would sort data.
 - Kids find out that data can be sorted a lot faster in parallel!

CS UNPLUGGED

- The teacher's version of Computer Science Unplugged is available online at <http://www.csunplugged.org>
 - The book is FREE to download and use!
- Additional material will be published soon to add even more activities, including video to demonstrate how to use these activities effectively in your classroom.