ML Speaking Skills Talk

Speaking Skills
Ph.D. Student
Machine Learning Department
Carnegie Mellon University
Orthogonality as a Neural Mechanism to Separate Signal from Noise
Thursday, March 27, 2014 - 3:45pm
McWilliams Classroom 4303 
Gates&Hillman Centers
Abstract:

Neural activity shows substantial variability in response to repeated presentations of the same stimulus (called trial-to-trial variability), and it is unclear how a population of neurons can reliably discriminate between different stimuli with such trial-to-trial variability.  To analyze population activity, we define a multi-neuronal firing rate space where each axis represents the firing rate of one neuron.  In this talk, I discuss the hypothesis that, in the firing rate space, trial-to-trial variability and stimulus information lie in mostly orthogonal subspaces.  The stimulus information can then be extracted with a simple linear projection, independent of the amount of trial-to-trial variability in the orthogonal subspace.  I also present a framework that incorporates dimensionality reduction to analyze the activity of many tens of neurons recorded simultaneously, and preliminary data from the visual cortex (V1) that supports our hypothesis.

Keywords:
For More Information, Please Contact:

diane [atsymbol] cs.cmu.edu