

Effective Error Diagnosis for RTL Designs in HDLs

Tai-Ying Jiang
Dept. of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan, ROC
giani@eda.ee.nctu.edu.tw

Chien-Nan Jimmy Liu
Dept. of Electrical Engineering

National Central University
Chung-Li, Taiwan, R.O.C.

jimmy@ee.ncu.edu.tw

Jing-Yang Jou
Dept. of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan, ROC
jyjou@ee.nctu.edu.tw

Abstract

We propose an effective approach to diagnose multiple
design errors in HDL designs with only one erroneous test
case. Error candidates will be greatly reduced while
ensuring that true erroneous statements are included in. The
probability of correctness for each potential erroneous
statement will be estimated such that the most suspected
statements are reported first. Experiments show that the size
of error candidates is indeed small and the estimation for
the probability of correctness for potential error candidates
is accurate.

1. Introduction

With the increasing complexity of VLSI circuit designs, a
typical design cycle is often split into various stages such
that functional mismatches between adjacent design stages
often occur. Once a verification tool finds that the design in
the current stage (the implementation) does not agree with
that in the previous stage (the specification), design error
diagnosis and correction is required. Traditionally, in the
problem of design error diagnosis, the implementation is
often represented as gate level or lower level circuits and the
specification is defined as gate-level or higher level circuits.
Those methods can be roughly divided into two categories:
simulation-based approaches and symbolic approaches.

In the simulation-based approaches, we have to derive a
number of erroneous vectors first, which are the vectors that
can differentiate the implementation and the specification.
By simulating those vectors, the possible error candidates
can be trimmed down gradually. In the literature, there are
two primary approaches to narrow down the error
candidates. Some of them rely on design error models
[3,9,10,11], which may include gate errors (missing gate,
extra gate, wrong logical connective,…) and line errors
(missing line, extra line,…), to rectify a circuit. The others
are structure-based methods [2,5,6,7,12], which do not
require design error models. By using the structural analysis

techniques [2] and performing incremental re-synthesis, the
design error can be diagnosed with minimum efforts.

On the other hand, symbolic approaches handle the
design error diagnosis problems by using Boolean function
manipulation [4,8,13]. In those approaches, Ordered Binary
Decision Diagram (OBDD) is used to formulate the
necessary and sufficient condition of fixing a single error.
Recently, symbolic approaches are extended to handle
multiple design errors [13]. As compared to the simulation-
based approaches, the advantages of those methods are more
accurate and do not require design error models, however,
they suffer the memory explosion problem in handling large
circuits.

In modern design process, most design errors occur in the
early stage of describing the functional behavior of a design
in HDLs and design error diagnosis at this stage is often
performed by tracing the code manually. However, for
modern designs with thousands of lines of HDL code,
debugging such circuits manually is a difficult task.
Therefore, automatic design error diagnosis techniques for
HDL designs are proposed [14,16]. In [14], Vamsi Boppana
et al exploits hierarchy available in RTL designs to locate
design errors and the information from the simulation of
Xlists[15] to capture the effects of design errors within
components of RTL designs. Maisaa Khalil et al [16]
proposed an approach to point out the the exact or likely
error location with the assumption that both the set of test
cases and the corresponding simulation results are available.
However, the number of the error candidates may still be too
large for designers to debug. Furthermore, assuming
multiple erroneous test cases being available is impractical.
In most cases, designers conduct the job with only one
erroneous test case.

In this paper, we propose an error-model independent
approach for assisting design error diagnosis for HDL
designs, which can handle multiple design errors with only
one erroneous test case effectively. We will reduce the
number of error candidates while ensuring true errors are
included in. The probability of correctness for each potential
error candidate is estimated with some heuristics. According

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

to the estimated probability, the most suspected error
candidates will be reported first in the display such that the
efforts of debugging can be further reduced.

The remainder of the paper is organized as follows.
Section 2 gives the work overview. Section 3 describes the
reduction of error candidates. In section 4, we estimate the
probability of correctness for each potential error candidate.
Finally, we present the experimental results in Section 5, and
conclude this paper in Section 6.

2. Work overview

Given a synchronous digital HDL implementation, a
specification, which is given as the expected values of all
POs and registers at all clock cycles, and one test pattern,
which are given by designers to verify the design, we are
going to solve the design error diagnosis for HDL design.
We check the simulation values of all POs and registers after
each simulation clock cycle. If mismatches between the
simulation values and the expected ones occur, we take
Erroneous Primary Outputs (EPOs) and the faulty HDL
design as inputs and output the set of error candidates in an
order, which is from the most suspected one to the most
innocent one. If not, for the need of our following operations,
we will collect the execution statistics of each statement and
each PO with correct simulation value at this clock cycle
With the collected information, the probability of
correctness for each potential error candidate can be
estimated. Then, we apply the next set of input vectors for
the next clock cycle and continue the simulation until at
least one error occurs. If, at the end, there is no mismatch,
error may still exist in the design. More simulation or other
verification work has to be done. However, that is beyond
our scope. The overall flow of our approach is shown in
Figure 1.

Figure 1. An overall flow of our approach

3. Error space identification

Error space is a set of error candidates for designers to
identify their design errors. If debugging is considered
without any aid, designers have to find the design errors in
the whole HDL design. In other words, the error space is
the whole HDL description. Therefore, our goal is to
minimize the size of error space by effectively using the
information collected during the simulation session while
ensuring that the true design errors are always included in
error space. The reduction of error space can be very
helpful because its size directly corresponds to the efforts of
debugging.

In this section, we first find initial error candidates in
section 3.1. In section 3.2, we analyze data dependency of
EPOs and reduce the size of error space further. Finally, we
present the overall algorithm of error space identification in
Section 3.3.

3.1 Executed statements of EOC

Definition 1: Executed Statements of Error-occurring Clock
Cycle (ES(EOC)) are the Executed Statements of the Clock
Cycle, in which an error appears for the first time.

As illustrated in Fig. 1, we check the values of all POs
and registers so that erroneous effects can not be propagated
to the next clock cycle. Therefore, the potential error
candidates can be limited in the ES(EOC). Therefore, we
eliminate those statements, which are not executed in this
clock cycle, from the error candidates.

In order to explain ES(EOC) more clearly, we use the
Verilog code shown in Fig. 2 as an example. Assume that
the code in Fig. 2 is the correct design that designers expect.
However, for some reasons, the statement s9 is written
incorrectly and becomes “w2 = PI4”. The applied input
vectors for each time instance and the corresponding values
of POs are shown in Fig. 3. Because an error occurs at PO1
at 25ns, EOC is the clock cycle, which is from time=15ns to
time=25ns. At time=20ns, s1, s2, s4, and event2 are
triggered because of the value changes of PI1 and PI4. Since
sel2=1’b0, the execution statistics of statements under the
evnet control of event2 is that dec.2 (decision or conditional
statement) and s9 are executed. Event1 is triggered due to
the rising edge of CLK at 25ns. Because the event1 is
triggered and sel1=1’b1, dec.1 and s6 are executed.
Therefore, ES(EOC) are s1, s2, s4, s6, s9, event1, dec.1,
event2, and dec.2. Note that the error source s9 is included
in ES(EOC).

3.2 Relation space extraction

Definition 2 : Relation Space (RS) of a specific primary
output POi, which is denoted as RS(POi), is a set of

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

statements that are related to POi in the data flow graph of
the HDL design.

According to the definition above, only the statements in

RS(EPOi) have influence on the value of EPOi. Statements,
which are not in RS(EPOi), are impossible to be the error
sources and can be eliminated from error space.

We will show an example of extracting RS(EPO1) in the
control data flow graph with the inputs of ES(EOC), which
are s1, s2, s4, s6, s9, event1, dec.1, event2, and dec.2. First,
the control data flow graph (CDFG), which can be obtained
by analyzing the data dependency of the HDL code, is built
as shown in Fig. 4, where s denotes a statement and dec.
represents a conditional statement or a decision. With the
CDFG, we can obtain RS(EPO1) by conducting a back trace
from PO1 to the PIs according to the relationship in the data
flow. When we look over the HDL code shown in Fig. 2 and
the CDFG shown in the Fig. 4, the first node we meet is
dec.1. In ES(EOC), only s6 is the driving statement of EPO1.
We add it in RS(EPO1) and then find the driving statements
of s6 and dec.1. The driving statements of s6 are dec.2 and
s9 and the driving statements of dec.1 is s1. We add them in
RS(EPO1), too. Similarly, we find the driving statements of
dec.2 and s9 and add them into RS(EPO1). Finally,
RS(EPO1) includes the statements { dec.1, s6, s1, event1,
dec.2, s9, s2, event2 }. Event1 and event2 are added in
RS(EPO1) because they are event controls of statements
mentioned above.

Figure 2. An example written in Verilog HDL

Figure 3.The waveform of signals in Verilog code

shown in Figure 2

Figure 4. The Control Data Flow Graph (CDFG) of EPO1

3.3 Error space identification

The whole algorithm of our error space identification is
shown as the pseudo code in Fig. 5. The error space
identification procedure takes EPOs, the HDL design, and
ES(EOC) as its inputs and output error space by eliminating
impossible error candidates. At the beginning, the set ES
(Error Space) and the set ES_highpriority are both empty.
The function of Find_ES is to extracts RS(EPOi) in
ES(EOC). The whole error space identification eliminates
impossible error candidates by taking the intersection of
ES(EOC) and each RS(EPOi). The resulted set of statements
is added into ES. The union of these statements sets
obtained by Find_ES is error space. Therefore, only one
erroneous case is needed while applying our approach.

In our algorithm, we will keep the statements that appear
in more than one RS(EPOi) in the set ES_highpriority.
Because these statements are related to more than one EPO,
intuitively, they are more possibly erroneous and are
prioritized to be checked first while tracing design errors.
This is done for reporting statements in error space with
debugging priority, which will be discussed in section 4,

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

such that the most suspected statements are reported first
and vice versa.

Error_Space_Identifying (EPOs, the HDL design, ES(EOC))
{
 ES ← 0 ; // ES is error space
 ES_highpriority ← 0 ; // Statements in ES with high

//debugging priority
 For (each EPOi)
 {

S ← Find_ES (EPOi, ES(EOC));
// Find RS (EPOi) with ES (EOC) ;
ES_highpriority ← ES_highpriority U (ES I S) ;
ES ← ES U S;

 }
}

Figure 5. The pseudo code of error space identification

4. Debugging priority

Instead of further reducing the size by using more
complicated methods, we plan to display the statements in
error space with a priority, which is called debugging
priority, such that the most suspected statements are
reported first. By estimating the probability of correctness
for all statements in error space with confidence scores
calculation, debugging priority can be calculated for
debugging purpose.

4.1 Confidence scores calculation

Due to the control of conditional statements, only a part
of statements in RS(POi) can really affect the value of POi
at a specific time. Those statements are called the sensitized
statements of the POi. For example, as shown in Fig. 6, the
evaluation result of the decision “if(sel1)…else…” is
“TRUE” and the evaluation result of the decision
“if(sel2)…else…” is “FALSE”. Therefore, only statements f2
and f4 are possible to affect the value of PO1 and are also
observed by PO1. These two statements f2 and f4 are
defined as the sensitized statements of PO1 (SS(PO1)).

Figure 6. An example of sensitized statements (SS)

According to the above definition, only sensitized
statements are able to affect the values of their
corresponding POs. Although the consistence between
expected values and simulation values of POs and registers
does not imply the correctness of sensitized statements, it
may still provide some degree of confidence level for the
correctness of SS. Thus, the formula of confidence score is
that each statement in SS(RPOi) will be given one point.

To explain this, we first consider two situations that there
is at least one error in SS while the simulation value of PO is
correct. These two situations are “non-activated” errors and
masked errors. Errors are said “not-activated” because the
applied input pattern can not differentiate the outputs of the
erroneous statements and the correct ones. The probability
P(non-activated) is generally very small. For example, if
the correct statement is “assign c = a + b;” and the
erroneous one is “assign c= a * b”, only applying the input
patterns “a=2; b=2;” and “a=0; b=0;” may generate the
same outputs for both statements. Otherwise, errors are
activated.

Even if the errors are activated, their syndromes may still
be masked by the succeeding statements such that the values
of POs are the same as expected. Consider a simple example
shown in Fig. 7. The applied input vector is “PI1=2’b10;
PI2=2’b01;” and the values of all variables are “E=2’b10;
sel=1’b1; B=2’b11; D=2’b11; C=2’b10; A=2’b10;
PO1=2’b01;”. If the statement f1 becomes an erroneous
statement “D=PI1;”, the value of D will become 2’b10
instead of 2’b11. However, the output of the statement f2 is
still C=2’b10. There is no syndrome shown at PO1 because
the activated error is masked by the statement f2. The
probability P(mask|activated) is not high in general.

Figure 7. An example of masked errors

Given P(non-activated) and P(mask|activated), the

possibility for the sensitized statements to be erroneous
sources while their corresponding PO is correct, which is
denoted as P(error|CPOi), can be estimated as

P(error|CPOi) = P(non-activated) +

P(activated) * P(mask|activated)

Since P(non-activated) and P(mask|activated) are

generally not high, P(error|CPOi) is generally not high,
either. For instance, if P(non-activated)=0.1 and
P(mask|activated)=0.3, P(error|CPOi)=0.1+0.9*0.3=0.37.

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

For each PO with correct simulation value at each
simulation cycle, the SS(CPOi) will be given one point
because P(error|CPOi) is generally not high. If a statement
gets 5 points, which is denoted as P(error|5CPOs), the
probability for it to be erroneous can be estimated as

P(error|5CPOs)=P(error|CPO1)P(error|CPO2)P(error|CPO3)

P(error|CPO4)P(error|CPO5)

Assume that each event of the probability is roughly
independent to each other. If we take the value of
P(error|CPOi) calculated previously for each
P(error|CPOi), P(error|5 CPOs) can be roughly estimated
as 537.0 = 0.007. Therefore, the more points a statement
has; the less possible it is to be a design error. The
formula of confidence score is feasible and suitable
capatable to represent the confidence level of each statement
in error space.

Only the executed statistics of statements and CPOs of
the clock cycles before EOC are needed to obtain SS(CPOi)
and to calculate confidence score. The information is
collected before any error occurs in this erroneous test case.
Therefore, displaying statements in error space with
debugging priority need only one erroneous test case.
Generating another erroneous test case to debug is optional.

4.2 An example of debugging priority

In order to demonstrate how we calculate confidence
scores and display statements in error space with debugging
priority, we continue the example shown in Fig. 2. We find
that EOC is the clock cycle, from time=15ns to time=25ns,
and error space is {s1, s2, s6, s9, event1, dec.1, event2,
dec.2}.

After using all CPOs in the simulation cycle before EOC
and EOC, confidence scores are calculated. We display
these statements with debugging priority according to the
confidence scores as shown in Fig. 8. A statement with less
score is displayed first for its high probability to be
erroneous and vise versa. The number in the round brackets
() after each statement is their confidence scores.

In the above example, we can see that the error source s9
is given one point only and displayed in the first line.
Therefore, although the number of statements in the error
space is eight, users can find their design error at the first
line in the display if they trace the statements according to
debugging priority.

Figure 8. The report with debugging priority

5. Experimental Results

In this section, we will show the experimental results on

five designs written in Verilog HDL. The design Matrix2X2
is a design for the 2x2 matrix multiplication. The design
FSM is a simple mealy finite state machine used to control
traffic lights. The design BlackJack is the controller for
black jack game machine. The design ADPLL_CTRL is the
controller of an all-digital phase lock loop design. The
design PCPU is a simple 32-bit pipelined DLX CPU.

For every design, we first simulate it once to obtain the
correct variable-dump file. Then, we change two statements
in the design to create erroneous source. With the created
errors, we run our program on a 300MHz UltraSparc II
workstation. The results are shown in Table 4. The column
“Lines” gives the number of lines in the HDL design. The
average number of statements in error space is recorded in
the column “AVG # lines in error space”. Total
experimental cases for each design are shown in the column
“# total cases”. In the column ”# cases”, we give the
number of cases that the true erroneous source appears for
each period in the displayed list of error space to show how
effective debugging priority works. For example, in the row
“Matrix2X2”, the sixteen in the column “0%~20%”
represents that there are 16 experimental cases in which true
erroneous sources appear in the first twenty percent in the
displayed list of error space and 4 cases in which true
erroneous sources appear within the period of the twenty
percent to fifty percent.

The efforts of debugging directly correspond to the
number of error candidates. With the aid of error space
identification, the size of error candidates is reduced from
the whole design to error space. Therefore, we define the
efficiency of error space identification (Eff. of ESID) as
“Lines” divided by “AVG # lines of error space”. In the
column “Eff. of ESID”, we can observe that “Eff. of ESID” is
high and the debugging efforts are indeed reduced with the
help of error space identification. Besides error space
identification, the additional help of debugging priority is
effective, too. We can tell from the great reduction of the
effective average number of statements in error space with

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

debugging priority (AVG_#ES_ESID+DP), which can be
estimated as



















−
×

+

+
−

×
+

+
−

×
+

×

casetotal
cases

casestotal
cases

casestotal
cases

ESAVG

_#
%100%50_#

2
15.0

_#
%5020_#

2
5.02.0

_#
%200_#

2
2.00

__#

Take the row of FSM as an example. AVG_#ES_ESID+DP
of FSM is

9.5*(0.1*17/20+0.35*3/20)=1.31.

The efficiency of error space identification with additional
help of debugging priority (Eff. of ESID+DP) can be
calculated as “Lines” divided by “AVG_#ES_ESID+DP”.
From the column “Eff. of ESID+DP”, we know that the
debugging efforts are greatly reduced with the aid of our
tool and the estimation of the probability of correctness for
each potential error candidate is accurate.

cases

Design Lines
lines of

EP
AVG/Max/Min

0~
20
%

20~
50
%

50
%
~

Eff.

of
ESID

Eff.
of

ESID
+DP

total
cases

Matrix
2X2

80 5.3 / 7 / 3 16 4 0 15.1 100.7 20

FSM 113 9.5 / 16 / 7 17 3 0 11.9 86.3 20

Black
Jack

195 10.1 / 21 / 3 16 2 2 19.3 101.6 20

ADPLL
CTRL

352 21.5 / 42 / 4 13 6 1 16.4 78.9 20

PCPU 952 26.3 / 53 / 7 16 2 2 36.2 190.5 20

Table 4. Experimental results of the design error diagnosis

6. Conclusion

An effective approach for automatic design error
diagnosis to diagnose multiple errors in HDL designs with
only one erroneous test case is proposed. For the error
candidates, we will first eliminate some impossible
statements by taking the intersection of ES(EOC) and the
relation space extraction. The estimation of the probability
of correctness for each potential error candidates in error
space is conducted by calculating confidence scores. The
experimental results show that error space is indeed small
and true erroneous statements are included in and
confidence score generally responds to the correctness of the
statement. Therefore, the effective size of error space can be
considered smaller than the original one.

7. References

[1] E. J. Aas, K. Klingsheim, and T. Steen, “Quantifying design

quality: A model and design experiments”, in Proceeding
EURO-ASIC, 1992, pp. 172-177.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design
verification via test generation”, in IEEE transactions on
CAD, 7(1): 138-148, January 1988.

[3] P. Y. Chung, Y. M. Wang, and I. N. Hajj, “Diagnosis and
correction of logic design errors in digital circuits”, in
Proceeding Design Automation Conference, 1993, pp. 503-
508.

[4] D. Brand, “Incremental synthesis”, in Proc. of the Intl.
Conference on Computer Aided Design, 1992, pp. 126-129.

[5] S.Y. Huang, K. T. Cheng, K. C. Chen, and D. I. Cheng,
“Error tracer: a fault simulation-based approach to design
error diagnosis”, in IEEE Intl. Test Conference, 1997, pp.
974-981.

[6] H. T. Liaw, J. H. Tsaih, and C. S. Lin, “Efficient automatic
diagnosis of digital circuits”, in Proceeding Intl. Conference
on Computer Aided Design, 1990, pp. 464-471.

[7] M. Tomita, and H. H. Jiang, “An algorithm for locating logic
design errors”, in Proceeding Intl. Conference Computer-
Aided Design, 1990, pp. 468-171.

[8] [8] M. Tomita, T. Yamamoto, F. Sumikawa and K. Hirano,
“Rectification of multiple logic design errors”, in Proceeding
of ACM/IEEE DAC, 1994, pp. 212-217.

[9] [9] S. Y. Huang and K. T. Cheng, “Error tracer: design error
diagnosis based on fault simulation techniques”, in IEEE
transactions on CAD, 18(9): 1341-1352, September 1999.

[10] D. W. Hoffmann and T. Kropf, “Efficient Design error
correction of digital circuits”, in Intl. Conference on
Computer Design, 2000, pp. 465-472.

[11] V. Boppana, I. Ghosh, R. Mukherjee, J. Jain and M. Fujita,
“Hierarchical error diagnosis targeting RTL circuit”, in Intl.
Conference on VLSI Design, 2000, pp. 436-441.

[12] Maisaa Khalil, Yves Le Traon, and Chantal Robach,
“Towards an Automatic Diagnosis for High-level Validation”,
In Proceeding Intl. Test Conference, 1998, pp. 1010-1018.

Proceedings of the 11 th Asian Test Symposium(ATS’02)
1081-7735/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

