Computational Thinking and Thinking About Computing

Jeannette M. Wing

President's Professor of Computer Science Carnegie Mellon University

© 2008 Jeannette M. Wing

Outline

- Computational Thinking
 - A Vision for our Field
- Thinking about Computing
 - Drivers of our Field
 - 5 Deep Questions in Computing

Computational Thinking

My Grand Vision for the Field

- Computational thinking will be a fundamental skill used by everyone in the world by the middle of the 21st Century.
 - Just like reading, writing, and arithmetic.
 - Imagine every child knowing how to think like a computer scientist!
 - Incestuous: Computing and computers will enable the spread of computational thinking.
 - In research: scientists, engineers, ..., historians, artists
 - In education: K-12 students and teachers, undergrads, ...

J.M. Wing, "Computational Thinking," *CACM* Viewpoint, March 2006, pp. 33-35. Paper off CISE AC website; paper and talks off <u>http://www.cs.cmu.edu/~wing</u>/

Examples of Computational Thinking

- How difficult is this problem and how best can I solve it?
 - Theoretical computer science gives precise meaning to these and related questions and their answers.
- C.T. is thinking recursively.
- C.T. is reformulating a seemingly difficult problem into one which we know how to solve.
 - Reduction, embedding, transformation, simulation
- C.T. is choosing an appropriate representation or modeling the relevant aspects of a problem to make it tractable.
- C.T. is interpreting code as data and data as code.
- C.T. is using abstraction and decomposition in tackling a large complex task.
- C.T. is judging a system's design for its simplicity and elegance.
- C.T. is type checking, as a generalization of dimensional analysis.
- C.T. is prevention, detection, and recovery from worst-case scenarios through redundancy, damage containment, and error correction.
- C.T. is modularizing something in anticipation of multiple users and prefetching and caching in anticipation of future use.
- C.T. is calling gridlock deadlock and avoiding race conditions when synchronizing meetings.
- C.T. is using the difficulty of solving hard AI problems to foil computing agents.
- C.T. is taking an approach to solving problems, designing systems, and understanding human behavior that draws on concepts fundamental to computer science.

Please tell me your favorite examples of computational thinking!

статс

Simple Daily Examples

- Looking up a name in an alphabetically sorted list
 - Linear: start at the top
 - Binary search: start in the middle
- Standing in line at a bank, supermarket, customs & immigration
 - Performance analysis of task scheduling
- Putting things in your child's knapsack for the day
 - Pre-fetching and caching
- Taking your kids to soccer, gymnastics, and swim practice
 - Traveling salesman (with more constraints)
- Cooking a gourmet meal
 - Parallel processing: You don't want the meat to get cold while you're cooking the vegetables.
- Cleaning out your garage
 - Keeping only what you need vs. throwing out stuff when you run out of space.
- Storing away your child's Lego pieces scattered on the LR floor
 - Using hashing (e.g., by shape, by color)
- Doing laundry, getting food at a buffet
 - Pipelining the wash, dry, and iron stages; plates, salad, entrée, dessert stations
- Even in grade school, we learn algorithms (long division, factoring, GCD, ...) and abstract data types (sets, tables, ...).

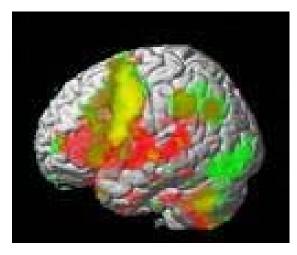
The First A to Computational Thinking

- Abstractions are our "mental" tools
- The abstraction process includes
 - Choosing the right abstractions
 - Operating simultaneously at multiple layers of abstraction
 - Defining the relationships the between layers

The Second A to Computational Thinking

- The power of our "mental" tools is amplified by our "metal" tools.
- Automation is mechanizing our abstractions, abstraction layers, and their relationships
 - Mechanization is possible due to precise and exacting notations and models
 - There is some "computer" below (human or machine, virtual or physical)

Two A's to C.T. Combined

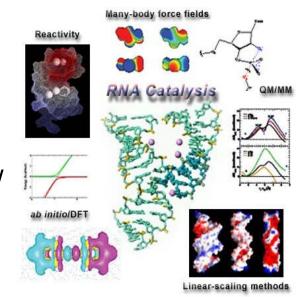

- Computing is the automation of our abstractions
 - They give us the audacity and ability to scale.
- Computational thinking
 - choosing the right abstractions, etc.
 - choosing the right "computer" for the task

Research Implications

CT in Other Sciences, Math, and Engineering

Biology

- Shotgun algorithm expedites sequencing of human genome
- DNA sequences are strings in a language
- Protein structures can be modeled as knots
- Protein kinetics can be modeled as computational processes
- Cells as a self-regulatory system are like electronic circuits


Brain Science

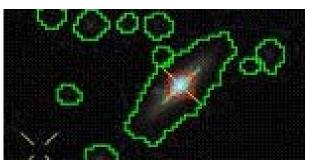
- Modeling the brain as a computer
- Vision as a feedback loop
- Analyzing fMRI data with machine learning

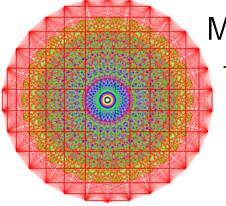
CT in Other Sciences, Math, and Engineering

Chemistry [Madden, Fellow of Royal Society of Edinburgh]

- Atomistic calculations are used to explore chemical phenomena
- Optimization and searching algorithms identify best chemicals for improving reaction conditions to improve yields

[York, Minnesota]


Geology


- Modeling the earth's surface to the sun, from the inner core to the surface
- Abstraction boundaries and hierarchies of complexity model the earth and our atmosphere

CT in Other Sciences, Math, and Engineering

Astronomy

- Sloan Digital Sky Server brings a telescope to every child
- KD-trees help astronomers analyze very large multi-dimensional datasets

Mathematics

- Discovering E8 Lie Group:
 - 18 mathematicians, 4 years and 77 hours of supercomputer time (200 billion numbers). Profound implications for physics (string theory)
- Four-color theorem proof

Engineering (electrical, civil, mechanical, aero&astro, ...)

- Calculating higher order terms implies more precision, which implies reducing weight, waste, costs in fabrication
- Boeing 777 tested via computer simulation alone, not in a wind tunnel

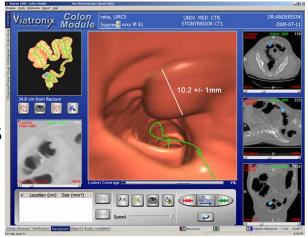
CT for Society

Economics

- Automated mechanism design underlies electronic commerce, e.g., ad placement, on-line auctions, kidney exchange

- MIT PhDs in CS are quants on Wall Street

Microsoft Digital Advertising Solutions


Social Sciences

- Social networks explain phenomena such as MySpace, YouTube
- Statistical machine learning is used for recommendation and reputation services, e.g., Netflix, affinity card

CT for Society

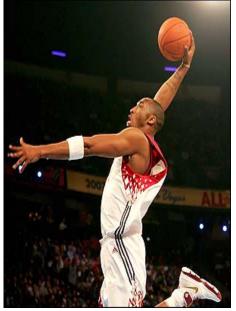
Medicine

- Robotic surgery
- Electronic health records require privacy technologies
- Scientific visualization enables virtual colonoscopy

Law

- Stanford CL approaches include AI, temporal logic, state machines, process algebras, petri nets
- POIROT Project on fraud investigation is creating a detailed ontology of European law
- Sherlock Project on crime scene investigation

CT for Society


Entertainment

- Games

- Dreamworks uses HP data center to render *Shrek* and *Madagascar*
- Lucas Films uses 2000-node data center produce *Pirates of the Caribbean.*

Arts

00

- Art (e.g., Robotticelli)
- Drama
- Music
- Photography

Sports

- Lance Armstrong's cycling computer tracks man and machine statistics
- Synergy Sports analyzes digital videos NBA games

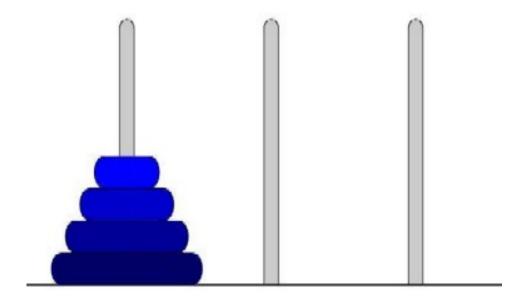
Jeannette M. Wing

Educational Implications

Pre-K to Grey

K-6, 7-9, 10-12

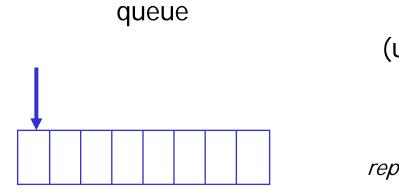
- Undergraduate courses
 - Freshmen year
 - "Ways to Think Like a Computer Scientist" aka Principles of Computing
 - Upper-level courses
- Graduate-level courses
 - Computational arts and sciences
 - E.g., entertainment technology, computational linguistics, ..., computational finance, ..., computational biology, computational astrophysics
- Post-graduate
 - Executive and continuing education, senior citizens
 - Teachers, not just students


Question and Challenge to Community

What are effective ways of learning (teaching) computational thinking by (to) children?

- What concepts can students best learn when? What should we teach when? What is our analogy to numbers in K, algebra in 7, and calculus in 12?
- We uniquely also should ask how best to integrate The Computer with learning and teaching the concepts.

Recursion: Towers of Hanoi


Goal: Transfer the entire tower to one of the other pegs, moving only one disk at a time and never a larger one onto a smaller.

Data Abstraction and Representation

stack

array and pointer

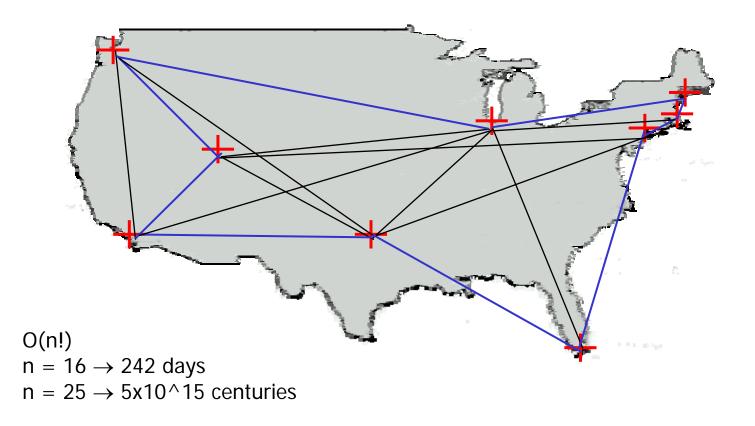
tree (upside down)

representation invariant

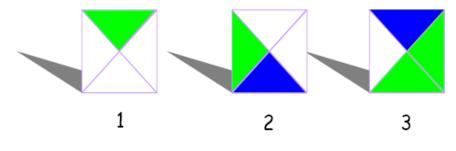
Composition and Decomposition

Sorting and Search

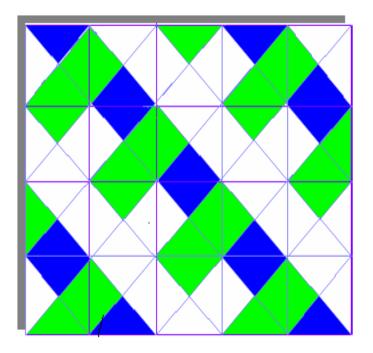
Web	Images	Video	News	Maps	more »	
						Advanced Search Preferences
	Google Search	earch	I'm Fe	eling Luc	(y)	Language Tools


Organize and share holiday pictures with Google's photo software.

Advertising Programs - Business Solutions - About Google


©2006 Google

Intractability: Traveling Salesman


Problem: A traveling salesperson needs to visit *n* cities. Is there a route of at most *d* in length?

Undecidability: Tiling

Can we tile the entire plane Z^2 ?

Example from David Harel

Jeannette M. Wing

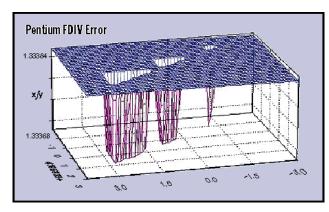
Data as Code and Code as Data

	chapter 3 - Message (Plain Text)	i)
∬ <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u>	nsert F <u>o</u> rmat <u>T</u> ools Actio <u>n</u> s <u>H</u> elp	
© © <u>R</u> eply	oly to All 😡 For <u>w</u> ard 🎒 📴 🔻	r 📴 🗙 🔺 - 🜩 - 🛣 😰
From: O'Malley, J	ohn	Sent: Thu 10/07/1999 10:13 AM
To: O'Malley, J	ohn	
Cc:		
Subject: Let's talk a	bout chapter 3	
John,		
what you thin -John	k, especially about the	material on page 3? Thanks.
Chapter 3 (19KB)		

Recursion Revisited

The Y operator

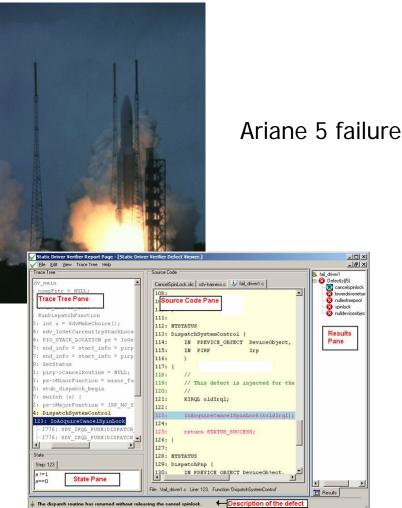
 $Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$


which satisfies the following equation

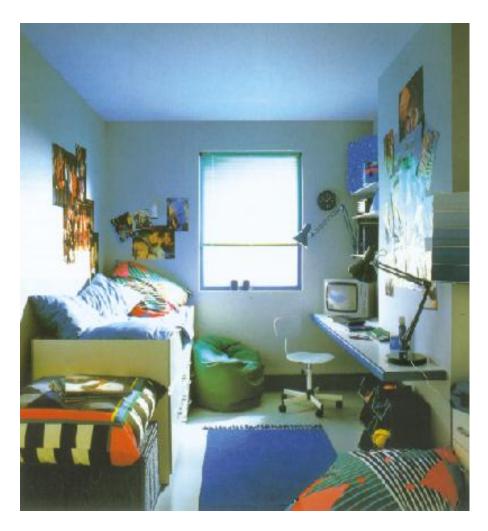
Y f = f (Y f)


and is the basis of recursion in Computer Science.

Y is the *fixed point* combinator in lambda calculus.


Correctness: Avoiding Bugs to Save Money and Lives

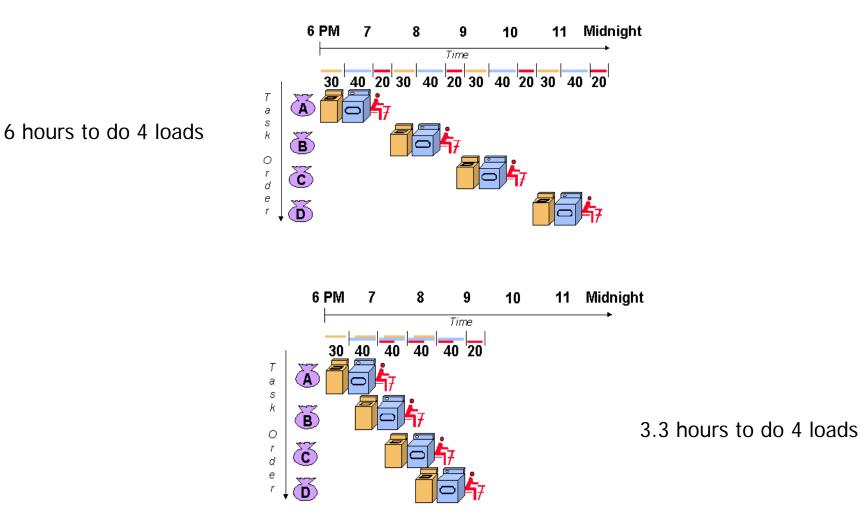
Intel Pentium FPU error



Now Intel uses formal verification.

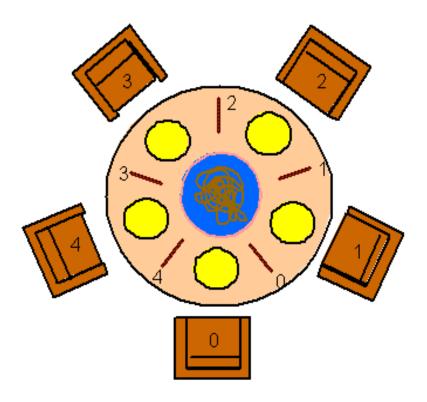
Now Microsoft uses formal verification.

Caching

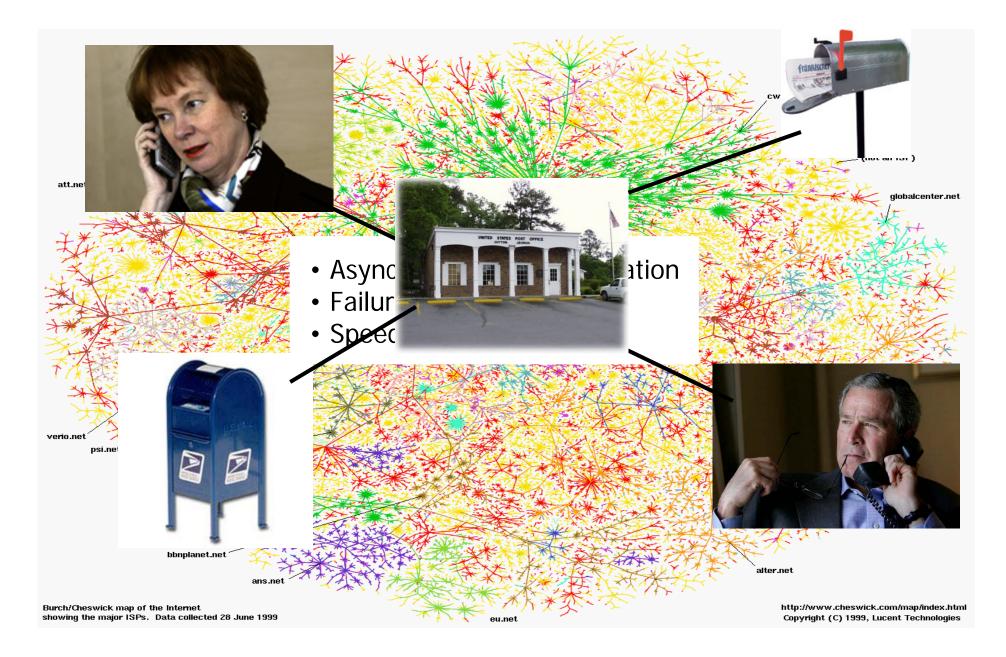

knapsack

locker

home

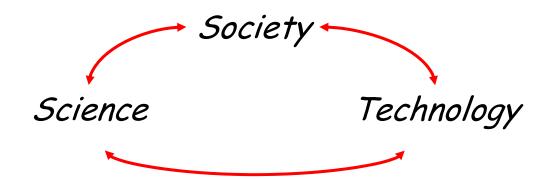

CT&TC

Pipelining: Doing Laundry



Concurrency: Dining Philosophers

Five philosophers sit around a circular table. Each philosopher spends his life alternately thinking and eating. In the centre of the table is a large bowl of spaghetti. A philosopher needs two forks to eat a helping of spaghetti.



Distributed Computing: The Internet

Thinking About Computing

Drivers of Computing

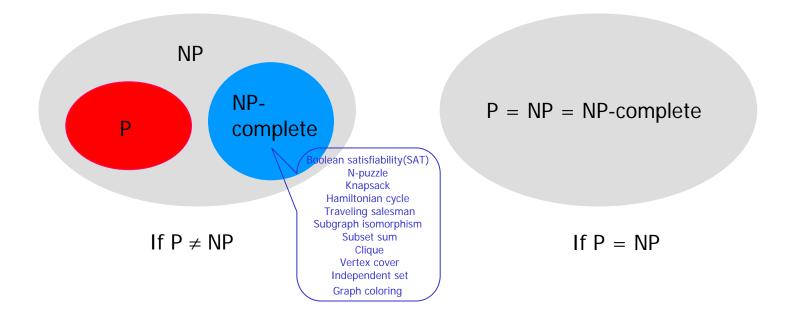
Technology Trends: Computing Substrates

- Moore's Law will end in 10-15 years [Gordon Moore 9/18/07]
- Nanocomputing is here.
 - March 2006, IBM researchers build the first complete IC around a single carbon nanotube molecule.
- Biocomputing is here.
 - 1994, Adleman solves 7-point Hamiltonian path problem with DNA computing
 - 2004, Shapiro, Benenson, Gil, Ben-Dor, and Adar of Weizmann Institute announce in Nature the construction of a DNA computer
- Quantum is coming?
 - "Quantum Cryptography to Secure Ballots in Swiss Election," Network World, Oct 11 2007
- Bio-Nano-Quantum
 - "Fabrication of Photonic Transfer DNA-Quantum Dot Nanostructures," Heller, Sullivan and Dehling, Nanotech 2005.
 - "Economical Fabrication of Quantum Dot-Electronics Using Biofunctionalized Protein Nanotubes as Building Blocks, Masui, NSF CAREER award

More Technology Trends

- Devices
 - 2 billion cell phones in the world; RFID tags; sensors everywhere
 - A BMW is "now actually a network of computers" [R. Achatz, Seimens, Economist Oct 11, 2007]
 - Robots in your home
- Information
 - Drowning in data; sensors everywhere; storage is cheap; information overload
- Communication
 - Femto cells—personal base stations
 - Web 3.0 (semantic web)
 - Virtual worlds: Second Life is today's Mosaic
- Brainy machines
 - IBM and EPFL's Blue Brain Project: to create a biologically accurate, functional model of the brain
 - <u>www.numenta.com</u> : software platform for intelligent computing modeled after human neocortex

Users and Society

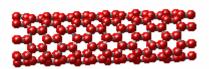

- Expectations: 24/7 availability, 100% reliability, 100% connectivity, instantaneous response, store anything and everything forever, ...
- Classes: young to old, able and disabled, rich and poor, literate and illiterate, ...
- Numbers: individual \rightarrow cliques \rightarrow acquaintances \rightarrow social networks \rightarrow cultures \rightarrow populations
- The Internet/Web is a great equalizer.
 - What about privacy? Anonymity to accountability
 - When will it stop being free?
 - Will it continue to be self-regulating?

5 Deep Questions in Computing

- P = NP ?
- What is computable?
- What is intelligence?
- What is information?
- (How) can we build complex systems simply?

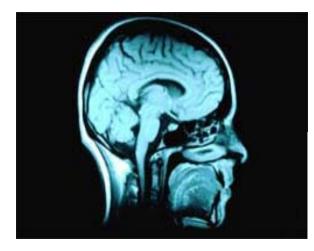

The \$1M Question: Does P = NP?

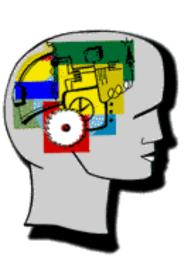
- The most important open problem in theoretical computer science. The Clay Institute of mathematics offers one million dollar prize for solution!
 - http://www.claymath.org/Millennium_Prize_Problems/



What is Computable?

- What are the power and limits of computation?
- What is a computer?

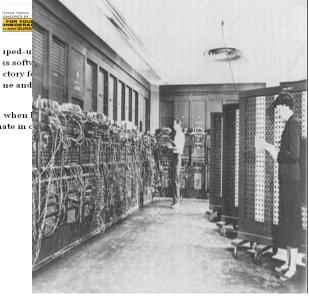

• Not just a PC anymore: The Internet, server farms, supercomputers, multi-cores, ..., nano, bio, quantum, etc.



• What is the power of computing, by machine and human together?

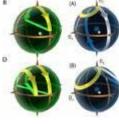
What is Intelligence?

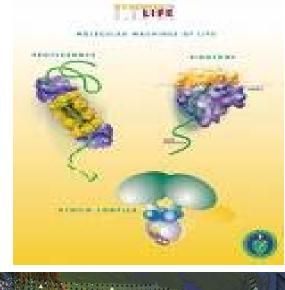
igence? Human and Machine

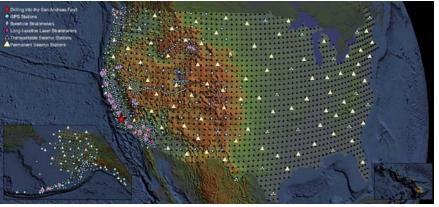

> *invariant representations*: **On Intelligence, by** Jeff Hawkins, creator of PalmPilot and Treo

"Computing Versus Human Thinking," **Peter Naur**, Turing Award 2005 Lecture, *CACM*, January 2007.

lost Game 2 by walking into a checkmate in


IN IN TO


Human vs. Machine



What is Information?

- From nature
 - It's not just 0's and 1's
 - Qubits
 - "Biology is an information science."
 - Geology too.
 - Molecules/chemicals are processors of information (computer), carriers of information (storage), and channels of information (communication)
- ...To knowledge
 - We are drowning in data.
 Data is dirt; knowledge is gold.

(How) Can We Build Complex Systems Simply?

We have complexity classes from theory.
We build complex systems that do amazing, but often unpredictable, things.

Question: Is there a complexity theory for systems as there is for algorithms?

Question: Is there a meaning of system complexity that spans the theory and practice of computing?

Question: Do our systems have to be so complex?

• Can we build systems with simple designs, that are easy to understand, modify, and maintain, yet provide the rich complexity in functionality of systems that we enjoy today?

Two Messages for the General Public

- Intellectually challenging and engaging scientific problems in computer science remain to be understood and solved.
 - Limited only by our curiosity and creativity

- One can major in computer science and do anything.
 - Just like English, political science, or mathematics

Spread the Word!

- Help make computational thinking commonplace
- Help explain the science in computer science

To fellow faculty, students, researchers, administrators, teachers, parents, principals, guidance counselors, school boards, teachers' unions, congressmen, policy makers, ... Thank you!