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Abstract release of a system more secure than the earlier ones?

How can we quantify the results?

We propose a metric to determine whether one versionn this paper we propose a metric to compare the relative

of a system is relatively more secure than another withsecurity of two versions of the same system. Rather than

respect to the systemattack surface Intuitively, the  measure the absolute security of a system with respect to

more exposed the attack surface, the more likely the syssome yardstick, we measure its relative security: Given

tem could be successfully attacked, and hence the mongvo versions, A and B, of a system we measure the secu-

insecure itis. We define an attack surface in terms of theity of A relative to B with respect to the systenastack

system’sactionsthat are externally visible to its users surface Intuitively, by decreasing the exposure of the

and the system’sesourceghat each action accesses or system’s attack surface, e.g., by eliminating system fea-

modifies. To apply our metric in practice, rather thantures, we make it more secure.

consider all possible system resources, we narrow our

focus on a “relevant” subset of resource types, which we

call attack classesthese reflect the types of systemre-1.1 A New Metric

sources that are more likely to be targets of attack. We

assign payoffs to attack classes to represent likelihoods

of attack; resources in an attack class with a high payToday we commonly use two measurements to deter-

off value are more likely to be targets or enablers of anmine the security of a system: at the code level, we count

attack than resources in an attack class with a low paythe number of bugs found (or fixed from one version to

off value. We outline a method to identify attack classesthe next), and at the system level, we count the number

and to measure a system’s attack surface. We demornf times a system version is mentioned in CERT advi-

strate and validate our method by measuring the relativsories [24], Microsoft Security Bulletins [29], MITRE

attack surface of four different versions of the Linux op- Common Vulnerabilities and Exposures (CVEs) [31]

erating system. etc. We argue in Section 7 why both measurements,
while useful, are less than satisfactory. In this paper,
we propose a new security metric based on the notion
of attack surface. It is a metric that strikes at thesign

1 Introduction levelof a system: above the level of code, but below the
level of the entire system.

In recent years, there has been an alarming increase ifhe system actiongxternally visible to the system’s
the number of successful attacks on systems due to amsers together with theystem resourceaccessed or
increase in the number of vulnerabilities found and ex-modified by each action constitute the systeattck
ploited by attackers. Industry has responded to these irsurface Intuitively, the more actions available to a user
cidents by increasing the effort to make systems morer the more resources accessible through these actions,
secure and less vulnerable. In the future, the amounts dhe more exposed the attack surface. The more exposed
money, time, and effort spent by industry will continue the attack surface, the more likely the system could be
to increase proportionally to the increased expectationsuccessfully attacked, and hence the more insecure it is.
and demands of their customers for more trustworthyWe can reduce the attack surface to decrease the likeli-
systems. Our work is motivated by the questions facedood of attack and make a system more secure.

by industry today: How has industry’s effort made to

make a system more secure paid off? Is the most recemtttacks carried out over the years, however, show that



certain system resources are more likely to be opportu-
nities, i.e., targets or enablers, of attack than others. For
example, services running as the privileged uset

in UNIX are more likely to be targets of attack than ser-
vices running as non-root users. Files with full control
(e.g., rwxrwxrwx in Unix) are more likely to be at-
tacked than files with less generous permissions. Sym-
bolic links are highly likely to be used as enablers in
attacks. In Windows, applications, such as Internet Ex-
plorer and Outlook Express, with VBScript, JScript, or
ActiveX controls enabled are more likely to be enablers
of attack than if such scripting engines and controls were

and attack class. Our definitions are new, and in
particular more precise than found in earlier work
[11].

e We outline a general method to measure the attack

surface of any system. We explain what inputs the
user must provide to use our method in practice.

We demonstrate our method on the Linux operat-
ing system. We identify 14 attack classes and mea-
sure the attack surface of four different versions of
Linux. Our results are consistent with the perceived
security level of these four versions.

disabled. Our method of measuring a system’s attack

surface recognizes tha_t not_all system resources ShOUthe rest of this paper is organized as follows. In Section
be treated eq_u_ally. We identify the_system resources Fh , we introduce our state machine model and point out
are opportunl_nes of attack by a given set O.f properugsthe key differences from other similar models. In Sec-
associated with the resources, and categorize thgm 'mﬁ)on 3, we present the formal definitions of attack, attack
attack classesThese prpperhes reflect tattackability class, and attack surface. We explain our method of at-
of a t)l/_pkelof rebs; ource,kl % hsome;ypes of resources alfick surface measurement in Section 4. We demonstrate
more likely to be attacked than other types. the use of our method for the Linux operating system in

Gi f Kol dai . ection 5. We discuss the pros and cons of our approach
lven a set of attack classes, an given WO VerSIOns Of, g tion 6 and compare it to related work in Section 7.
a system, we measure whether one is more secure relie conclude in Section 8

ative to the other by comparing them with respect to
the attack classes. There are different possible ways
of doing this comparison. For example, for each ver-
sion, we might count the number of running instances of2
each attack class (e.g., the number of services running as
root and the number of open sockets), and compare each

version’s respective numbers for each attack class. Weye yse a state machine to model the system, the threat

might further refine these counts by weighing instancegagversary) trying to attack the system, the administrator
of some classes more than instances of others, wheig the system, and the users in the system.

weights represent the likelihoods of attack. We could
use apayoff functiorto assign these likelihoods, e.g., to
assign higher payoff to services runningrast than 2.1
those running as non-root.

State Machine Model

Informal Overview

Using our method, it is meaningful to compare two sim- The use of state machines is not new in security litera-
ilar systems (e.g., two versions of Red Hat, or Red Hatiure. For example, state machines are used for intrusion
and Debian) rather than two completely unrelated sysédetection ([7] and [12]), and to model security policies
tems (e.g., Linux and Windows) because the unrelateq[2] and [17]). Our state machine, however, differs from
systems would have different sets of attack classes. Wetandard state machines found in the literature as fol-
emphasize this point in Section 7 when we compare outows:

work on Linux to previous similar work on Windows

[11]. e We explicitly represent an access matrix in the state

of the state machine, thereby allowing us to repre-
sent the set of principals (e.g., User and Adminis-

1.2 Contributions and Roadmap trator) explicitly

e We represent the system itself as a separate entity

Our contributions in this paper are three-fold: in our model and not as a principal.

e We distinguish both the threat and the system
administrator as system principals different from
other system users.

¢ Interms of a state machine model of the system, we
present formal definitions of attack, attack surface,



These differences allow us to partition the set of actiondo identify the executor of the actiond = Ag W A
of a state machine into pairwise-disjoint sets of actionsiw A, W Ay, whereAg is the action set of the System;
By tagging the actions with the executor of an action A, the action set of the Threat} 4, the action set of
(i.e., a principal or the system) in a given execution sethe Administrator; andiy, the action set of the Usesl
guence of actions, we can easily and succinctly definestands for disjoint union.
the notion ofattack
The transition relatiof” is defined a§" C S x A x S.
For any actiom € A, if a.pre anda.post are the pre-
2.2  Formal Definition and post-conditions af, we define the set of transition
triples involving the actior: to bea.T = {(z,a,2’) :
S x AxS|a.pre(z) = a.post(z,z’)}. T is the union
of all such setsqa.T, for each actiorn € A. For an
actiona € A, we define a functionRes: predicate—
Resourcesuch that for each resouree appearing in the
predicatep, r € Res(p)*. We define the corresponding

We assume a set of potentially existing resourcesfuncnonforan actionRes: action— Resourcéo collect

Resource, partitioned into disjoint typed sets. The set of 2/l résources appearing in the pre- and post-conditions
statesS, in a state machine ranges over the tgpée, of the specification of action. Formally, Res(a) =
where the typétateitself is defined as follows: Res(a.pre) U Res(a.post).

A state machine M %S,1, A, T) is a four-tuple where
Sis the set of statesd S is the set of initial states, A is
the set of actions, and T is the transition relation.

The System, the Threat, the Administrator, or the User
can cause the state machine M to change its state by
executing their respective actions. giate transition
(x,a, 2, is the execution of actiomin statex resulting

in the new state’’. A change of state of M involves the
following observable behaviors: (1) addition, deletion
or modification of a resource, and (2) modification of
dhe entries of the access matrix. The addition or deletion
of a resource changes a state’s environment, store, and
access matrix. The modification of an existing resource
hanges a state’s store and possibly its access matrix.

State = Env x Store x Access_Matrix

Env = Name — Resource

Store = Resource — Value

Access_Matrix = Principal X Resource X Rights

Given a statele, s,am) € S, the environment is a
mapping of names to typed resources and the stise

a mapping of typed resources to their typed values. Th
access matriam is a triple similar to Lampson’s ac-
cess matrix [13], where our principals are equivalent to
Lampson’s domains and our resources are equivalent tb
Lampson’s objects. To be concrete in this paper we de-
fine Principal = {Threat, Administrator, Usér The
principal Threat is the adversary who attacks the sys-
tem with some goal, Goal, in mind. We assume that we3  Definitions and Examples
can represent the Goal of the Threat as a predicate over

the resources in the system. The Administrator tries to

protect the system and tries to prevent the Threat from . '
achieving its Goal. The User tries to get some usefuIWe use our state machine model to define formally no-
work done. For simplicity, we assume only one user intlons of attack, attack surface, and attack class.

the system, but our model is general enough to handle

multiple users. Access rights definitions are specific to

the system being modeled. For instance, on the UNIX3.1 Attack

operating systenRights= {r, w, x}. Representation of

the access matrix as a separate entity in the state makes

specifying the pre- and post-conditions of actions con- 4t p = (S,I,A,T) be the state machine represent-

venient. Finally, to distinguish between actions taken bying the system under attack and Goal the state predicate

a principal and those performed by the system, in OUtp o o cterizing the adversary's goal to be achieved in at-
model we represent the system itself by a special ent't¥acking the system.

System.

The action set4 consists of the actions of the System, _TMis function can be inductively defined over the syntax of the
redicate language, which we intentionally do not fix in this paper.

_the Thre_at the_AdminiStratorv and the_ _User- Eagh actio irst-order logic or temporal logic would both be natural choices for a
is specified by its pre- and post-conditions and is tagge@redicate language.



Definition 1 Anattackis a finite sequence of action ex- action SEND_STRING(C: channel, I: string)
ecutionsay, .., a;, .., a,, such that: pre (Threat, C,rw) € am
postC’ = enqueue(C, I)

eVi<i<n.aeA: action PROCESSSTRINGg(C: channel,

P: process)
pre — empty(C)
* a1 € Ar; post3l . I = dequeue(C)A
(length(I) < 512 = display(P,I)) A
e dl<i<n.a; € Ag;and (length(I) > 512 =
JE.(E = zload(P,I) =
e Goal is satisfied in the state reached by M after ex- E.pre = E.post))

ecution ofa,,.

The effect of executing SENIBTRINGy is to enqueue
An attack includes actions from the action sets of the? Strfing onto a channel. The effect of executing PRO-
System, the Threat, the Administrator, and the User.CESSSTRINGS Is to dlsplgy a string if its length is
Since an attack is initiated by the Threat, the sequencé 5_12 and execute the string's extracted payload, oth-
starts with an action of the Threat. The sequence in®"W!S€:
cludes at least one action of the System to model the i ,
exploitation of some system vulnerability by the Threat NOW We give a hypothetical attack, where the Threat ex-

in the attack. Finally, the adversary’s goal should hold athOitS a buffer overrunina proce%runping in the sys-
the end of the attack. tem by sending through the communication chariel

a string X whose length exceeds 512. (We give another
To illustrate our formalism, let us first consider the spec-€X@mple describing a real-life attack in the appendix. It

ification of two actions: SENISTRING; and PRO- also illustrates an attack with a User action.)

CESSSTRINGg. Recall that a system state is a triple, , .
(e, s, am), of an environment, store, and access matrix:/nformally, the adversary’s goal is to execute some ar-

in particular, when we write: (am) below, we mean bitrary codeE: executablein the system; formally, we

the environment (access matrix) component of the statiEPresent this Goal as the predicdiere = E.post.

(e, s,am). For each action specification, we use a barThe attack on the System consists of the following se-
over a variable namez, to denote the resource itself, dUence of two action executions, where time runs down

i.e., e(x); an unprimed variable name, to denote the the page. We italicize the state predicates before and af-

value of the resource, i.es(e(z)), and a primed vari- ter the attack.
able namey’, to denote its value in the post-state, i.e.

s'(e'(x)). We specify state changes explicitly: a re- {3C : channel € e A 3E : evecutable € e A
source named by a variable that remains unprimed in the 3P : process € e A3X : string € e A
post-state is assumed not to change. (Threat,C,rw) € am A

. empty(C) Alength(X) > 512}
Below, we assume the typghannelhas functionsen- SEND.STRINGF(C, X)
queue: channek string— channelanddequeue: chan- PROCESSSTRINGs(C, P)

nel— stringto write data to and read data from the chan-
nel; it also has the functioempty: channel- boolean
that returns true if the channel is empty; false, other-
wise. The typeprocesshas a functiordisplay: process Since the Ilength of the stringX sent to

x string — unit to print a string on the user’s terminal SEND.STRING, is greater than 512, the last con-
and a functiorx_load: processx string — executable junct of the post-condition of PROCESSIRINGg

to extract a payload from an input string, returning a re-holds; thus Goal is achieved at the end of this sample
source of typeexecutableThe typestring has a function  attack.

length: string— int that returns the length of the string.

We associate a functioeval: executable— unit with For a given attack, the target will appear as one of the re-
every executable in the system; when invoked it resultsources of one of the system actions of the attack. In the
in the evaluation of the executable. Note that for an ex-example aboveResPROCESSSTRINGg) = {I, C, E,
ecutable,E, the predicatéE.pre = E.postcaptures the P}, and the procesB is the target of attack. In addition,
effect of evaluating~. the specification of (at least) one of the system actions

{3E : executable . E.pre = E.post}



in the attack reflects the vulnerability of the System ex-system. In practice, these properties take into consid-

ploited by the Threat. In the example, the post-conditioneration the aspects of resources the Threat finds easy to

of PROCESSSTRINGsg reflects the vulnerability of the  exploit (e.g., weak access control on files). To be con-

system, i.e., if the length of the input stridgs greater  crete, we assume that we are given a set of properties,

than 512, the proced? executes arbitrary code ihsent  each expressed as a predicate over resource types.

by the Threat. The intended (ideal) behavior for PRO-

CESSSTRING: is to display the input string, no mat- A set of propertiesProp, extends a given set of types,

ter what its length. Type by introducing new types, each a subtype of some
type in Type This extended type system defines a type
hierarchy, where types are related by a subtype rela-

3.2 Attack Surface tion (e.g., see Liskov and Wing’s behavioral notion of
subtype [14]). For examplayobodyaccountis a sub-

type of useraccountbecause an account of type-

Definition 2 Theattack surfacef the System is the pair, body accounthas all the properties afser accountwith
(As, U Res(a)), where the first component is the set

vl the further distinguishing property that itser _id is
a S . . .
of system actions and the second is the collective set gfobody . For typesS andT’, we write.S < T'if S'is a

resourcesRes(a), for each system action, € Ag. subtypg ofT". The subtype relation characterizes when
properties of a resource of a tydg, are preserved by
i i any of T's subtypes. Operationally, # < T then any-
Note that each system actianc As can potentially  \here we expect a resource of typave can substitute
be part of an attack and hence contributes to the attack (esource of typéS. In general, a type hierarchy is a

surface. Even though a system action may not have afyrest of directed acyclic graphs, i.e., a type might have
peared in any attack seen to date, it can be part of a fus,ore than one parent.

ture attack, exploiting vulnerabilities not yet discovered

or fixed. Assume we have a type hierarchy relatiomjuce that

takes as input a set of properti®sop, and a set of types,

Similarly, by our definition, every system resource CanType and yields both a new set of typesType and a
potentially be part of an attack surface. In reality, hOW'subtype relation< . such that:

ever, not all system resources have the same likelihood

of being a target or enabler of an attack. We use attack

classes to capture this intuition. e STyped Type That is,Induceextends a given set
of types with new ones.

3.3 Attack Class e < is a subtype relation on types 8Type

e VS € STyp&TypedT < Type. S < T. That is,

To motivate our definition of attack class, consider the each new type is a subtype of some existing type.

general resource typgervice In practice, not all ser-

vices have the same “attackability,” i.e., likelihood of 4 v;, ¢ prop, 35 ¢ STypaTypesuch thatva

attack. We might want to distinguish between services ¢ ,(»). That is, each property plays a role in

running asroot and services running aon-root . defining some new type.

Or, while we might have a general resource tfifg we

might want to distinguish among files that allow fullcon- ¢ v5 ¢ STypaType 3p € Prop such thatvz :

trol, those that allow only read/write access, and those g p(z). Thatis, each new type derives from some

that allow only read access; and we may not care about  property inProp.

the remaining types of files. These kinds of distinctions

can vary across different kinds of systems; for exam-

ple, in a medical databases we might try to gain acces¥he relationinduceprojected on its first type in its do-

to patient records, but in a nuclear control system, wemain Prop) and mapped onto the first type in its range

might try to gain access to the sensor and actuator prolSTypé is total and onto. Note that a property can

cesses. We want our attack surface metric to be applicabe used to define more than one new type and a new

ble across this broad range of systems. type can be derived from more than one property. If
Induce(Prop, Typé, (SType<)) we say the set of prop-

In order to characterize these distinctions formally, weertiesProp inducesa type hierarchy offype producing

use “properties of interest” that are relevant to a givena subtype relations, on types inSType



Definition 3 Given a set of properties, Prop, and a set of each actiom € Ag. A naive but impractical way of
resource types, Type, let Typterarchy be the subtype measuring the attack surface is to enumerate the set of
hierarchy induced by Prop on Type, i.e., Indugapp, system actions of a given system and count the number
Type, (TypeHierarchy, <)). Theattack classesf a  of resources in each of the action’s resource set. We de-
system are all the types in Typ#erarchy that are leaf scribe below a more practical, yet meaningful way to
nodes, i.e., have no subtypes of their own. measure the attack surface based on the attack classes of
the system. Then, given two versions, A and B, of a sys-

- . tem we compare their relative attack surface exposure
Note that by defining an attack class to be a type W|thWith respect to the attack classes

no child node in the type hierarchy, we ensure that all
attack classes are disjoint, and thus any count based on
the numbers of elements_in a class will n_ot _double_ c_o_unt4_2 Method
resources. (We could give a less restrictive definition

of attack class, but then any straightforward counting

method, e.g., based on the number of instances per cla

S . . ,
should make sure instances are not double counted.) Consider a system with a fixed sells, of system

actions, each specified in terms of pre- and post-

The set of properties specified by the user captures hOV(\:,ond|t|ons. In practice, a system’s API serves as the set

. . 4 of system actions.
likely resources of a given type will be attacked. For ex- Y
ample, two general resource types in the Linux operat-

ing system areerviceanduseraccount We can use the - gie 1 |dentify the resources that are potential targets
predicateservicerunning asroot: service— boolean of attack as | Res(a) from the given set of sys-

to categorize the services into two attack classes: a€As
vicerunning.as.root and servicerunning.asnon-root tem actionsAg. Let Typebe the set of types of all
We can use the predicateserid: useraccountx id — these resources.

booleanand group.id: useraccountx id — boolean

to categorize the user accounts into the attack classe=l€P 2- Given a setProp, of properties of interest over
useraccountwith_userid=root_or_groupid=root, no- the resources, induce a type hierarchy over the set,

body.account andall_otheraccounts (Our type hier- Type of resource types identified in Step 1. Every
archy for Linux presented in Section 5 is more elab- leaf node in this type hierarchy is an attack class of
orate.) In the Windows (as in Linux) operating sys- the system. Lefttack Classbe the set of attack

tem, one general resource typectsannel We can use classes.

the predicatehannelprotocot channelx protocol — Step 3. Define a payoff functionF: Attack Class —

booleanto categorize the resources of type channel into : ;
. . 0,1] to assign payoffs to each attack class iden-
the attack classesocket RPCendpoint, namedpipe t[ifie<]j in Stepgz pay

andall_other.channels
Step 4. Choose somé attack classes from the attack
classes identified in Step 2. (We discuss why we

include this step below.)

4 Attack Surface Measurement Method
Step 5. Compare the two versions of the system, A and

B, with respect to thesk attack classes to obtain
In this section we outline a general method that can be  their relative attack surface exposure.
used to identify the attack classes of a system and mea-
sure its attack surface. We base our method on our for-
mal model and definitions described in earlier sectionsS0me notes on these steps in our method:

we present it in a way so that it can be applied to any
system. In Step 2, we need to rely on our knowledge of the sys-

tem to state the properties of interest. They will differ
from system to system and they may change over time

4.1 Attack Surface Measurement based on our experience with a system as it evolves over
time.

The attack surface of a system consists of the set of sydn Step 3, payoffs represent the likelihoods of attack. An
tem actionsAg and the collective set of resources of attack class with a high payoff indicates that resources of



that class are more likely to be attacked than resources e Reduce the number of system actions.

of an attack class with a lower payoff. One naive way of . .
assigning payoffs is to count the number of times a re- ® Remove a known or potential system vulnerability
source appears in the pre- and post-conditions of system Py strengthening the pre- and post-conditions of a
actions; we would assign higher payoffs to the resources ~ SyStém actiom € A, e.g., in a way that prevents
having higher counts. Another way of assigning pay- the Goal of the Threat from ever being achieved.
offs is based on a system’s reported history and we give
higher payoffs to attack classes that appear in a greater
number of vulnerability bulletins. A more sophisticated ¢ Reduce the number of instances of an attack class.
approach for defining a payoff function is to quantify the

“damage” the adversary can effect if resources in a given

attack class are compromised, e.g., in terms of cost to re-

pair the system. 5 Linux Example

e Eliminate an entire attack class.

In Step 4, we acknowledge that measuring an attack sur-

face in practice negd not involve all the attack classes ofy, this section, we describe the results of measuring the
the system. We might choose the llo.attack_classes of attack surface of four versions of the Linux operating
a system based on the payoffs assigned in Step 3. O

. . 7 . System.
more pragmatically (as we will see in Section 5), we
might simply choose th& attack classes for which we Step 1 of our method requires that we identify all re-

have an automated means of counting their sizes. sources of the system that are potential targets of attacks.

Since it is impractical to enumerate the set of system ac-

In Step 5, there are many ways to use the attack classes ffy s tor Linux, and then identify all possible resources

do the comparison. One simple way is to count the NUM,a .y action might access or modify, we derived the set

ber of instances of each attack class in both versions an&lf resource types indirectly. We considered all resources

compare the numbers. The higher the count for a g_ivertnhat appear in the MITRE CVESs [31] as potential targets
attack class, the more the attack surface exposure is chf attack and identified their types accordingly.

that class. Another way is to incorporate the payoffs

identified in Step 3 as weights in these counts; €.9., W§, sten 2 we defined a set of properties over the resource
could count '_[he Welghted_sum of_ all instances in each atfypes identified in Step 1, and induced a type hierarchy
tack class with the same immediate supertype, and Con5 e the extended set of resource types. Every leaf node

pare .th? vgr_sions with respect to the supertype, rathqh this type hierarchy is an attack class, resulting in 14
than its individual attack class subtypes. In other words .. dlasses for Linux. Fig 1 depicts the type hierar-

the atkta(ik surface contrlbutlon of a resource W'th chy and the 14 Linux attack classes. For example, in
a}ztac classes);, 5, .., Sy as its subtypes is given by o ¢ yyne hierarchynobodyaccount< useraccount<
S n(S;) x w;, wheren(S;) is the number of instance of all_resourceandsymboliclink < all_resource We use

descriptive names for the types and subtypes to be sug-

i=1
the attack class; and.w'i is the payoff gs&gngd 1; in . gestive of the properties we used to induce the hierarchy.
Step 3. A more sophisticated comparison might take into

account the interactions between various attack classeﬁ1 Step 3, we used the history of attacks on Linux based

e.g., we can compare the number of sockets opened by, cvgs to assign payoffs to the attack classes identified
Services running asot and ignore the other sockets j, Step 2. We did not assign explicit numeric payoff val-
in the system. ues because we did not plan to use the numeric values in
Steps 4 and 5. Instead, we assumed a higher payoff for
an attack class if the resources of that attack class appear
a greater number of times in the CVEs. Note that count-
4.3 Reducing the Attack Surface in'g the number of times a system appears inthe CVEs is
different from counting the number of times each attack
class of the system appears in the CVEs. For example,
consider two versions, A and B, of a system having ten
attack classes and each appearing in 50 CVEs. Let two
Our formal model and measurement method suggestf the attack classes of version A appear in 25 CVEs
ways in which we can reduce the exposure of an attacleach, ten of the attack classes of version B appear in 5
surface: CVEs each, and the first two attack classes have lower



all_resource

user_id
- service setuid enabled. =root.
) ce_ l - — , . .
TCL;;)/‘;}%P ‘;{;,eg— flf’;l‘ql;f— running_ | |(setgid)_ local_ or_ unpassworded_| | nobody_ »};e[cék_ script_ dynamic_
socket | |endpomt!| | as rogf as_ root_ user_ group_id account account ermission| Lenabled| | webapge
= 4 = non—root| |program account =root_ p =
account

Figure 1: Linux Attack Classes: Attack Classes are represented by rectangular boxes.

payoffs compared to the remaining eight. Both A and B5.1.1 Linux Attack Classes
appear in same number of CVEs, but the attack surface
exposure of B is more than that of A with respect to the
ten attack classes. openTCP/UDP_socket: The services running on the
system open TCP/UDP sockets and listen for client re-
In Step 4, we chose 11 attack classes for attack surguests on them. Multiple sockets can be opened by a
face measurement out of the 14 identified in Step 2. Weservice and multiple services can share the same socket.
did not include three attack classes in our measuremerthis attack class is a subtype of the resource tjn-
since it was not possible to count the number of instancesel. CVE-2001-0309 describes an attack involving open
of each of them for all four versions of Linux. In Sec- sockets— since thanetd daemon does not properly
tion 5.2, we explain in more detail why we omitted theseclose sockets for internal services sucldagtime and
three attack classes. echo, an attacker can cause a denial-of-service attack
by opening a series of connections to these services.
In Step 5, we counted the number of instances of each of
the 11 attack classes for four versions of the Linux oper-openremoteprocedurecall(RPC).endpoint: Re-
ating system and compared the numbers to get a relativenotely accessible handlers for RPCs are registered in
measure of their attack surface. the system by RPC servers. This attack class is a sub-
type of the resource typghannel A remote attacker can
exploit an integer overflow vulnerability in tHeunRPC
xdr _array function described in CVE-2002-0391 to
5.1 Attack Classes execute arbitrary code on the system.

servicerunning_asroot: This attack class is a subtype
of the resource typeervice Examples of services run-
We identified the resources appearing in the publiclyning as root arecrond andtelnetd . CVE-1999-
known vulnerabilities reported in the CVEs and CVE 0192 describes a buffer overflow in thelnetd  dae-
candidates list of MITRE [31]. We obtained further in- mon which a remote attacker can exploit to geiot
formation about the vulnerabilities from the CERT Ad- privilege on the system.
visories [24], Debian Security Advisories [28], and Red
Hat Security Advisories [33] referenced in the CVESs . servicerunning_as non-root: This attack class is a sub-
We categorized the types of these resources into 14 atype of the resource typservice Examples of services
tack classes. We describe below each attack class amdnning as non-root argortpmap andrpc.statd
give an example (CVE) of a vulnerability of a resource CVE-2000-0666 describes a format string vulnerability
in that attack class. in the servicapc.statd ~ which a remote attacker can



exploit to execute arbitrary code on the system. attacker can exploit to obtain sensitive user information
via Javascript

setuid(setgidyoot program: Setuid root programs are

owned byroot and execute in the contextmjot in-  symboliclink: This attack class consists of all re-

stead of the user who invokes them. This attack class isources of typesymboliclink. When a program run-

a subtype of the resource typ&ecutable CVE-2000- ning asroot creates files iftmp without checking

0949 describes a heap overflow in the setuid root profor symlink , an attacker can create a symbolic link in

gramtraceroute  which local users can exploitto ex- /tmp before the program starts and hence can write to

ecute arbitrary commands on the system. sensitive files. CVE-2000-0728 describes a vulnerability
in thexpdf PDF viewer which local users can exploit

enabledlocal_user.account: This attack class is a sub- to overwrite arbitrary files via symlink attack.

type of the resource typeseraccount Many of the

attacks on Linux systems can be carried out only byhttpd_module: This attack class consists of all resources

local users. CVE-1999-0130 describes an exploit inof type httpd module CAN-2003-0789 describes a vul-

which local users can gairoot privilege by starting nerability involving handling of CGI redirect in the

Sendmail in daemon mode. mod.cgid module inapache which an attacker can
exploit to view sensitive information.

userid=root.or_group_id=root.account: This attack

class is a subtype of the resource tywpseraccount dynamicwehpage: This attack class is a subtype of

such that theuser id or group id of the user the resources typgeh page CVE-1999-0058 describes

account isroot (0) . These accounts are poten- a buffer overflow vulnerability in thephp program

tial targets of attack because of their enhanced privilegephp.cgi  which allowsshell access to a remote at-

CVE-2002-0875 describes a vulnerability in the daemonrtacker.

fam which unprivileged users can exploit to discover a

list of files accessible to th@ot group.

unpasswordechccount: This attack class is a sub- 9-1.2 Aftack Class Validation
type of the resource typaseraccountsuch that the

password of theuser account is set toblank . \ye optained 14 attack classes for Linux by identifying
CAN-1999-0502 describes the presence of a unix aCqye resources that appear in MITRE CVEs. These 14
count with default, null, blank or a missing password gy, ek classes should be complete enough to cover vul-
as a vulnerability of the system. nerabilities maintained in any other Linux vulnerability

i i database. Thus, toward a partial validation of our 14 at-
nobodyaccount: Nobody is a special user account cre- 5.\ ¢jasses, we recasted some of the reported vulnera-
ated in the system. This attack class is a sut_Jtype_ of thBjjities of Linux available at the Bugtraq database [21] in
resource typaiseraccountsuch that theuser id IS tarmg of our attack classes. If our 14 attack classes are
set tonobody . CAN-2002-0424 describes a vulnerabil- complete enough, then any vulnerability mentioned in

ity in e“”@!erd _running asnppody which I.oc.al USers Bugtrag should be covered by one of our attack classes.
can exploit to gaimobody privilege by modifying their

own.efingerd  file and runninginger For example, the vulnerability entry in the Bugtraq

) o . database with bugtraqgid 7769 [22] describes a format
weakfile_permission: This aftack class is a subtype of string vulnerability, stack overflow, and file corruption

the resource typ#le such that the access matrix entries in themod gzip module running in debug mode. The
of the file grant access rights to every user in the Systemy, et of the attack involving the vulnerability is the re-

CVE-2001-1322 describes a vulnerability xinted sourcemod.gzip and it is an instance of our Linux at-
(runs with a defaulimask 0) which allows local users - . clas$ittpd module

to read or modify files created by the programs running

underxinted  and not setting their saiemask. As another example, Bugtraqgid 8732 [23] describes

. led: Thi Kl : fth ASN.1 parsing vulnerabilities i©DpenSSL which a re-
scriptenabled: This attack class is a subtype of the re- e attacker can exploit to cause a denial-of-service or
source typeapplication such that the applications are y, ayacte arbitrary code on the system. The resources

enabled to execute scripts. Examples of such applicag ¢ are the targets of this attack are the applications such
tions are browsers and e-mail clients. CVE-2001-0745

. o ; asssh that use OpenSSlssh is an instance of our
describes a vulnerability iNetscape which a remote Linux attack classervicerunning as root



5.2 Attack Surface Measurements e Time-based comparison: We compare the attack
surfaces ofRH Facilities and RH Usedto moni-
tor the security level of a system as it changes over
We present the results of measuring the attack surface of  time.
following four versions of the Linux operating system.

e Debianis a Debian GNU/Linux 3.0r1 distribution 5.2.1 Debianvs. RH Default

obtained from Debian’s website [27].
As shown in Table 1RH Defaulthas higher counts in

 RH Defaultis a Red Hat 9.0 Linux distribution ob-  gach of five attack classe€Bgbianhas a higher count in

tained from Red Hat's website [32]. one attack class, and both have the same counts in each
of five attack classes. Hence the attack surface expo-
sure of Red Hat is greater than that of Debian. Debian is
perceived to be a more secure operating system and this
is reflected in our measurement. We believe that even
though the code base is the same for the two systems,
design choices play an important role in making a sys-
tem more or less secure.

e RH Facilitiesis a customized Red Hat 9.0 Linux
distribution installed by the Computing Facilities of
CMU School of Computer Science [25].

e RH Usedis an instance oRH Facilities after use
by a graduate student for three months.

We took measurements fBrebian RH Default andRH

Facilities the very day each system was installed. We5 2.2 RH Default vs. RH Facilities

did not modify any of these three systems in any manner

after installation. We took measurements Rid Used . o )

after three months of its installation. As described inAS shown in Table 1RH Facilities has higher counts
Step 5 of Section 5, we counted the number of instancel €ach of seven attack classé¥ Defaulthas higher

of each attack class in our measurement. The results §OUNtS in one attack class, and both have the same counts
our measurements are shown in Table 1. in each of three attack classes. The attack surface expo-

sure of the facilities distribution is more than that of the

For the weakfile_permissionattack class, we counted default distribution.

the number of file system objects with world-writable o ) _
permission. We did not install any web server on the I h€ facilities distribution is customized to make it more
system runningdebianand RH Defaultsince the sys- useful compared to the default distribution. For exam-
tem runningRH Facilities did not have a web server Pl€; it has theAFS file system installed. It has ser-
installed. Hence we did not count the numbers ofVices such adclaadmd, opshell, kopshell

instances of the attack classhttpdmodule and dy- andterad installed for remote management and net-
namicwehpage We did not count the number of in- work backup. Installing these features increases the
stances of the attack clasgmboliclink since it is im- ~ counts for the attack classegenTCP/UDP-sockeser-

practical to determine whether the programs running a/c&runningasroot, enabledlocal useraccount etc.
root check forsymlinks  before opening temporary OUr results show that the attack surface exposure has in-

files. creased with customization, thereby making the system
less secure.

Our metric and method give us different ways to com-
pare the security of different versions of a system:
5.2.3 RH Facilities vs. RH Used

e Default comparison: We compare the attack sur-
faces ofDebianandRH Defaultto measure the rel- AS shown in Table 1RH Usedhas higher counts in
ative security of different flavors (versions) of the €ach of four attack classes and both have the same
system. counts in each of seven attack classes. The used

version’s attack surface exposure is greater than the

e Customized usage-based comparison: We companaitially installed version. The three-month use of
the attack surfaces d®H Defaultand RH Facili-  the system increased the counts of the attack classes
tiesto observe the change in the security level of aopenTCP/UDP.socket servicerunningasroot, en-
system based on its customization. abledlocal_useraccount and weakfile_permission



Attack Class | Debian| RH Default | RH Facilities | RH Used|

openTCP/UDP.socket 15 12 40 41
openremoteprocedurecall(RPC)endpoint 3 3 3 3
servicerunning.asroot 21 26 29 30
servicerunning.as.non-root 3 6 8 8
setuid(setgidyoot_program 54 54 72 72
enabledlocal_useraccount 21 25 33 34
userid=root_or_group.id=root_account 0 4 3 3
unpassworde@ccount 0 0 2 2
nobodyaccount 1 1 1 1
weakfile_permission 7 7 21 37
scriptenabled 1 2 2

symboliclink * * * *
httpd.module - - - -
dynamicwehpage - - - -

Table 1: Attack surface measurement results

Our results show that the attack surface exposure has if~or example, initially a feature may be turned off but

creased over time making the system less secure. over time, the user might enable it, potentially increasing
its attack surface, making it just as insecure as a system
that initially has that feature turned on.

6 Discussion We also have caveats with respect to our specific results
for Linux.

In this section, first we make some qualifying remarksFirst, we chose 11 out of 14 attack classes in our at-
on our metric and Linux measurement results, and thettiack surface measurement and our results should be in-
we describe the advantages of our approach. terpreted in the context of these 11 attack classes. Sup-
pose version A is more secure compared to a version
B with respect to the 11 attack classes. If we were to
6.1 Caveats include the remaining three attack classes in the mea-
surement, version A may not be more secure, e.g., there
may be higher counts for these classes for A than for B.
We have some general caveats in using our attack surfaddoreover if the payoffs for these three classes are higher
metric in determining the relative security of different than for the 11 we counted, and we weighed our counts
versions of a system. by payoff, then A would look significantly worse than
B.

[ ] - . .
Our method measures the security (rUar_ungm Second, CMU School of Computer Science Computing
stance of a system. We are not measuring the sys- ... .

. . . acilities has replaced many standard services such
tem artifact (e.g., as manifest by its code), but rather

" 4 ; ) . astelnetd andrshd with local versions that use
a specific running version of it. Unlike a count of L o
. . . Kerberos for authentication and encryption in the
the number bugs in the code, it is a dynamic, not .~ "~ o .
. distribution RH Facilities These local versions are
static measure. .
perceived to be more secure than the standard ver-

e Our method measures the security of a system in &ions. Although we did not consider these security
given configuration A system typically has many enhancements in our measurement, here is how we
settings; any combination of those settings yields awvould: To account for the higher security level of Ker-
specific configuration. berized services, we would introduce a new predicate

kerberossupport: service— booleanto allow us to dis-
tinguish whether a service uskerberos . We could

Thus, it is important to realize that system’s security ;o this predicate along with the previously defined
level will change as its configuration changes over time.



predicateservicerunningasroot: service— boolean tem. We compare our generalization of this metric and
to define four distinct subtypes (attack classes) of thdts application to Linux in Section 7.1 and then compare
type service kerberizedservicerunning asroot, this metric to other security metrics in Section 7.2.

non-kerberizedservicerunning.as root, ker-
berizedservicerunning.as.non-root and  non-
kerberizedservicerunningas.non-root ~ We would 7 1 Attack Surface Metric

then assign lower payoffs to the attack classes whose
services us&erberos

Our work is inspired by Howard’s Relative Attack Sur-
face Quotient (RASQ) measurements for the Windows
operating system [10] further elaborated by Pincus and
Wing [11]. Howard, Pincus and Wing give a list of

The use of attack surface as a security metric and ouprenty atack classes for the Microsoft Windows oper-

method of measuring the attack surface have the follow21Ng System and compare seven versions of Windows

- [11]. The contributions of this paper as compared to the
Ing advantages. earlier work done for Windows [10, 11] are three-fold:

6.2 Advantages

First, our metric is a relative measure of security. It is
difficult to identify a yardstick for measuring a system’s
absolute security. Instead, we find it more practical and
more useful to compare the security of two versions of
a system with respect to a given set of attack classes.
Our metric can be used to determine whether a new re-
lease of a system is more secure than an earlier version.
By measuring the attack surfaces of different versions,
system designers could potentially reduce the number of
security patches that are released after the deployment
of a new version in the field.

e We define the notion of attack, attack surface, and
attack class more formally and in terms of a dif-
ferent state machine model. The significant dif-
ferences in oustate machine modelre in mak-
ing the access matrix explicit and in distinguishing
the system as an entity different from its principals.
The significant contributions in owutefinitionsare
in further dividing types of resources into attack
classes by introducing a type hierarchy and distin-
guishing among the attack classes based on their

Second, our metric can be used to track the security level attackability.

of the system over time by measuring the attack surface
at regular intervals. We can observe the change in secu- e In Section 4, we present methodfor applying
rity level as different resources are turned on and off as  our metric so that others can use the notion of at-

required.

Finally, our method of measuring the attack surface
leverages our knowledge of and experience with the sys-
tem. Use of specific domain knowledge plays an im-

tack surface for any system. The method requires
identifying resources that are potential targets of at-
tacks and identifying interesting properties of the
resources to characterize their attackability. We
also allow users to specify a payoff function for at-

tack classes, to help determine what attack classes
to use for comparing two versions of a system.

portant role in Steps 2-5 outlined in Section 4.2. Our
method gives us the flexibility to refine upon our choice
of properties that induce our type hierarchy, our as-
signment of payoffs, and our comparison method. We
would make these refinements because of newly ac-
quired knowledge and experience, changes in the threat
model, or changes in technology.

e We apply our method and metricltinux. The con-
crete contributions are in identifying the 14 attack
classes for Linux and in measuring the attack sur-
face of four different versions of Linux.

We compare the attack classes of Windows and Linux in
Table 2. There exists a one-to-one mapping between ten
attack classes of Windows and Linux. The remaining
ten attack classes of Windows have no corresponding
The use of attack surface as a security metric for any sysequivalents in Linux. Similarly the remaining four at-
tem is a novel idea. Michael Howard of Microsoft first tack classes of Linux have no corresponding equivalents
introduced it informally for the Windows operating sys- in Windows.

7 Related Work



| Attack Class|| Windows | Linux \

1 Open sockets openTCP/UDP.socket

2 Open RPC endpoints openremoteprocedurecall(RPC)endpoint
3 Services running as SYSTEM | servicerunning asroot

4 Enabled accounts enabledlocal_useraccount

5 Enabled accounts in admin grodpuserid=root_or_group.id=root_account

6 Guest account enabled unpasswordegccount

7 Weak ACLs in FS weakfile_permission

8 JScript enabled scriptenabled

9 Active Web handlers httpd.module

10 Dynamic web pages dynamicwehpage

Table 2: Comparison of Windows and Linux Attack Classes

7.2 Other Security Metrics tem by estimating the effort spent by an attacker to cause
a security breach in the system and the reward associ-
ated with the breach. Alves-Foss et al. [1] use the Sys-

. , tem Vulnerability Index—obtained by evaluating factors

Many have done work in the area of detection of bugsg,p, 45 system characteristics, potentially neglectful acts

at the code level [8, 9, 19, 20]. Using bug counts as,4 notentially malevolent acts—as a measure of com-
a security metric has the following disadvantages: (1) uter system vulnerability. Voas et al. [18] propose the

the bug detection process may miss some bugs and Mgyinimym-time-to-intrusion (MTTI) metric based on the

ra|3ﬁ false posmv;a]s, aﬂd (2) equal importance is g'V?'bredicted period of time before any simulated intrusion
to all bugs, even though some bugs are easier to exploflyy take place. MTTI is a relative metric that allows the

than others. users to compare different versions of the same system.
L Ortalo et al. [16] model the system as a privilege graph
Many organlzat_mns, such as CERT [24] and MITRE [6] exhibiting its vulnerabilities and estimate the effort
[31], and websites, such as SecurityFocus [21], trackyont by the attacker to attack the system successfully,
vulnerabilities found in various systems. Counting the o, iting these vulnerabilities. The estimated effort is a
number of times a system appears in these bulletins i§,o ¢ re of the operational security of the system. These
not an ideal metric because it ignores the Specific sysy o focus on the vulnerabilities of a system as a mea-
_tem configuration that gave rise to the vulnera_k_)ility, andgre of its security, where as we use the notion of the
it does not capture a system’s future attackability. attackability of various resources of the system as a mea-

L sure of its security.
Our approach lies in between these two approaches: Itis

at a higher level abstraction than the code level, implic-

itly giving importance to bugs based on ease of exploit.

Itis at a lower level of abstraction than the entire system, .
linking vulnerabilities to specific system configurations. 8~ Conclusions

Browne et al. [5] give a mathematical model to reflect
the rate at which incidents involving exploits of vulnera- Our state machine model is general enough to model the
bility are reported to the CERT. Beattie et al. [3] give behavior of the system, the threat, the administrator and
a model for finding the appropriate time for applying the users on the system. Our attack surface measurement
security patches to a system for optimal uptime. Bothmethod can be applied to any system. Our application of
of these studies focus on vulnerabilities with respect toour metric and method to Linux give results that con-
their discovery, exploitation and remediation over time,firm perceived beliefs about the relative security of four
rather than a single system’s collective points of vulner-versions of the Linux operating system.
ability.

Measurement of security, both quantitatively or qualita-
There has been some work done in the area of quantitdively, has been a long-standing challenge to the commu-
tive modeling of the security of a system. Brocklehurstnity. We view our work as a first step towards a meaning-
et al. [4, 15] measure the operational security of a sysful and practical metric for security measurement (e.g.,



see CRA Grand Challenge # 3 [26]). We believe that the
best way to begin is to start counting what is countable

and then use the resulting numbers in a qualitative man-
ner. We believe that our understanding over time would

[6]

lead us to more meaningful and useful quantitative met-
rics for security measurement.
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Microsoft Security Bulletin MS02-005 The effect of executing CREATDOCUMENT is to
create a web page with an embedded object on the web
server. The effect of DOWNLOAPD is to download a

To show the generality of our formal model and spec-web page from a web server. The effect of PARSE

ification approach, we describe an attack sequence exo display the embedded object in the web page being

ploiting a Windows vulnerability. It is one of the vulner- parsed if the length of the embedded objeckis512

abilities described in the February 11, 2002 Microsoftand execute the object’s extracted payload, otherwise.

Security Bulletin MS02-005 [30]. The processing of

an HTML document having an embedded object by theNow we give an example of attack on the System ex-

MSHTML parser involves a buffer overrun. The adver- ploiting the buffer overrun. We assume that the user has

sary can exploit this vulnerability to execute arbitrary mapped the web servé¥' S to security zoneZ on the

code in the security context of the user. system, and has enabled the option to run ActiveX con-
trols in zoneZ. Informally, the adversary’s goal is to

In the specifications of the actions below, we assume thexecute some arbitrary codg; executablein the sys-

typewehserverhas a functiomakedoc: wehserverx  tem; formally, we represent this Goal as the predicate

emhobj — wehpageto create a web page with an em- E.pre = E.post. The attack on the System consists of

bedded object and a functiadd page: webserverx  the sequence of three action executions.

wehpage— wehserverto add a page to the web server.

The typeweh pagehas a functiorget obj: weh page— - _

emhobj which returns the object embedded in the web  {IWS : web_server € e A3IE : browser € e A

page. The typemhobj has a functiodength: embobj _ IMSHTML : parser € e A\

— int that returns the length of the embedded object. 37 : security_zone € e AN3X : emb_obj € e A
The typebrowser has a functiondload: browser x length(X) > 512 A
wehserver— wehpageto download a web page from Z = get_security zone(I1E,WS) A

a web server. It also has a functigetsecurityzone: roactivex(Z)}

browserx weh server— securityzoneto get the secu- CREATE DOCUMENT, (WS, X)

rity zone to which the web server is mapped on the sys- D = DOWNLOAD (WS, IE)

tem. The typesecurityzonehas a functiorr_activex: PARSE;(MSHTML, D, Z)
securityzone — booleanthat returns true if the user {3E : executable . E.pre = E.post}

has enabled the option to run ActiveX controls in the
security zone; false, otherwise. The typarserhas a
function display: parserx emhobj — unit to display
the embedded object and a functintioad: parser x
emhobj — executablgo extract the payload from the
embedded object.

Since the length of the object, X, embedded in the web
page is greater than 512, the second conjunct of the post-
condition of PARSE holds; thus Goal of the adversary

is achieved at the end of the attack.

action CREATEDOCUMENT,(W: web.server,
X: emh.obj)

pre true

postW’ = add_page(W, make_doc(W, X))

action DOWNLOAD (W: web_server,
B: browser): D: webpage

pre true

postD = dload(B,W)A D € ¢

action PARSE;(M: parser, P: welpage,
Z: securityzone)
pre true
post3X . X = get_obj(P) A r_activex(Z) =
[(length(X) < 512 = display(M, X)) A
(length(X) > 512 =
JE . (E = zload(M, X) =
E.pre = E.post))]



