
Computational Thinking

Jeannette M. Wing

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213-3890

wing@cs.cmu.edu

November 25, 2005

A Vision for the 21st Century

Here is my grand vision for the field:

Computational thinking will be a fundamental skill used by everyone

worldwide by the middle of the 21st Century.

To reading, writing, and arithmetic, add computational thinking to every

child’s analytical ability. Imagine! And just as the printing press facilitated the

spread of the 3 R’s, what is appropriately incestuous about this vision is that

computing and computers will facilitate the spread of computational thinking.

Examples of Computational Thinking1

What do I mean by computational thinking? Computational thinking is taking

approaches to solving problems, designing systems, and understanding human

behavior that draw on the concepts fundamental to computer science. Compu-

tational thinking includes a range of “mental tools” that reflect the breadth of

our field.

When faced with a problem to solve, we might first ask “How difficult would

it be to solve?” and second “What’s the best way to solve it?” Our field has solid

theoretical underpinnings to answer these and other related questions precisely.

Stating the difficulty of a problem takes into consideration the underlying power

of the machine— the computing device that will run our solution. We must

consider the machine’s instruction set, its resource constraints, and its operating

environment. In solving a problem efficiently, we can further ask whether an

approximate solution is good enough, whether we can use randomization to our

advantage, whether false positives or false negatives are allowed. Computational

thinking is reformulating a seemingly difficult problem into one we know how

to solve, perhaps by reduction, embedding, transformation, or simulation.

1Please send me your favorite examples of computational thinking!

1



Computational thinking is thinking recursively. It is parallel processing.

Computational thinking is type checking, as the generalization of dimensional

analysis. It is recognizing both the virtues and dangers of aliasing, i.e., someone

or something having more than one name. It is recognizing both the cost and

power of indirect addressing and procedure call. It is judging a program not

just for correctness and efficiency, but for its esthetics; and a system’s design,

for its simplicity and elegance.

Computational thinking is using abstraction and decomposition when tack-

ling a large complex task or designing a large complex system. It is separation

of concerns. Computational thinking is choosing an appropriate representa-

tion for a problem or modeling the relevant aspects of a problem to make it

tractable. It is using invariants to describe a system’s behavior succinctly and

declaratively. It is having the confidence that we can safely use, modify, and

influence a large complex system without understanding every detail of it. It

is modularizing something in anticipation of multiple users or pre-fetching and

caching in anticipation of future use. Computational thinking is thinking in

terms of prevention, protection, and recovery from worst-case scenarios through

redundancy, damage containment, and error correction. It is calling gridlock

deadlock and contracts interfaces. It is learning to avoid race conditions when

synchronizing with each other.

Computational thinking is using heuristic reasoning to discover a solution.

It is planning, learning, and scheduling in the presence of uncertainty. It is

search, search, search—resulting in a list of webpages, a strategy for winning

a game, or a counterexample. Computational thinking is thinking about ways

to use massive amounts of data effectively. It is making tradeoffs between time

and space, between processing power and storage capacity.

Here are some real-world examples: When your daughter goes to school in

the morning, she puts in her backpack the things she needs for the day. That’s

pre-fetching and caching. When your son loses his mittens, you suggest that he

retrace his steps. That’s backtracking. At what point do you stop renting skis

and buy yourself a pair? That’s on-line algorithms. Which line do you stand

in at the supermarket? That’s performance modeling for multi-server systems.

Why does your telephone still work during a power outage? That’s independence

of failure and redundancy in design. How do CAPTCHAs authenticate humans?

That’s the difficulty of solving hard AI problems to foil computing agents.

Computational thinking will have become ingrained in our lives when words

like “algorithm” and “pre-condition” are part of our vocabulary; when “nonde-

terminism” and “garbage collection” take on senses meant by computer scien-

tists; and when trees are drawn upside down.

Computational Thinking: Now and Tomorrow

We have already witnessed an influence of computational thinking on other

disciplines.

Machine learning has transformed statistics. Statistical learning is being

used for problems on a scale, in terms of both data size and dimension, that

2



were unimaginable years ago. Statistics departments are now hiring computer

scientists. Schools of computer science are embracing existing or starting their

own statistics departments.

Our big bet in computational biology is our field’s belief that biologists can

benefit from computational thinking. Our contribution to biology goes beyond

searching through large amounts of sequence data looking for patterns. It is the

hope that our data structures and algorithms—our computational abstractions

and methods—can represent the structure of proteins in ways that elucidate

their function. Computational biology can change the way biologists think.

Similarly, computational game theory can change the way economists think;

nanocomputing, chemists; quantum computing, physicists.

The boldness of my vision is that not only will computational thinking be

part of the skill set of other scientists, but it will be part of everyone’s skill set.

The analogy is: ubiquitous computing is to today as computational thinking

is to tomorrow. Ubiquitous computing was yesterday’s dream now becoming

today’s reality. Computational thinking is tomorrow’s reality.

Computational Thinking: What It Is and Is Not

Computational thinking:

• Conceptualizing, not programming: Suffice it to say that computer science

is not computer programming. Thinking like a computer scientist means

more than being able to program a computer.

• Fundamental, not rote skill: By fundamental skill, I mean something that

every human being needs to know to function in modern society. Rote

means a mechanical routine. Ironically, not until our very own field

solves the AI Grand Challenge of making computers think like humans

will “thinking” be rote. Perhaps that can be saved for the second half of

this century!

• A way that humans, not computers think: Computational thinking is a way

humans solve problems using computers. It is not trying to get humans to

think like computers. Computers are dull and boring. Humans are clever

and imaginative. We humans make computers exciting! Empowered with

computing devices, we can use our cleverness to tackle problems no one

would have dared to before the age of computing, and to build systems

with functionality limited only by our imagination.

• Complements and combines mathematical and engineering thinking: Our

field inherently draws on mathematical thinking given that, like all sci-

ences, our formal foundations rest on mathematics. Our field inherently

draws on engineering thinking given that we build systems that interact

with the real world. It is the constraints of the underlying computing de-

vice that force us to think computationally, not just mathematically. And

it is our capability to build virtual worlds that free us to engineer systems

beyond the physical world.

3



• Ideas, not artifacts: It’s not just the software and hardware artifacts we

produce that will be physically present everywhere and that will touch our

lives all the time, but it will be the computational concepts we use to ap-

proach and solve problems, to manage our daily lives, and to communicate

and interact with others.

• It’s for everyone, everywhere, all the time. Computational thinking will

be a reality when it is so integral to human endeavors that it disappears

as an explicit philosophy.

Why This Vision is Timely

Today the general public has a misperception of what computer science is all

about. Many equate computer science with computer programming. Parents

see a narrow range of job opportunities for their children if they major in com-

puter science. Many people think the fundamental research is done; only the

engineering is left.

Computational thinking is a grand vision to guide us as we act to change

society’s image of our field. We especially need to reach the K-12 audience—

teachers, parents, and students. Here are some messages to send:

• Our field continues to expand, not just as we collaborate with more and

more other disciplines, but also as we gain a deeper understanding of

our own discipline. There remain intellectually challenging and engaging

scientific problems to be understood and solved. The problem space and

solution space are bound only by our own curiosity and creativity.

• One can major in computer science and do anything. One can major

in English or mathematics and go on to a multitude of different careers.

Ditto computer science. One can major in computer science and go onto

a career in medicine, law, business, politics, any science or engineering,

and even the arts. More obviously, the interdisciplinary nature of our field

means majoring in computer science enables a student to launch a career

in a different discipline or at the boundaries of many.

• Studying computer science empowers people with a way of thinking.

Please join us at Carnegie Mellon in making computational thinking com-

monplace!

4


