Compressed Regression

John Lafferty, Larry Wasserman, Shuheng Zhou*

School of Computer Science
Carnegie Mellon University

*Department of Statistics
University of Michigan
Basic Problem

Motivation: Scalability and privacy
Results

\[\begin{bmatrix} \text{compressed} \\ m \times 1 \end{bmatrix} = \begin{bmatrix} \text{random matrix} \\ m \times n \end{bmatrix} \begin{bmatrix} X \\ n \times p \end{bmatrix} \begin{bmatrix} \beta \\ p \times 1 \end{bmatrix} + \begin{bmatrix} \text{unknown} \\ n \times 1 \end{bmatrix} \]

- Bounds on number of projections for accurate estimation
- Analysis of risk consistency
- Upper bounds on information rate of compressed data
Time

52.5 minutes = one μ-century
Goal for this talk: $\frac{1}{2} \mu$-century
Linear Regression

\[
\begin{bmatrix}
Y \\
n
\end{bmatrix}
=
\begin{bmatrix}
X \\
n \times p
\end{bmatrix}
\begin{bmatrix}
\beta \\
p
\end{bmatrix}
+
\begin{bmatrix}
\epsilon \\
n
\end{bmatrix}
\]

Without compression

- The design matrix \(X \) is \(n \times p \), where \(p \) grows with \(n \)
- The response vector \(Y = X\beta + \epsilon \) is in \(\mathbb{R}^n \). Lasso solves:

\[
(P0) \quad \min \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda_n \|\beta\|_1
\]
Compressed Linear Regression

$$\begin{bmatrix} \mathbf{y} \\ m \end{bmatrix} = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{m\times p} \begin{bmatrix} \beta \\ p \end{bmatrix} + \begin{bmatrix} \mathbf{e} \end{bmatrix}_m$$

Let $\Phi_{m\times n}$ be a (hidden) random Gaussian matrix. Observe

- compressed design matrix $\mathbf{x} = \Phi X \in \mathbb{R}^{m \times p}$ and
- compressed response $\mathbf{y} = \Phi Y = \Phi X \beta + \Phi \epsilon \in \mathbb{R}^m$.

$$(P1) \quad \min \frac{1}{2m} \| \mathbf{y} - \mathbf{x} \beta \|_2^2 + \lambda \| \beta \|_1$$

- **Complication**: elements in noise vector $\epsilon = \Phi \epsilon$ not i.i.d.
Sparsistency: Model selection consistency

Given the set of optimal solutions Ω_m to (P1)

$$\Omega_m = \arg \min_{\beta \in \mathbb{R}^p} \frac{1}{2m} \|Y - X\beta\|_2^2 + \lambda_m \|\beta\|_1$$

Definition: A set of estimators Ω_m is **sparsistent** if

$$\mathbb{P}(\exists \beta_m \in \Omega_m, \text{ s.t. } \text{supp}(\beta_m) = \text{supp}(\beta)) \to 1 \text{ as } m \to \infty.$$

Stronger condition: sign consistency

$$\mathbb{P}(\exists \beta_m \in \Omega_m \text{ s.t. } \text{sign}(\beta_m) = \text{sign}(\beta)) \to 1 \text{ as } m \to \infty.$$
Sparsistency: S-Incoherence

Sign consistency for compressed sparse linear regression is possible when the design matrix \mathcal{X} is “sufficiently nice”

Let β be the true model, $S = \text{supp}(\beta)$, and $S^c = \{1, \ldots, p\} \setminus S$

S-Incoherence:

$$\left\| \frac{1}{n} \mathcal{X}_{S^c}^T \mathcal{X}_S \right\|_\infty + \left\| \frac{1}{n} \mathcal{X}_S^T \mathcal{X}_S - \mathcal{I}_{|S|} \right\|_\infty \leq 1 - \eta, \quad \text{some } \eta \in (0, 1]$$
Sparsistency Result

Theorem. Suppose that before compression, we have

\[Y = X\beta^* + \epsilon, \quad \text{where} \quad \epsilon \sim N(0, \sigma^2 I_n), \]

- \(X_{n \times p} \) is \(S \)-incoherent, where \(S = \text{supp}(\beta^*) \), \(\rho_m = \min_{i \in S} |\beta_{i}^*| \), and
- columns \(\|X_j\|_2^2 = n, \forall j \in \{1, \ldots, p\} \).

Let \(s = |S| \) and \(\Phi_{m \times n} \) consist of i.i.d. \(\Phi_{ij} \sim N(0, \frac{1}{n}) \). Suppose that

\[
\left(\frac{16C_1s^2}{\eta^2} + \frac{4sC_2}{\eta} \right) \log 2pn^2(s + 1) \leq m \leq \sqrt{\frac{n}{16 \log n}}
\]

with \(C_1 \approx 2.5044 \) and \(C_1 \approx 7.6885 \), and \(\lambda_m \to 0 \) satisfies

\[
\frac{m\eta^2\lambda_m^2}{\log(p - s)} \to \infty, \quad \text{and} \quad \frac{1}{\rho_m} \left\{ \sqrt{\frac{\log s}{m}} + \lambda_m \left\| \left(\frac{1}{n} X_S^T X_S \right)^{-1} \right\|_{\infty} \right\} \to 0.
\]

Then the compressed Lasso is sparsistent.
Sparsistency: Ingredients

By excluding the bad events, we can consider $X_{m \times p}$ as a fixed matrix

- Similar conditions imposed on deterministic design matrix X for (P0) in Wainwright (2006), and Zhao and Yu (2007).

- The S-Incoherence condition is stronger.

- But we are in (P1), where $\varepsilon = \Phi \epsilon$, unlike ϵ in (P0), is not i.i.d.

Concentration Lemma. $\mathbb{E}(\Phi \Phi^T) = I$; with high probability, each entry of $\Phi \Phi^T - I_{m \times m}$ is at most $O\left(\sqrt{\frac{\log n}{n}}\right)$.

- Important in adapting Wainwright’s proof in the (P0) setting for a fixed design to the compressed setting of (P1).
Cost of Compression

\[n = \Omega(s \log p) \quad \text{(uncompressed)} \]
\[m = \Omega(s^2 \log pn) \quad \text{(compressed)} \]
Probability of correctly recovering true sparsity pattern, $p = 126, 256, 512$.

Compressed Lasso Sparsistency
Roughly speaking, persistence means that the procedure predicts well. Given a sequence of sets of estimators B_n, the sequence of estimators $\hat{\beta}_n \in B_n$ is called persistent (Greenshtein and Ritov, 2004) if

$$R(\hat{\beta}_n) - \inf_{\beta \in B_n} R(\beta) \xrightarrow{P} 0,$$

where $R(\beta) = \mathbb{E}(Y - X^T \beta)^2$ is the prediction risk of a new pair (X, Y).

- Linear model not assumed correct
- Answers the asymptotic question: How large may the set B_n be, so that it is still possible to empirically select a predictor whose risk is close to that of the best predictor in the set?
- Lasso is persistent when the order of magnitude for ℓ_1 radius L_n of B_n is restricted to $o\left((n/\log n)^{1/4}\right)$.
Compressed Lasso is Persistent

Theorem. Suppose $p = O(e^{nc})$, $c < \frac{1}{2}$ and $\log^2(np) \leq m \leq n$. Let

$$L_{n,m} = o \left(\frac{m}{\log(np_n)} \right)^{1/4}.$$

Then the sequence of compressed lasso estimators

$$\hat{\beta}_{n,m} = \arg \min_{\|\beta\|_1 \leq L_{n,m}} \|Y - X\beta\|_2^2$$

is persistent with respect to $B_{n,m} = \{\beta : \|\beta\|_1 \leq L_{n,m}\}$:

$$R(\hat{\beta}_{n,m}) - \inf_{\|\beta\|_1 \leq L_{n,m}} R(\beta) \xrightarrow{P} 0, \text{ as } n \to \infty.$$
Cost of Compression

For simplicity take $L_n = O(1)$, $L_{n,m} = O(1)$, $p = n^c$ and $m = \Omega(\log^2 n)$. Then

$$R(\hat{\beta}_n) - \inf_{\|\beta\|_1 \leq L_n} R(\beta) = O_P\left(\sqrt{\frac{\log n}{n}}\right)$$

$$R(\hat{\beta}_{n,m}) - \inf_{\|\beta\|_1 \leq L_{n,m}} R(\beta) = O_P\left(\sqrt{\frac{1}{\log n}}\right)$$

Ratio of compressed to uncompressed excess risks is $O(\sqrt{m/n})$.
Each point corresponds to the mean empirical risk, over 100 trials. For each trial, randomly draw $X_{n \times p}$ with $x_i \sim N(0, T(0.1))$, with $T(\rho)_{i,j} = \rho|i-j|$.

Compressed Lasso Persistence

$n=9000, p=128, s=9$
Privacy Analysis

General “matrix masking” takes the form $\mathcal{X} = AXB + C$

- Represents many possible schemes: subsampling, adding noise...
- Limited analysis of such schemes in privacy literature.
Multiple Wireless Antenna Model

Our setup corresponds to standard model for multiple antenna wireless communication (Marzetta and Hochwald, 1999).

- Have \(n \) transmitter and \(m \) receiver antennas over \(p \) time periods
- Allows model \(\tilde{X} = \Phi X + \Delta \)
- When capacity of channel decays to zero, little information is conveyed about original data \(X \) from the compressed data \(\tilde{X} \)
Privacy Analysis

Theorem. If $\mathbb{E}(X^2_j) \leq P$, the maximum information rate satisfies

$$r_{n,m} = \sup_{p(X)} \frac{I(X; \mathcal{X})}{np} \leq \frac{m}{2n} \log (2\pi e P)$$

- With $m = O(\log np)$ this gives the upper bound

 $$r_{n,m} = O\left(\frac{\log np}{2n}\right) \to 0$$

- If compression matrix Φ is “leaked,” compressed sensing may allow reconstruction of sparse variables.

- Average case analysis.
Summary of Tradeoffs

- Variable selection: extra factor of s in sample complexity
- Excess risk rates: $O(\sqrt{m/n})$ uncompressed to compressed
- Information per symbol: $O(m/n)$
Summary

• Compressing the design matrix across rows has little impact on effectiveness of sparse regression

• Expect similar results hold for nonparametric regression

• Privacy guarantees are information-theoretic, average case.