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Abstract

This paper presents a general approach to robust exe-

cution monitoring. The goal is to provide coverage for

many types of unexpected and unanticipated situations,

while at the same time enabling the robot to quickly de-

tect, and react to, speci�c contingencies. The approach

uses a hierarchy of monitors, structured in layers of in-

creasing speci�city. We present the general approach,

and show its application in the domain of indoor mobile

robot navigation.

Introduction

Mobile robots operating in the real world need very re-

liable navigation capabilities to operate autonomously

for long periods of time. Because it is almost impossi-

ble for the programmer to predict all the circumstances

that might be encountered, a mechanism to handle the

unexpected is required. We have developed an excep-

tion detection and recovery architecture for this pur-

pose. The architecture uses hierarchically structured

monitors. The upper layers of monitors are more gen-

eral: They detect large classes of exceptions, however,

they tend to be slow to react. The lower, more spe-

ci�c monitors use detailed knowledge of the domain to

quickly detect task-speci�c situations. The basic phi-

losophy is to use the general monitors to ensure cover-

age and then, based on experience, to add more speci�c

monitors to detect the exceptions faster and get more

information about the problem that causes the excep-

tions (for use in recovery).

For this paper, we take the role of execution monitors

to be to detect exceptions. An exception is de�ned as a

signi�cant di�erence between the observed state-of-the-

world and the expectation with respect to the nominal

situation. The idea is that such exceptions will usually

be associated with situations where the robot is stuck

or is performing poorly.

We can represent the set of all the robot's states as

in Fig. 1 where the exception space is the set of all the

possible exception states and the nominal space (dark

grey area) is the set of all the nominal states. The ex-

ceptions (represented as empty circles) are known in

advance (for example, we can expect that sometimes

the robot can �nd a blocked corridor). There are also

exceptions that we do not anticipate and therefore we

only know about them when the robot gets stuck in

that situation. These exceptions are represented with

black ellipses; the nominal situations are represented

with empty squares. The goal, then, is to create exe-

cution monitors that cover the exception space as com-

pletely as possible, while still providing rapid detection

of speci�c exceptional situations.

The di�culty is that there may be a large number of

possible exceptions, and many of them may not even be

anticipated by the system developer. To address this,

we set up monitors to detect the symptoms of excep-

tions, where a symptom is a task-speci�c manifestation

of poor performance. Depending on the metrics used

to measure performance, we can set up di�erent moni-

tors to look for di�erent symptoms. In navigation, for

example, one metric of performance is the time it takes

the robot to achieve its goal. Another measure is the

distance traveled by the robot. In the latter case, a

symptom will be that the robot is moving too slowly,

or not moving at all.

Every monitor is associated with a symptom or a set

of symptoms; These symptoms will cover a set of known

exceptions, and may also cover a set of unanticipated

exceptions. In Fig. 1 we represent the sets M0, M1, ...

as the set of states detected for monitors m0, m1, ....

Sometimes a symptom can also characterize a nominal

situation because the nominal and exception states are

too close and the symptom doesn't correctly split the

exceptional and nominal space. Monitors m0, m2, m4

and m7 show that situation. Finding good symptoms

that clearly split the exception and nominal states is

not easy (especially since the de�nition of \poor per-

formance" is somewhat subjective).

The set of monitors can be organized into a tree struc-

ture, from the more general to the more speci�c, where

\more general" monitors cover a larger area of the ex-

ception space. For example, the tree in Fig. 2 repre-

sents the monitors corresponding to Fig. 1. General

monitors are interesting because they detect many ex-

ceptions, but their disadvantages are that they may in-

clude more nominal situations, they usually take longer
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Figure 1: Exception space and subsets delimited by

symptoms.

to detect exceptions, and they do not provide much in-

formation about what the underlying problem was, for

use in recovery. For example, a widely applicable type

of general monitor is one that uses time as a symptom.

The monitor is set up to �re when the time spent on

the task is larger than the time the task needs in the

worst case. This is a very general monitor since it de-

tects almost all exceptions for all the tasks. However,

if the problem occurs at the beginning of the task, the

time from the problem's occurrence until the monitor

detects the exception could be quite high. In addition,

when the monitor �res one knows only that the task

has not been achieved; The monitor provides no other

information that might help in diagnosing the situation.

On the other hand, the monitors at the leaves of the

tree provide more information about the type of excep-

tion. Besides getting more informationabout the excep-

tion, the speci�c monitors detect the situation faster.

For these reasons, the more speci�c monitors are given

preference if they �re at the same time as a general

monitor. As an example, we use a speci�c monitor to

detect the situation when the robot keeps spinning in

the same position. That monitor counts the number of

times that the robot rotates in the same position. This

is a very speci�c monitor since it only detects that situa-

tion, however it can detect the situation faster and once

the monitor is �red, we know exactly what the problem

is so we can set up a special recovery algorithm for this

situation.

While the general monitors can often be de�ned

based on the task description and an a priori under-

standing of the environment, the need for the more

speci�c monitors is often not known until one runs the

robot for a while. For that reason, we start with the

general monitors and add new and more speci�c moni-

tors in order to detect the most commonexceptions dur-

ing the robot's life. While, eventually, we hope to have

the robot learn the speci�c monitors autonomously, for

now we hand-code the monitors and recovery proce-

dures.
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Figure 2: Monitor structure corresponding to Fig. 1.

Previous Work

Solutions to deal with errors depend strongly on the ar-

chitecture used in the navigation system. For instance,

error recovery is not used in pure reactive systems [1]

because the system basically reacts to events. In the

context of robot navigation, several architectures deal

with exceptions (errors) in di�erent ways [4] [10]. Mon-

itoring and recovery processes are responsible for veri-

fying that a robot is correctly executing its tasks, de-

tecting when is not and handling exceptions.

In some architectures governed by planning [3] [9] the

monitoring and recovery processes are used to check the

correct completion of each step of the plan. Our mon-

itoring and recovery architecture is independent of the

navigation architecture. Even in reactive systems, there

are always goals for the robot to accomplish, therefore

we can set up monitors to evaluate how the robot is

accomplishing the goal and check for some exceptions.

The symptoms are dependent on the architecture since

di�erent architectures have to deal with di�erent prob-

lems. Like other architectures, the architecture used in

our research combines reactive and deliberative behav-

iors.

The approach described here has roots in earlier work

with a previous navigation system [5]. The main di�er-

ences are that this approach is based on using a hier-

archy of monitors to ensure coverage of the exception

space, and focuses on symptoms (poor performance)

that are observable from task execution data.

Xavier

Xavier, the robot used in these experiments, is designed

with a layered architecture, consisting of task schedul-

ing, path planning, navigation, and obstacle avoidance

components [7]. This paper is mainly concerned with

monitoring at the path-planning and navigation layers.

Path planning uses a decision-theoretic generate, eval-

uate and re�ne strategy that is based on ideas from

sensitivity analysis [2]. It tries to �nd paths that have

the highest expected utility of travel, where utility is

inversely proportional to travel time, and the planner



takes into account the probability of the robot missing

openings and the probability of �nding blockages in the

environment.

Navigation is performed using Partially Observable

Markov Decision Process (POMDP) models [8]. The

navigation system creates a POMDP model from a

topological map of the building, augmented with ap-

proximate metric information. It takes the route pro-

duced by the path planner and creates a policy indicat-

ing how the robot should travel from each location. It

then uses odometry and senor readings (sonar and laser)

to update the probability distribution of the robot's po-

sition, and picks the action that has the highest total

probability mass.

System integration is performed using the Task Con-

trol Architecture (TCA), a general framework for co-

ordinating planning, sensing and real-time control [6].

TCA provides control constructs for inter-process com-

munication, task decomposition, task synchronization,

resource management, monitoring and exception han-

dling. One of its novel features is that monitors and

exception handlers can be incrementally added to the

system, without needing to modify existing code [5].

This provides support for the \structured control" de-

sign approach, where systems are developed by �rst im-

plementing behaviors that work in the nominal situa-

tion, and then incrementally adding on reactive behav-

iors that handle exceptions [6].

Although this POMDP-based navigation system is

fairly reliable (achieving its goals about 95% of the

time), there are still situations where it fails. In partic-

ular, if corridors are blocked, either temporarily (due

to closed doors or people crowded around the robot)

or permanently (due to structural changes in the en-

vironment), the POMDP-based navigation scheme will

often loop forever. Thus, the system still needs explicit

execution monitors to improve overall reliability.

Hierarchical Monitors for Navigation

The monitors we developed for Xavier are structured

as shown in Fig. 3. The monitors are implemented

as an independent process that uses TCA control con-

structs to coordinate with the executing navigation

tasks. In particular, we use the TCA \wiretap" mech-

anism [6] to determine when a new navigation task has

started/ended, which tells the monitor process when to

start/stop the set of monitors (except for the battery

monitor, which is always running).

In the next sections, we describe the di�erent symp-

toms used in the monitors, from the most general to the

most speci�c. Each monitor uses di�erent information

(distance traveled, time, etc.) to produce a series of

tokens that are used in the exception identi�cation and

recovery process (Section ).

Symptom: Too Much Time

The most general monitor detects when the task has

taken too long to complete. In fact, this timer moni-
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Figure 3: Xavier exception monitor architecture

tor can be used for most types of tasks, since the only

thing it needs to know about the task is the maximum

estimated time for task completion. We �rst calculate

the time that the robot needs to do this task, then add

some exception interval determined by time margin

(% over the estimated time) and set a monitor to be

�red at the end of this interval. In our case, travel time

is estimated based on statistics acquired from some 2000

runs that Xavier has made over the past two years.

The advantage of this monitor is that it has very

wide coverage: Most exceptional situations result in

long task achievement times. The disadvantage is that,

even in normal situations, the variance is usually high

(due to crowded environment, robot moving too slowly,

etc.). In particular, to avoid excessive false positives,

the monitor must be �red when the time spent on this

task is greater than the time the task needs in the worst

case. Also, the monitor may �re long after the problem

actually arises, for instance, if the problem occurs near

the beginning of a long task. For such reasons, we aug-

ment the timer monitor with additional, more speci�c,

monitors.

Symptom: Positional Error

Given that the robot is trying to follow a planned path,

a class of exceptions can be detected by calculating the

robot's expected position (assuming it travels at a con-

stant speed) and comparing it with the current position

(estimated by the POMDP navigation system). Situa-

tions that give rise to this symptom include where the

corridor is crowded, and so the robot must slow down,

where the robot misses a turn, and must circle back,

and where a passage is blocked.

The positional error monitor periodically (once per

second) updates the expected position (S) as if the

robot was moving without any problem. It is also nec-

essary to know the real position of the robot at the same

time. This is complicated by the fact that the POMDP

navigation system never knows the robot's position ex-

actly. Instead, we use the probability distribution P (s

i

)

over the Markov states that are mapped into di�erent



Figure 4: Map of the �fth 
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. Using both the expected posi-

tion and the probability distribution, we can de�ne the

positional error as:

error =
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; S) (1)

where d(S

i

; S)is the Manhattan distance between S

i

and S, and n is the number of nodes in the probability

distribution.
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Fig. 5 represents the error while the robot navigates

from position A to F in the �fth 
oor of Wean Hall

at Carnegie Mellon University (Fig. 4) using the path

A-B-C-D-E-F. The solid line represents the measured

error and the dashed represents the average error using

a window of ten samples.

There are several factors that contribute to the noisi-

ness of the graph. First, is the variability of the environ-

ment itself. Is almost impossible to predict the people

that the robot is going to �nd in the way and therefore

the time it is going to spend avoiding them. Second,

the frequency of the positional error monitor is double

the frequency of the update of the probability distri-

bution, so for every two consecutive error samples, the

distribution probability is the same but the expected

position is changed according with the average speed.

That is why the graph has a peak of every two samples.

Third, a characteristic of the POMDP navigation sys-

tem is that the probability distribution tends to spread

out when the environment is uniform, and then becomes

sharp again when the robot observes distinctive features

(such as corners and corridor intersections). While this

is desirable behavior for navigation, for our purpose it

produces undesirable 
uctuations in the positional error

measure.

1

Instead of selecting all points in the distribution prob-

ability, only the points with probability higher than a low

threshold are selected. That is the reason why in Equation

1 the division by

P

P

j

appears.
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Figure 5: Position error while navigating from A to F

The consequence of all these problems is that the

error is always accumulating as the robot is traveling.

That means that we can not use the absolute error alone

as a symptom of exceptional situations. However, what

we want to know is when the robot is not making any

progress at all, or when progress is really small.

It is possible to detect these situations using the

derivative of the error rather than the error itself.

We check for situations when the robot has made

only small progress during some constant time er-

ror interval. This means that the position monitor-

ing system reports a possible error when it detects an

increase of the average positional error greater than

max error during error interval seconds. To select

error interval there is a trade o� between fast detec-

tion of a blockage situation and mistakenly detecting

blockage situations. The value was selected empirically

to 20 seconds and the max error a little lower than

max error�average speed. Using the error in this

way, even though the robot is slow or there are some

sharp jumps in the error, the system does not detect an

exception unless it almost stops during error interval.

Sometimes, the expected robot position reaches the goal

location when the robot is actually still far from the

goal. In this case, once the expected position reaches

the end, the monitormerely looks for a constant average

error (meaning no progress) during error interval.

Figure 6 represents a typical example when the robot

�nds a blocked corridor. The change in positional error

is approximately the average robot speed and the sys-

tem detects an exception at time 73. At this point, the

system plans a new path (see Section ), and the robot

successfully continues to the goal.

Symptom: Excessive Turning

Another typical symptom of possible problems is when

the robot changes direction by 180 degrees. This some-

times occurs when the robot is confused about its posi-

tion, but more often occurs when the robot has to turn
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Figure 6: Error while navigating A-B-C-D-E-F with C-

D blocked and replanning through C-H-G-E-F

in a T-shaped intersection (such as B-C-D-F in Fig. 4),

but for some reason it misses turn (e.g., people may be

blocking the intersection). In such situations, the robot

travels forward until its POMDP models indicate that

it has gone too far, and then it turns around and heads

back. Under this circumstance, it is possible for the

robot to keep going back and forth inde�nitely unless

it sees an opening.

Since it is not uncommon for the robot to miss

an intersection once in a while (due to sensor noise),

we monitor for this situation by checking for a series

of 180 degree turns. We select the maximum num-

ber of times that the robot can miss the intersection

(max 180turns allowed) to be 3. While such situ-

ations can also be detected using the positional error

monitor, most of the time this monitor gives us a faster

detection and also better information about what is go-

ing on.

Symptom: Spinning in Place

This is one of the most speci�c monitors we have devel-

oped so far. While it is not very common, sometimes

the robot gets into a situation where it keeps spinning in

one place inde�nitely (we suspect this is due to a weird

interaction between certain con�gurations of obstacles

and the obstacle avoidance algorithm).

We set up a monitor to detect that situation using

as symptom the number of turns that the robot does

in the same position. This is a very speci�c monitor

since, as far as we know, its symptom correlates with

exactly one cause. This situation is also detected by the

positional error monitor, but this monitor can detect

the exception faster and, once the monitor is �red, we

know exactly what the problem is and we can execute

a special recovery algorithm for this situation.
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Figure 7: Battery level versus time with new batteries.

The data were taken from two situations: robot moving

all the time (with load) and with the robot still (without

load)

Symptom: Low Battery Level

We also implemented a monitor to avoid the situation

in which the robot runs out of power in the middle of

a task. The goal of this monitor is send the robot back

to the nearest recharge station (so far is only the lab)

before it will be in a situation where the battery level

is too low to return.

Since we want the monitor to �re when the robot still

has enough battery charge to return to base, we must

characterize the performance of the batteries over time.

At full charge, the batteries supply 56 volts; Empirically

we know that the robot starts having problems when

the voltage drops below 32 volts. We ran Xavier and

collected data for two situations (Fig. 7): (a) the robot

was moving until it ran out of power; (b) the robot

was still all the time (no load) until it ran out of power

(we also collected data with old batteries { the curves

have the same shapes, but the drop o� times are much

sooner).

From Fig. 7, we can see that is important take into

account the movement of the robot in order to calcu-

late the expected battery level. Therefore, to calculate

the battery level at the end of a task, it is necessary

to estimate the time that the robot needs to do the

task and which portion of this time it is going to be

moving. The monitor uses information from the plan-

ner to calculate the time running and time idle es-

timated that the robot needs to come back to the lab.

Using these estimates, the actual (measured) battery

level , and the information from the graphs shown in

Fig. 7, the system estimates the battery level end level

needed to �nish the task and return to the lab. To

avoid excessive computation, the monitor periodically

checks whether the battery level is below a constant

level batt level check, and only then does it check if
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the charge is enough to �nish the current task and come

back to recharge.

The time running, time idle and therefore the

end level are actually intervals with a maximum,min-

imum and average level instead of �xed values. This

way, depending on the end level, the battery status is

classi�ed as one of the four possible status according

with the Fig. 8.

Exception Identi�cation and Recovery

While our work to date has mainly focused on robust

execution monitoring, we have begun to use the infor-

mation produced by the monitors to identify possible

causes of the exceptions and to have the robot attempt

to recover autonomously.

Using all the information from the di�erent monitors,

the system attempts to determine what the problem is,

and how to recover from it. When the exception iden-

ti�cation procedure gets a new token from one of the

monitors described in the last section, it registers this

token and decides if there is a possible error, based on

the information from this new token. In case multiple

monitors send tokens simultaneously, preference is give

to monitors lower in the hierarchy, since they provide

more information about the possible cause of the prob-

lem.

While the timer monitor has wide coverage of the

exception space, its �ring gives little indication about

what the actual problem might be (in fact, this is pre-

cisely because it has wide coverage { almost anything

that goes wrong can trigger this monitor). In the ab-

sence of any other information, the best the robot can

do is to stop its task and report back failure to a human.

On the other hand, the \spin in place" monitor leads

to a very speci�c recovery action { merely stopping the

robot and turning in the direction of the largest free

space (based on sonar readings) is usually su�cient to

get Xavier back on track.

Similarly, the \battery level" symptom is identi�ed

with a particular problem. The recovery action, how-

ever, depends on the severity of the problem. This is

indicated by the type of token produced by the battery

monitor:

BATT OK: Nothing is done.

BATT LOW: Finish the actual goal, go to recharge.

BATT ALERT: Stop the robot, reset and replan to

go to recharge.

BATT ALARM: Stop the robot, reset and replan to

go to recharge.

For all other monitors, the problem is presumed to

be a blockage of some sort (this is admittedly a simplis-

tic approach, and we are working to incorporate more

sophisticated diagnoses of the possible causes for the

symptoms, for instance, by looking more closely to see

if there is really a blockage, or by relocalizing if the

probability distribution is too spread out). To recover

from a blocked path, the system must �rst determine

where the blockage may have occurred. To do this, the

exception recovery system gets a copy of the path ev-

ery time a new navigation task is started. During the

navigation, it keeps a record of which map arcs are tra-

versed, based on the changes to the Markov probability

distribution.

When the monitor triggers, the system �nds the last

arc on the path that has been traversed, and assumes

that the next arc on the planned path is the one blocked.

It then tells to planner to increase the probability that

that arc was blocked, and tries to reachieve the navi-

gation goal (assuming that the planner will produce a

di�erent path). Even if the wrong arc is blamed, the

robot will eventually keep replanning until it �nds a

traversable path, since the exception handler only mod-

i�es the traversal probability, but never actually elimi-

nates any arc from consideration.

Summary and Conclusions

We have presented a general approach to execution

monitoring that uses hierarchically structured monitors

to detect exceptions between the expected and observed

states of the world. The top-most, more general mon-

itors have wide coverage, but tend to yield little infor-

mation about the cause of the exception. More speci�c

monitors are used to quickly detect and react to partic-

ular classes of exceptional situations.

We presented the use of this approach in the con-

text of indoor mobile robot navigation. While we do

not have complete coverage of the exception space (for

instance, no on-board monitor can detect when all the

robot's computers crash simultaneously), the monitors

we have developed cover a very wide range of the excep-

tions that commonly occur in indoor navigation. Some

of these monitors need little domain information, and

were very easy to encode. Most were very task-speci�c,

and needed to be tuned for our particular robot and the

environment in which it normally operates (for instance,

battery characteristics, or average speed). While we



would like to learn such monitors automatically, our

experience indicates that it would be a di�cult task, in

general. For now, we continue to experiment with the

set of hand-coded monitors we have developed, and are

working on adding more sophisticated recovery strate-

gies.

In general, however, the approach of structuring the

monitors hierarchically has been a big bene�t in think-

ing about ways to detect both general and speci�c ex-

ceptions. We have con�dence that the approach will

scale well, and will be applicable to other dynamic do-

mains.
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