
Experience with Rover Navigation for Lunar-Like Terrains

Reid Simmons, Eric Krotkov, Lonnie Chrisman, Fabio Cozman, Richard Goodwin, Martial Hebert,

Lalitesh Katragadda, Sven Koenig, Gita Krishnaswamy, Yoshikazu Shinoda, and William Whittaker

The Robotics’s Institute, Carnegie Mellon University

Pittsburgh, PA 15213

Paul Klarer

Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Reliable navigation is critical for a lunar rover, both for

autonomous traverses and safeguarded, remote

teleoperation. This paper describes an implemented system

that has autonomously driven a prototype wheeled lunar

rover over a kilometer in natural, outdoor terrain. The

navigation system uses stereo terrain maps to perform

local obstacle avoidance, and arbitrates steering

recommendations from both the user and the rover. The

paper describes the system architecture, each of the major

components, and the experimental results to date.

Introduction
The lure of the Moon is strong — and humans are once

again responding to the challenge. One promising, near-

term scenario is to land a pair of rovers on the Moon, and

to engage in a multi-year, 1000 kilometer traverse of

historic sights, including Apollo 11, Surveyor 5, Ranger 8,

Apollo 17 and Lunokhod 2 [6]. In this scenario, the rovers

would be operated in either autonomous or safeguarded

supervisory control modes, and would transmit continuous

live video of their surroundings to operators on Earth.

While the hardware aspects of such a mission are

daunting — power, thermal, communications, mechanical

and electrical reliability, etc. — the software control

aspects are equally challenging. In particular, the rover

needs capabilities to enable driving over varied terrain and

to safeguard its operation. Previous experience with

planetary robots (in particular, Lunokhod 2 and the arm on

Viking) illustrated how laborious and unpredictable time-

delayed teleoperation is for remote operators. A better

mode of operation is supervised teleoperation, or even

autonomous operation, in which the rover itself is

responsible for making many of the decisions necessary to

maintain progress and safety.

We have begun a program to develop and demonstrate

technologies to enable remote, safeguarded teleoperation

and autonomous driving in lunar-like environments. In

particular, we are investigating techniques for stereo

vision, local obstacle avoidance, position estimation, and

mixed-mode operation (autonomous, semi-autonomous,

and teleoperated). The aim is to provide both the

technologies and evaluations of their effectiveness, in order

to enable mission planners to make informed cost/benefit

tradeoffs in deciding how to control the lunar rovers.

The research reported here is a descendant of our

previous work in rugged terrain navigation for legged

rovers [15, 16]. Other efforts have taken similar approaches

to navigation for wheeled planetary rovers [1, 3, 4, 5, 17],

including the use of obstacle avoidance using stereo vision.

Our work is distinguished by its emphasis on long-distance

traversal, mixed mode driving, and use of efficient stereo

vision using only general-purpose processors.

To date, we have concentrated on the autonomous

navigation techniques, and have demonstrated a system

that uses stereo vision to drive a prototype lunar rover over

a kilometer of outdoor, natural terrain. To our knowledge,

this is a record distance for autonomous cross-country

driving of a vehicle using stereo and only general-purpose

processors.

The issue of operating modes is important in order to

reduce the probability of operator fatigue and errors that

could be damaging to the rover. We are investigating issues

of mixed-mode operation, where a human operator and an

autonomous system each provide “advice” on how to drive,

with the recommendations arbitrated to produce the actual

steering commands to the rover. The idea is to provide a

more flexible mode of user interaction, one that utilizes the

strengths of both human and machine.

We have also focused on the problem of estimating the

rover’s position [10]. This is important for any mission, but

particularly one that involves long-distance navigation to

given sites. Our research on position estimation techniques

has concentrated on understanding and filtering sensors

such as gyros and inclinometers, using sensor fusion to

reduce uncertainty, and developing some novel techniques

that involve skyline navigation and Sun tracking [2].

The lessons learned to date are informing our next

round of development and experimentation. We are



working to demonstrate multi-kilometer autonomous

traverses and safeguarded teleoperation of up to 10 km,

while increasing the complexity of the terrain traversed and

the amount of time delay introduced in operating the rover.

The next section describes the rover that is currently

being used for our experiments. We then describe the

software system developed to drive the rover, and our

experimental results. Finally, we address work that is still

needed to enable a return to the Moon in this millennium.

The Ratler
While we are currently designing a new lunar rover

[7], we are using a vehicle designed and built by Sandia

National Laboratories [11] as a testbed to develop the

remote driving techniques needed for a lunar mission. The

Ratler (Robotic All-Terrain Lunar Exploration Rover) is a

battery-powered, four-wheeled, skid-steered vehicle, about

1.2 meters long and wide, with 50 cm diameter wheels

(Figure 1). The Ratler is articulated, with a passive axle

between the left and right body segments. This articulation

enables all four wheels to maintain ground contact even

when crossing uneven terrain, which increases the Ratler’s

ability to surmount terrain obstacles. The body and wheels

are made of a composite material that provides a good

strength-to-weight ratio.

Sensors on the Ratler include wheel encoders, turn-

rate gyro, a compass, a roll inclinometer, and two pitch

inclinometers (one for each body segment). There is a color

Figure 1: The Ratler Rover

camera for teleoperation, and we have added a camera mast

and four black-and-white cameras for stereo vision (only

two of which are currently being used). On-board

computation is provided by a 286 and a 486 CPU board,

connected by an STD bus, which also contains A/D boards

and digitizer boards for the stereo cameras.

The Navigation System
Figure 2 presents a block diagram of the overall

navigation software system. Due to power limitations, and

for ease of development and debugging, the system is

currently divided into on-board and off-board components,

communicating via two radio links for video (2.3 GHz) and

data (4800 baud). The on-board computers handle servo

control of the motors and sensor data acquisition. The other

components are run off board, on two Sun workstations

(SPARC 10’s at 11 MFLOPS).

Each component is a separate process, communicating

via message passing protocols. The on-board and off-board

controllers communicate over a serial link using the RCP

protocol developed at Sandia. The rest of the components

communicate via the Task Control Architecture (TCA).

TCA is a general-purpose architecture for mobile robots

that provides support for distributed communication over

the Ethernet, task decomposition and sequencing, resource

management, execution monitoring, and error recovery

[12]. TCA connects processes, routes messages, and

coordinates overall control and data flow.

The basic data flow is that the stereo component

produces terrain elevation maps and passes them to the

obstacle avoidance planner, which uses them to evaluate

the efficacy of traveling along different paths. The arbiter

merges these recommendations with the desires of a human

operator to choose the best path to traverse (in autonomous

mode, there is no operator input). The arbiter then forwards

steering and velocity commands to the off-board controller,

which ships them to the on-board controller, which then

User
Interface

Figure 2: The Navigation System

Obstacle

Off-Board Arbiter

On-Board

RCP TCA

Radio Modem

Video Link

Controller

(Real Time)
Controller

TCA

Stereo
Avoidance

Planner

TCA

TCA

TCA



executes the commands and returns status and sensor

information.

While it is convenient to describe the data flow

sequentially, in fact all processes operate concurrently. For

example, while the obstacle avoidance planner is using one

stereo elevation map to evaluate paths, the stereo system is

processing another image. Likewise, the arbiter is getting

asynchronous path evaluations from the planner and user

interface, combining the most recent information to

produce steering commands. While it is admittedly more

difficult to develop and debug distributed, concurrent

systems, they have great advantages in terms of real-time

performance and modularity in design and implementation.

Controller

The on-board controller accepts velocity commands

for the left and right pairs of wheels. It uses feedback from

the wheel encoders to maintain the commanded velocity

over a wide range of terrain conditions. The on-board

controller also reports the various sensor readings

(compass, gyro, inclinometers, encoders). It expects a

“heart-beat” message from the off-board controller, and

will halt all motions if not received periodically.

The off-board controller accepts desired steering and

velocity commands, and converts these to wheel velocities

for the on-board controller. It provides for several safety

mechanisms, such as stopping the rover if roll or pitch

inclinometers exceed certain thresholds or if it does not

receive a new command before the Ratler has traveled a

specified distance.

The controller also merges the sensor readings to

estimate the position and orientation of the rover. In

particular, extensive filtering and screening is performed

on the data to reduce noise and eliminate outliers. For

example, the compass signal is corrupted by random noise.

Based on a spectral analysis of the data, which revealed a

cut-off frequency of 0.25 Hz, we implemented several low-

pass filters (Butterworth and Bessel). These are effective in

suppressing the noise, although they also introduce a 2-3

cycle delay between the filtered value and the signal.

Stereo

The stereo component used by Ratler takes its input

from two black-and-white CCD cameras with auto-iris, 8

mm lenses, mounted on a motion-averaging mast. Its

output is sets of (x,y,z) triples, given in the camera

coordinate frame, along with the pose of the robot at the

time the images were acquired. Using the pose, the (x,y,z)

values are transformed into world coordinates to form a

(non-uniformly distributed) terrain elevation map. To

speed up overall system cycle time, stereo can be requested

to process only part of the image, and that at reduced

resolution (skipping rows and columns in the image).

The stereo images are first rectified (Figure 3) to

ensure that the scan lines of the image are the epipolar lines

[12]. The best disparity match within a given window is

then computed using a normalized correlation. Disparity

resolution is increased by interpolating the correlation

values of the two closest disparities. The normalized

correlation method is relatively robust with respect to

differences in exposure between the two images, and can

be used to produce confidence measures in the disparity

values.

Care must be taken to ensure that outlier values

(caused by false stereo matches) are minimized. Several

methods are used to achieve the level of reliability required

for navigation. One method eliminates low-textured areas

using lower bounds on the acceptable correlation values

and variance in pixel intensity. Another method eliminates

ambiguous matches (caused by occlusion boundaries or

repetitive patterns) by rejecting matches that are not

significantly better than other potential matches. Finally,

the values are smoothed to reduce the effect of noise. All

these methods help to produce elevation maps that

accurately reflect the actual surrounding terrain, with only

a few centimeters of error.

Obstacle Avoidance Planner

To decide where it is safe to drive, we have adapted

techniques developed in ARPA’s Unmanned Ground

Vehicle (UGV) program for cross-country navigation [8].

The basic idea is to evaluate the hazards along a discrete

number of paths (corresponding to a set of steering

commands) that the rover could possibly follow in the next

few seconds of travel. The evaluation produces a set of

“votes” for each path/steering angle, including “vetoes” for

paths that are deemed too hazardous. In this way, the rover

Figure 3: Rectified Stereo Images

RectifiedImages



steers itself away from obstacles, such as craters or

mounds, that it cannot cross or surmount.

The obstacle avoidance planner first merges individual

elevation maps produced by the stereo system to produce a

25 cm resolution grid map up to seven meters in front of the

rover. Map merging is necessary because the limited fields

of view of the cameras do not allow a single image to view

sufficient terrain. Currently, we use a rather simple

approach that transforms the new map based on the average

deviation of elevations between the new and old maps.

To make the stereo computation tractable, a small

segment of the stereo image is requested, at reduced

resolution. Experiments show that only about 2% of the

image is needed for reliably detecting features on the order

of 20 cm high. The planner dynamically chooses which

portion of the image that the stereo system should process,

based on the current vehicle speed, stopping distance, and

expected cycle time of the perception/planning/control

loop. Typically, stereo is asked for points lying from 4 and

7meters in front of the rover, at a 10 cm resolution.

To evaluate the potential steering commands, the

planner uses a detailed model of the vehicle’s kinematics

and dynamics to project forward in time the expected path

of the rover on the terrain. This produces a set of paths, one

for each potential steering direction (Figure 4). The planner

then evaluates, at each point along the path, the elevations

underneath the wheels, from which it computes the rover’s

roll and the pitch of each body segment. The overall merit

of a path depends on the maximum roll or pitches along the

path, together with how known is the underlying terrain.

The path evaluations are then sent to the arbiter module

(paths whose values exceed a threshold are vetoed), along

with the pose of the robot at the time of the evaluation.

Arbiter

The arbiter accepts path evaluations from other

components and chooses the best steering angle based on

those evaluations. This provides a straightforward way to

incorporate information from various sources (such as the

obstacle avoidance planner, user interface, route planner)

in a modular and asynchronous fashion [13].

Figure 4: Evaluating Potential Steering Directions

Each path evaluation consists of a steering angle,

value, and speed (Figure 5). If the value is “veto” (lightly

shaded in the figure) then the arbiter eliminates that

steering angle from consideration. Otherwise, it combines

the recommendations from all sources using a weighted

sum. Rather than choosing the arc with the largest value,

the arbiter finds the largest contiguous set of steering angles

whose values are all within 90% of the maximum value,

and chooses the midpoint of that set as the commanded

steering angle (for safety, the speed chosen is the minimum

recommended speed). The idea is to prefer wide, easily

traversable areas over directions that might be a bit more

traversable, but have less leeway for error if the rover fails

to track the path precisely. We have found this to be very

important in practice, as the robot’s dead reckoning and

path tracking ability are only fair, at best [9].

The path evaluations sent to the arbiter are also tagged

with a robot pose. If the tagged pose differs significantly

from the rover’s current pose, then those path evaluations

are ignored. If the evaluations from all the processes are

invalidated in this way, then the arbiter issues a command

to halt the rover. In this way, the arbiter safeguards against

other modules crashing, or otherwise failing to provide

timely inputs.

When operating in autonomous mode, the obstacle

avoidance planner occasionally cannot find any acceptable

path. This typically occurs when the stereo data is noisy or

when the robot turns and finds itself facing an unexpected

obstacle. To handle such situations, if the arbiter receives

several consecutive path evaluations that are all “vetoed,”

it will command the rover to turn in place by fifteen

degrees. This behavior continues until the planner starts

sending valid path evaluations again.

User Interface

Our user interface work has focused on facilitating

mixed-mode operation, where the human and rover share

responsibility for controlling the robot. The current

graphical user interface consists of an “electronic joystick,”

which utilizes the computer mouse to command the robot’s

direction and speed, and a number of textual and graphical

indicators of pertinent information, such as commanded

Planner User Commanded

Steering

Speed

Figure 5: Arbitrating User & Planner Commands



and instantaneous robot speeds, roll and pitches, position,

and status. Visualization of the terrain is provide by a color

camera mounted toward the rear of the Ratler, which is

transmitted to a monitor over the microwave radio link.

The user interface supports several driving modes. In

the direct teleoperation mode, the human has full control

over the rover — almost all safeguarding is turned off.

Direct teleoperation is necessary when the rover gets into

situations where the software would otherwise prevent

motion. For instance, there may be occasions where the

pitch limits must temporarily be exceeded to drive the

rover out of a crater. This mode would be reserved for

experienced drivers in exceptional situations.

On the other side of the spectrum, in the autonomous

mode the software system has complete control over the

robot, choosing the direction to travel based on the stereo

maps. While the majority of our experiments have

consisted in letting the robot “wander” autonomously,

while avoiding obstacles, we have done some experiments

that use a simple planner to add goal-directed input to the

arbiter, to bias the robot in a particular direction.

The third mode, safeguarded teleoperation, is seen as

the standard way in which the lunar rover will be operated.

In this mode, input from the human and the obstacle

avoidance planner are combined: the user presents a

desired direction to travel, and the obstacle avoidance

planner can veto it, causing the robot to refuse to travel in

that direction. The idea is that the software safeguards

should prevent the user from damaging the rover, but not

otherwise interfere with the control. This mode is

implemented by placing a Gaussian distribution over the

user’s arcs, centered at the desired heading (Figure 5), and

having the arbiter combine the user and planner inputs. If

the human chooses not to provide input, the arbiter just

considers the planner’s inputs. In this way, operator fatigue

can be reduced by letting the robot operate on its own when

it is in benign terrain, while still enabling the user to take

over control at any moment.

Experimental Results
We have done extensive testing of the system,

concentrating on autonomous navigation. Most of the

experiments were performed at a slag heap in Pittsburgh

(Figure 6), on an undulating plateau featuring some sheer

cliffs and sculpted features (mounds and ridges).

Early experiments tested the dead reckoning capability

of the system and its ability to avoid discrete obstacles.

After characterizing the response of the vehicle and

improving the position estimation [9, 10], the rover was

able to navigate hundreds of meters with minimal human

intervention. To date, our longest contiguous run has been

1,078 m, where 94% of the distance was traversed in

autonomous mode and the rest in direct teleoperation

mode. Average speed attained for that run was about

10 cm/s, although we have driven, with similar results, at

over twice that speed. In all, over 3000 stereo pairs were

processed and used by the planner for path evaluations.

The cycle time for stereo is about 1 second on a

SPARC 10, and cycle time for the obstacle avoidance

planner is 0.5 second (other computation times are

minimal). Since the largest latency is in acquiring and

transmitting image pairs (about 2 seconds), we are

investigating using wireless Ethernet to speed this up. The

overall cycle time, in which perception and planning is

concurrent, is about 3 seconds.

In other experiments, we tested the ability of the

arbiter to combine inputs from multiple sources: the

obstacle avoidance planner and either the user or a path-

tracking module. These experiences pointed out the need to

improve the arbitration model to choose more intuitive

steering commands (such as by biasing toward directions

that have recently been chosen). This is particularly

important when dealing with human operators, who need a

fairly predictable model of the system behavior in order to

feel comfortable and confident about interacting with it.

The experiments also pointed out the need to increase

the stereo field of view (by using two pairs of cameras),

make stereo and map merging more robust to sensor

uncertainty, request stereo data points more judiciously,

and improve dead reckoning accuracy.

Ongoing and Future Work
To achieve the ambitious goals of the mission scenario

(1000 km traverse over two years), we need to harden and

extend our techniques. Certain changes, such as those

described in the previous section, merely involve

incremental improvements. Other needed extensions are of

a more fundamental nature. One involves the addition of

Figure 6: The Ratler at the Pittsburgh Slag



short-range proximity and tactile sensors to provide more

reliable safeguarding. We have recently acquired a laser

range sensor that can provide coverage in front of the rover

at ranges of one to two meters, and are developing sensor

interpretation algorithms to detect impending hazards,

especially cliffs and other drop-offs. We are also

considering tactile sensors to detect high-centering

collisions with the underside of the rover.

We also plan to add more extensive internal

monitoring of the robot’s health and integrity. For example,

we will monitor battery voltage and motor currents, and

autonomously “safe” the vehicle if they exceed given

thresholds.

Our experimental work will take two directions: we

will continue to demonstrate and quantify autonomous

navigation capabilities using stereo, and we will investigate

more carefully issues of mixed-mode and safeguarded

teleoperation. This includes quantifying the performance

improvements gained by adding various technologies, such

as stereo-based driving, use of high-level command inputs,

etc. Our next major goal is a 10 km safeguarded

teleoperated traverse in rougher, more lunar-like terrain.

Conclusions
This paper has presented a system for autonomously

and semi-autonomously driving a prototype lunar rover in

natural, outdoor terrain. The navigation system uses a

combination of on-board and off-board computation to

control the vehicle, process stereo images, plan to avoid

obstacles, and integrate machine and human

recommendations regarding the travel direction. Although

the system uses mainly classical sensors and known

algorithms, it has achieved unprecedented results, enabling

long-distance (greater than 1 km) outdoor traverses. The

key contributions are in tailoring the general ideas to a

specific robot performing a specific task, and in

demonstrating practical and unprecedented performance.

Our experiments have demonstrated basic competence

in driving to avoid cliffs and mounds, but much more work

needs to be done in order to produce a system that can

behave reliably over many weeks and kilometers. In

particular, we have targeted the areas of safeguarding and

remote teleoperation as worthy of further investigation.

It is important to realize that safeguarding and

autonomous navigation can have profound impact on the

ease and reliability of remote driving of a lunar rover. On

the other hand, such systems admittedly add complexity to

the hardware and software requirements of a rover. We

need to perform careful experiments to quantify the value

added by these technologies, in order to demonstrate their

effectiveness for near-term lunar missions.

Acknowledgments

This research was partly sponsored by NASA, under

grants NAGW-3863 and NAGW-1175. We gratefully

acknowledge assistance from Ben Brown, Michel Buffa,

Yasutake Fuke, Luc Robert, and Wendy Amai.

References
[1] R. Chatila, R. Alami, et al. Planet Exploration by Robots:

From Mission Planning to Autonomous Navigation. In Proc.
Intl. Conf. on Advanced Robotics, Tokyo, Japan, Nov. 1993.

[2] F. Cozman and E. Krotkov. Mobile Robot Localization using
a Computer Vision Sextant. In Proc. IEEE Intl. Conf. on
Robotics and Automation, Nagoya, Japan, May 1995.

[3] J. Garvey, A Russian-American Planetary Rover Initiative,
AIAA 93-4088, Huntsville AL, Sept. 1993.

[4] E. Gat, R. Desai, et al. Behavior Control for Robotic Explo-
ration of Planetary Surfaces. IEEE Transactions on Robotics
and Automation, 10:4, Aug. 1994.

[5] B. Hotz, Z. Zhang and P. Fua. Incremental Construction of
Local DEM for an Autonomous Planetary Rover. In Proc.
Workshop on Computer Vision for Space Applications,
Antibes France, Sept. 1993.

[6] L. Katragadda, et al. Lunar Rover Initiative — Preliminary
Configuration Document, Tech. Report CMU-RI-TR-94-09,
Carnegie Mellon University, 1994.

[7] L. Katragadda, J. Murphy and W. Whittaker. Rover Configu-
ration for Entertainment-Based Lunar Excursion. In Intl.
Lunar Exploration Conference, San Diego, CA, Nov. 1994.

[8] A. Kelly. A Partial Analysis of the High Speed Autonomous
Navigation Problem. Tech Report CMU-RI-TR-94-16.
Robotics Institute, Carnegie Mellon University, 1994.

[9] E. Krotkov and M. Hebert, Mapping and Positioning for a
Prototype Lunar Rover. In Proc. IEEE Intl. Conf. on Robotics
and Automation, Nagoya, Japan, May 1995.

[10]E. Krotkov, M. Hebert, M. Buffa, F. Cozman and L. Robert.
Stereo Driving and Position Estimation for Autonomous
Planetary Rovers. In Proc. IARP Workshop on Robotics In
Space, Montreal, Canada, July 1994.

[11] J. Purvis and P. Klarer. RATLER: Robotic All Terrain Lunar
Exploration Rover. In Proc. Sixth Annual Space Operations,
Applications and Research Symposium, Johnson Space Cen-
ter, Houston TX, 1992.

[12]L. Robert, M. Buffa and M. Hebert. Weakly-Calibrated Ste-
reo Perception for Rover Navigation. In Proc. Image Under-
standing Workshop, 1994.

[13]J. Rosenblatt, DAMN: A Distributed Architecture for Mobile
Navigation, In AAAI Spring Symposium on Software Archi-
tectures for Physical Agents, Stanford CA, March 1995.

[14]R. Simmons. Structured Control for Autonomous Robots.
IEEE Transactions on Robotics and Automation, 10:1, Feb.
1994.

[15]R. Simmons, E. Krotkov, W. Whittaker, et. al. Progress
Towards Robotic Exploration of Extreme Terrain. Journal of
Applied Intelligence, 2, 163-180, 1992.

[16]D. Wettergreen, H. Pangels and J. Bares. Gait Execution for
the Dante II Walking Robot. In Proc. IEEE Conference on
Intelligent Robots and Systems, Pittsburgh PA, August 1995.

[17]B. Wilcox, L. Matthies, et al. Robotic Vehicles for Planetary
Exploration. In Proc. IEEE Intl. Conf. on Robotics and Auto-
mation, Nice France, May 1992.


