
Coordination for Multi-Robot Exploration and Mapping
Reid Simmons, David Apfelbaum, Wolfram Burgard1,

Dieter Fox, Mark Moors2, Sebastian Thrun, Håkan Younes

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
1Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany

2Department of Computer Science III, University of Bonn, 53117 Bonn, Germany

Abstract

This paper addresses the problem of exploration and
mapping of an unknown environment by multiple robots.
The mapping algorithm is an on-line approach to
likelihood maximization that uses hill climbing to find
maps that are maximally consistent with sensor data and
odometry. The exploration algorithm explicitly coordinates
the robots. It tries to maximize overall utility by minimizing
the potential for overlap in information gain amongst the
various robots. For both the exploration and mapping
algorithms, most of the computations are distributed. The
techniques have been tested extensively in real-world trials
and simulations. The results demonstrate the performance
improvements and robustness that accrue from our multi-
robot approach to exploration.

1 Introduction

Creating maps of the environment is a fundamental
challenge in mobile robotics. In general, to do so efficiently
requires good exploration strategies. In particular, the
robots need to know what areas are worthwhile to explore
and how to distribute themselves effectively in order to
thoroughly map previously unknown areas.

Most previous work in mapping dealt only with single
robots. There are, however, advantages in mapping with
multiple robots. The most obvious is that multiple robots
can often do the task in less time. This may not always
hold, however, due to interference between robots [6, 8].
Thus, it is important for the exploration strategies to keep
the robots relatively well separated. Another advantage is
that multiple robots may produce more accurate maps, due
to merging of overlapping information. This can help
compensate for sensor uncertainty and localization error,
especially where the robots have different sensor and/or
localization capabilities [7].

This paper presents techniques for coordinating multiple,
heterogeneous robots in their task of exploring and
mapping large, indoor environments. We consider two
coordination problems — creating a single global map
from the sensor information of the individual robots, and
deciding where each robot should go in order to create the
map most effectively. While solving the latter problem

optimally is intractable, we present a greedy approach that
performs quite well, in practice.

Our basic approach to both coordination problems is
similar: Distribute most of the computation amongst the
individual robots and asynchronously integrate their results
by performing some global computations over the data. For
instance, each robot processes its own laser data to create a
consistent local map. A central mapper module then
integrates the local maps to create a consistent global map.
The local mappers reduce uncertainty in the data,
principally by matching laser scans to decrease localization
error. The central mapper further improves the map
(minimizing localization error) by iteratively combining
data from the robots. This works under the assumption that
the robots know their pose relative to one another and have
access to high-bandwidth communication.

Similarly, our approach to coordinating exploration
combines distributed computation with global decision
making. The individual robots construct “bids,” which
describe their estimates of the expected information gain
and costs of traveling to various locations. A central
executive receives the bids and assigns tasks in an attempt
to maximize overall utility, while trying to minimize
overlap in coverage by the robots. In both cases, the
majority of the computation is done in a distributed
fashion, by the individual robots, and the centralized
modules combine and coordinate information in an
efficient way.

After presenting related work, Sections 3 and 4 describe
our approaches to multi-robot map creation and
exploration, respectively. Section 5 presents a case study of
three robots combining to map a large indoor area. We also
analyze quantitative results from simulations showing the
effects of our exploration strategies on task performance.
Finally, we discuss future directions that are important to
the problems of multi-robot exploration and mapping.

2 Related Work

While there has been work in mapping and exploration for
single robot systems [3, 4, 9, 17, 18], there have been
relatively few approaches for mapping and exploration
with multi-robot systems. Several researchers have studied
the problem of using multiple robots to reduce localization
error during exploration [10, 13]. For instance, in RekleitisCopyright 2000, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

et. al. [13] the environment is divided into strips. Each strip
is explored by a single robot, while the others remain
stationary to observe the moving robot and estimate its
position. While this has the advantage of improving the
overall accuracy of the map, it does nothing to speed the
exploration process. On the contrary, the robots are forced to
remain near each other in order to stay visible.

Balch and Arkin [1] investigated how communication in
multi-robot systems affects different tasks, including the
graze task where the objective is to completely cover an
unknown environment. The robots essentially perform a
randomized search of the environment. Their performance
results are qualitatively similar to what we observe, but we
have not done any direct comparisons of the two methods.

More sophisticated techniques for multi-robot exploration
are presented in [15, 21, 22]. Singh and Fujimura [15]
present a decentralized on-line approach for heterogeneous
robots. When a robot discovers an opening to an unexplored
area that it cannot reach because of its size, it selects another
robot which can carry out the exploration task. The
candidate robot is chosen by trading off the number of areas
to be explored, the size of the robot, and the straight-line
distance between the robot and the target region.

Yamauchi developed a technique in which the robots build a
common map (an occupancy grid) in a distributed fashion
[21, 22]. The work introduces the notion of a frontier, which
is a location near an unexplored part of the environment. The
approach groups adjacent cells into frontier regions. Each
robot then heads for the centroid of the closest frontier
region, but they do so independently — while they share
maps, there is no explicit coordination. Thus, the robots may
end up covering the same area and may even physically
interfere with one another. Our approach, in contrast, tends
to keep the robots well separated, which can significantly
decrease the time needed to accomplish the mapping task.

The work reported here extends our earlier efforts [2] in
several important ways. First, the approach described here
distributes the computation, to a large extent. This enables
the robots’ “bids” to be calculated in parallel, which
facilitates scaling to larger numbers of robots and enables
the robots to construct bids based on their own capabilities
(sensor range, travel costs, etc.). Second, the current method
uses a more sophisticated notion of expected information
gain that takes current map knowledge and the robots’
individual capabilities into account. This allows for more
subtle types of coordination, for example, allowing the
robots to remain near one another if the map shows that they
are separated by a solid wall.

3 Coordinated Mapping

At the core of our approach is a distributed algorithm for
concurrent mapping and localization in real-time [19]. The
approach makes two major assumptions: First, it assumes
the world is reasonably static, and so it cannot handle

environments that are densely populated or change in major
ways (e.g., walls disappearing). Second, it assumes that the
robots begin in view of one another, and are told their
approximate relative location (within about 1 meter distance
and 20 degrees orientation). The first requirement is
assumed throughout the literature on concurrent localization
and mapping [3, 12, 16, 18]. Fortunately, the second
assumption holds for many practical applications, since the
problem of team-based mapping in the absence of initial
pose information is extremely hard.

Our approach decomposes the mapping problem in a
modular, hierarchical fashion: Each robot maintains its own
local map, correcting for odometry error as it goes. A central
module receives the local maps and combines them into a
single, global map. The modules work in real-time and, in
fact, adapt their computational requirements to the available
resources. The beauty of the approach is that basically the
same software runs at both the local and global levels.

To start, each robot receives a sequence of its own odometry
and sensor measurements (laser range scans, in our case).
From that, it incrementally constructs three things: a
maximum likelihood estimate for its own position, a
maximum likelihood estimate for the map (location of
surrounding objects), and a posterior density characterizing
its “true” location, which acknowledges the fact that certain
errors cannot be identified when building a map [20].

To illustrate the algorithm, assume that a robot has already
developed a partial map. It now wants to augment the map
through new sensor and odometry readings. To determine
the robot’s most likely position, our algorithm maximizes a
mixture likelihood function that models (1) the noise in
motion (odometry), and (2) the noise in perception. Figure 1
illustrates the motion model. It depicts P(s | s’, a), the
probability of being at pose s, if the robot was previously at
s’ and executed action a (moving and/or turning). This
distribution is obtained by the (obvious) kinematic
equations, assuming that robot motion is noisy along its
translational and rotational components.

Figure 2 depicts the perceptual model (the likelihood
function for sensor readings). The basic idea here is that it is
unlikely to receive sensor readings where previous scans
saw free-space. The dark region in Figure 2 corresponds to

Figure 1: Probabilistic Motion Model
Robot starts at left of each diagram and follows path indicated by
solid line. Probability distribution is shown in grey for the robot’s
posterior location. The darker a location, the more likely it is.

the free-space of the scan shown there; the likelihood of
detecting something in that region is (inversely)
proportional to the grey-level. Thus, scans that nicely align
possess much higher likelihood than ones that do not.

A key characteristic of this likelihood function it that it is
differentiable. Moreover, search in the relative pose space of
the robot can be performed very efficiently using Newton’s
method (e.g., 1,000 iterations per second). Our approach
starts with the odometry measurement reported by the robot
as an initial estimate, and uses gradient descent to find the
nearest maximum in likelihood space. Since maps are built
incrementally and short-term errors are not large, this
process converges quickly and, with high reliability, finds
the right alignment. The collection of all scans, along with
their corrected scan coordinates, forms the map. The scan
map is then efficiently converted to an occupancy grid map
[5], which is required by our motion planner and exploration
module.

We now address the problem of building a map using
multiple mobile robots. Each robot builds its own local map,
using the algorithm described above. Since the robots do not
communicate directly, their local coordinate systems are not
aligned with each other. Also, due to residual errors in the
local maps, the maps typically would not match well even if
the coordinate systems were perfectly aligned.

To build a single map, the central mapper module integrates
information from the individual robots in real time.
Specifically, each robot communicates a subset of its scans
(e.g., every 10th) to the central mapper, using the corrected
scan coordinates. Thus, the maps of the robots are not used
directly. Instead, they are used indirectly to produce
sequences of scans whose (relative) position errors are
already very small to begin with. The central mapper then
applies the same gradient descent algorithm described above
to minimize the error between the scans of the different
robots. Since we assume that the initial positions of the
robots are approximately known, our local search approach
accurately localizes the robots relative to each other. As
additional scans arrive, they are similarly mapped into the
global coordinate system, eliminating small deviations. The

resulting map integrates every robots’ scans into a single,
consistent map with relatively little computation. We have
tested our procedure for up to 5 robots, and have no doubt
that the same architecture easily scales to 10, or more,
robots.

4 Coordinated Exploration

The objective in coordinating the exploration of multiple
robots is to maximize expected information gain (map
knowledge) over time. While the optimal solution is
computationally intractable, we have developed a relatively
low-cost technique that provides good results, in practice.

To start, each robot constructs a “bid” consisting of the
estimated utilities for it to travel to various locations. The
bids are sent to a central executive, which assigns tasks to
each robot based on all the bids received, taking into account
potential overlaps in coverage. Thus, while a robot may
prefer to visit one location, the executive might assign it a
different location if another robot is expected to gain much
the same information. Robots submit new bids when their
maps are updated, which can cause them to be retasked.
Exploration ends when there is no useful information to be
gained.

4.1 Constructing Bids

A robot constructs a new bid each time it receives a map
update from the central mapper. It categorizes map cells into
three different types (Figure 3) — “obstacle” (probability of
occupancy above a given threshold po), “clear” (probability
below a threshold pc) and “unknown” (either never been
sensed, or probability is between po and pc).

A bid is a list of the estimated costs and information gains
for visiting various frontier cells. We define a frontier cell as
any “clear” cell adjacent to at least one “unknown” cell
(Figure 3). For efficiency, we further stipulate that each
frontier cell must be at least some minimum distance from
all other frontier cells. For instance, even though our grid
has 15 cm resolution, we require frontier cells to be at least
30 cm (approximate radius of the robots) from each other.

To estimate the cost of visiting a frontier cell, we compute
the optimal path (shortest distance, assuming deterministic
motion) from the robot’s current position. All costs are

Figure 2: Likelihood Function Generated
Robot is on the left (circle). The scan is depicted by 180 dots in
front of the robot. The darker a region, the smaller the likelihood
for sensing an object there. Occluded regions are white.

Figure 3: Occupancy Map Used for Exploration
“Obstacle” cells are black, “clear” cells are white, “unknown”
cells are grey. Frontier cells are marked by small circles.

computed simultaneously, using a simple flood-fill
algorithm [11] that employs an efficient implementation of
a priority queue to propagate minimum path costs through
the map. To further decrease computation, we consider only
“clear” cells, stopping propagation whenever an “obstacle”
or “unknown” cell is reached.

Estimating information gain is more difficult. In fact, the
actual information gain is impossible to predict, since it very
much depends on the structure of the environment. Our
previous work [2] assumed information gain to be constant
for each frontier cell, which tended to make the robots spend
too much time exploring nearby areas that were nearly
known already. Here we use the current map to provide a
more informed estimate. Specifically, we assume that the
robot has some nominal sensor range and count the number
of “unknown” cells that fall within that radius of the frontier
cell, subject to the restriction that the resulting information
gain region forms a connected set (Figure 4). For efficiency,
we again use a flood-fill algorithm, this time ending
propagation when either a “clear” or “obstacle” cell is
encountered, or when the distance to the frontier cell is
greater than the sensor range. In addition to counting the
number of cells, we record the minimum and maximum
extent, forming a rectangle that approximates the
information gain region (Figure 4). This enclosing rectangle
is used by the executive to estimate potential overlaps in
coverage.

While there are definite improvements that can be made in
estimating information gain (a simple one would be to bias
the count by the occupancy probability of the cells, giving
less weight to cells that are already partially known), we
have found our metric works quite well in practice. In
particular, while the metric usually acts to keep the robots
well separated, it still allows them to be spatially near one
another if there are known obstacles separating them. Thus,
we have seen cases where two robots are tasked to explore
adjacent rooms — one goes into the first room and perceives
the walls, which get added as obstacles in the map. This

separates the room from the adjacent room, information-
wise, which allows the executive to send the other robot into
the second room. This would not be possible with methods
that merely try to maintain a given distance between robots.

4.2 Assigning Tasks

Each robot asynchronously constructs its bids and sends
them to a central executive. The executive tries to maximize
the total expected utility of the robots by assigning them
tasks, based on their bids. A simple greedy algorithm is used
to keep the computation real time. The executive first finds
the bid location with the highest net utility (information gain
minus cost) and assigns that task to the robot that made the
bid.1 It then discounts the bids of the remaining robots based
on the current assigned tasks (see below) and chooses the
highest remaining net utility. This continues until either all
robots have been assigned tasks or no task remains whose
(discounted) expected information gain is above a minimum
threshold.

Key to this algorithm is the discounting. Without it, the
robots would act in an uncoordinated manner, being
assigned tasks that they, independently, estimate as best. Our
previous work discounted the utility of a location as a
function of its distance to the other assigned tasks [2]. Here,
we explicitly use the estimated information gain for
discounting. Specifically, we estimate the percentage of
overlap between the information gain regions by how much
the approximating rectangles overlap (Figure 4) and
decrease the expected information gain by that percentage:

Here, IGRj is the rectangular approximation of the
information gain region for some frontier cell j, the IGRi are
the rectangular information gain regions for the assigned
robots R, and i j and cj are the expected information gain and
path cost of going to cell j. This method is both efficient to
compute and a fairly accurate approximation. In one set of
experiments, it was within 15% of the true overlap (obtained
by counting the actual number of overlapping cells), while
being hundreds of times more efficient.

The executive is implemented using the Task Description
Language (TDL), an extension of C++ that includes
syntactical support for hierarchical task decomposition, task
sequencing, execution monitoring, and exception handling
[14]. When the executive receives a bid, it waits a short
while in case other bids arrive. It then assigns tasks to all
robots that are either currently unassigned or have submitted
new bids (leaving the currently active ones to continue).

Figure 4: Expected Information Gain
Information gain regions for several representative frontier cells.
Circles indicate sensor range. Cross-hatched areas are information
gain regions. Dotted lines are the rectangular approximations.

1. We found that marginal utility (information gain divided by cost)
performed less well, tending to favor areas of small information gain
nearby the robot.

dj Area IGRj IGRi
i R∈
∪

∩

Area IGRj()⁄=

uj 1 dj–() i j× cj–=

Besides assigning tasks, the executive monitors task
execution, interfaces with a remote GUI, and interleaves
exploration with other tasks. In particular, at any time the
user (through the GUI) can request that one of the robots
visit a particular location (e.g., to take a closer look). The
executive terminates that robot’s current task, reassigns
other robots to cover for its loss, assigns and monitors the
new task, and then integrates the robot back into the
exploration pool when it is finished.

One important addition to the task assignment algorithm is
the use of hysteresis. If a frontier cell for a robot falls within
the information gain region of the robot’s currently assigned
task, then its expected information gain is divided by the
hysteresis ratio (a constant between 0 and 1, usually 0.85).
Lower values for the hysteresis ratio will make the executive
less disposed to switching tasks. The basic problem is that,
because the robot is continuously sensing the environment,
the information gain metric can change drastically after only
small motions. For instance, by the time a robot maneuvers
to position itself in front of a doorway, it typically has seen
a large portion of the room. Without hysteresis, entering and
completely exploring the room would not have as much
utility as going somewhere else. While not the ultimate
solution, hysteresis handles the problem fairly well.

5 Experiments

The multi-robot exploration and mapping system has been
tested extensively using a team of three heterogeneous
robots — two Pioneer AT robots from RWI and an Urbie
robot from IS Robotics (Figure 5). All three robots are
equipped with Sick laser scanners that have a 180 degree
field of view. The ATs have a 300 MHz on-board laptop
running Linux, and all three robots communicate, via
Breezecom radio links, with off-board Linux workstations
that run the rest of the system, including the mapping,
planning, and executive modules.

The most extensive testing was in October, 1999 in an empty
hospital building at Fort Sam Houston, San Antonio TX, as
part of DARPA’s Tactical Mobile Robot (TMR) project.
During a five day period, we made repeated runs with the
robots, mapping large areas of one floor of the building.

Figure 6 shows one typical run that produced a 62 by 43
meter map in about eight minutes. During these runs, we
tended to see similar qualitative behavior — one robot
would head down the initial corridor, while the other two
would explore rooms on opposite sides of the corridor.
When the two finished the initial set of rooms, they would
move down the corridor to explore openings that the third
robot had discovered, but passed by. We also performed tests
where we would teleoperate one of the robots while having
the other two autonomously explore the areas not visited by
the first.

Some interesting behaviors were observed that are
attributable to the coordination algorithm. For one, if three
robots start in the middle of a narrow corridor, two tend to
head down the corridor in opposite directions, while the
third just waits until one of the others spots a doorway. This
is because, initially, there are just two distinct frontiers, and
assigning one robot to each leaves the third with no expected
information gain. Another behavior, noted earlier, is that the
robots sometimes explore adjacent offices that, while
spatially close, are disconnected in terms of information
gain. Finally, in one instance, we noticed a robot having
trouble getting near an office it was tasked to explore. A
second robot was tasked to explore further down the
corridor. However, at some point the executive swapped
tasks, since the second robot had fortuitously gotten closer
to the office than the first. Such flexibility in dynamically
coordinating tasks gives our system the ability to efficiently
explore in a wide variety of situations.

To augment the robot tests, we ran experiments in
simulation to compare the effects of different numbers of
robots in different types of environments. The simulator
realistically models the environment and a robot’s
interaction with it, so that the programs used on real robots
can be used with the simulator without modification.

Figure 5: Robin, Marian and LittleJohn

Figure 6: Map Created by Three Robots (62 x 43 m)
Robots start at left. The three solid lines indicate the robots’ paths
through the environment.

Previously, we demonstrated the performance increase that
obtains using coordinated versus uncoordinated robots [2].
In the current experiments, we varied the number of robots
from one to three, and used five different environments. In
the two office-like environments (Figure 7, A and B, 25m x
20m) and the obstacle-free environment (C, 20m x 20m), we
ran ten simulations for each number of robots. For the other
two environments (D and E, 20m x 20m), we used ten
different randomly generated maps, and ran one simulation
with each.

While our primary performance metric is the time needed to
completely explore the environment, it is also of interest to
see how the coverage evolves over time. It might be the case
that most of an environment is mapped quickly, while it
takes a long time to cover a few last spots at the end. For this
reason, we report the time it takes to cover 50, 90, 95 and
100 percent of the environment.

Figure 8 presents the results for the single-corridor office
environment (A). It shows that two robots perform
significantly better than one, while there is not much gain in
having three robots instead of two. The results are similar for
two parallel corridors (B). There, two robots can go in
separate directions at the beginning, each exploring one part
without any overlap. While a third robot can assist initially
in the exploration of one of the corridors, once done it must
travel a long way in order to help explore the other corridor.
In many cases, the other robots do not arrive in time to help
out.

In contrast, in the random environments, there is a smaller
gain when going from one to two robots and a larger gain
when going from two to three robots (Figure 9), compared
with the results from the office-like environments. The
apparent reason is that the obstacles in the environment help
in spreading the robots out.

Surprisingly, in the obstacle-free environment, three robots
actually take longer to complete the task, on average, than
two (Figure 10). This seems to be because they end up
interfering with one another [6, 8]. In contrast, in this
environment multiple robots have demonstrable positive
effects on map accuracy. With few features, the robots get
little help in localizing. This has the greatest impact when
there is only one robot exploring — in fact, in 30% of the
trials the robot failed to complete the mapping task
successfully (i.e., the resultant map was qualitatively
wrong). With multiple robots, however, the added sensor
information helps significantly: For two robots, only one
failure was observed (10%) and with three robots, no
failures were observed.

6 Future Work and Conclusions

While we have extensive test results, we still need to
quantify the effects of various design decisions, including
the effects of hysteresis, the way information overlap is
estimated, and the definition of expected information gain
itself. We also intend to quantify the performance of the
greedy method of task assignment, comparing it to more
sophisticated algorithms such as A* or stochastic search.

In both simulation and actual tests, robots are sometimes
idle because their discounted utilities are below the
minimum threshold. Instead of just staying where they are,
they could position themselves strategically so as to
minimize the expected distance they would have to travel
once they are assigned a task. While for a single robot, a

Figure 7: Simulation Environments
(a) (b) (c) (d) (e)

Figure 8: Results from Single-Corridor Environment

0

100

200

300

400

500

600

50 90 95 100

tim
e

(s
ec

on
ds

)

coverage (percent)

1 robot
2 robots
3 robots

Figure 9: Results from 15% Random Obstacles

0

100

200

300

400

500

600

700

50 90 95 100

tim
e

(s
ec

on
ds

)

coverage (percent)

1 robot
2 robots
3 robots

Figure 10: Results from Obstacle-Free Environment

0
50

100
150
200
250
300
350
400
450
500

50 90 95 100

tim
e

(s
ec

on
ds

)

coverage (percent)

1 robot
2 robots
3 robots

good idle location is one that minimizes the average path
cost to all the frontier cells, the problem is much harder if
there are several idle robots.

Fundamentally, the approach described in this paper is
limited in two respects. First, with respect to mapping, we
currently assume that the robots begin in view of one
another and are told their initial (approximate) relative
location. More sophisticated techniques are needed for
mapping and localization when the robots need to merge
maps where the coordinate transform is initially unknown
and the robots need to find out where they are relative to one
another. Second, with respect to exploration, we currently
assume it is sufficient to consider the utility of exploring a
single point. The approach ignores both the fact that
information is gained en route and that moving to a given
area may facilitate, or possibly hinder, subsequent
exploration. We are investigating more sophisticated
algorithms that estimate information gain along paths,
which we believe will improve overall performance
significantly.

In conclusion, we have presented an approach to multi-robot
exploration and mapping that explicitly coordinates the
robots, based on estimates of expected information gain and
the cost of exploration. This approach, which builds on our
previous work, has demonstrated the types of performance
improvements that multiple robots can provide. This
includes both reduced exploration time and increased
mapping accuracy. While improvements are inevitable in
this important area, we now have a benchmark for what is
attainable from an effective use of coordination.

Acknowledgments
We thank Greg Armstrong for maintenance of the robots and
help with the experiments at CMU. This research is
sponsored in part by DARPA via TACOM contract
DAAE07-98-C-L032.

References
[1] T. Balch and R.C. Arkin. “Communication in Reactive Multi-

agent Robotic Systems.” Autonomous Robots 1, pp. 1-25,
1994.

[2] W. Burgard, D. Fox, M. Moors, R. Simmons and S. Thrun.
“Collaborative Multi-Robot Exploration.” In Proc. Intl. Conf.
on Robotics and Automation, San Francisco CA, May 2000.

[3] H. Choset. Sensor Based Motion Planning: The Hierarchical
Generalized Voronoi Graph. Ph.D. Thesis, California Institute
of Technology, 1996.

[4] G. Dudek, M. Jenkin, E. Milios and D. Wilkes. “Robotic explo-
ration as graph construction.” IEEE Transactions on Robotics
and Automation, 7:6, pp. 859-865, 1991.

[5] A. Elfes. Occupancy Grids: A Probabilistic Framework for
Robot Perception and Navigation. Ph.D. Thesis, Department of
Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, 1989.

[6] M. Fontan and M. Mataric. “Territorial Multi-Robot Task Divi-
sion.” IEEE Transactions on Robotics and Automation, 14:5,
1998.

[7] D. Fox, W. Burgard, H. Kruppa and S. Thrun. “Collaborative
Multi-Robot Localization.” In Proc. 23rd German Conf. on
Artificial Intelligence. Springer-Verlag, 1999.

[8] D. Goldberg and M.J. Mataric. “Interference as a Tool for
Designing and Evaluating Multi-Robot Controllers.” In Proc.
AAAI-97, pp. 637-642, Providence, RI, July, 1997.

[9] B. Kuipers and Y.-T. Byun. “A Robot Exploration and Mapping
Strategy Based on a Semantic Hierarchy of Spatial Represen-
tations.” Journal of Robotics and Autonomous Systems, 8, pp.
47-63, 1991.

[10]R.Kurazume and N. Shigemi. “Cooperative Positioning with
Multiple Robots.” In Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 1994.

[11]J.C. Latombe. Robot Motion Planning. Kluwer Academic Pub-
lishers, 1991.

[12]J. Leonard, H. Durrant-Whyte and I. Cox. “Dynamic Map
Building for an Autonomous Mobile Robot.” International
Journal of Robotics Research, 11:4, pp. 89-96, 1992.

[13]I. Rekleitis, G. Dudek, E. Milios. “Accurate Mapping of an
Unknown World and Online Landmark Positioning.” In Proc.
of Vision Interface 1998, pp. 455-461, Nagoya Japan, 1997.

[14]R. Simmons and D. Apfelbaum. “A Task Description Lan-
guage for Robot Control.” In Proc. Conf. on Intelligent
Robotics and Systems (IROS), Vancouver Canada, 1998.

[15]K. Singh and K. Fujimura. “Map Making by Cooperating
Mobile Robots”. In Proc. Intl. Conf. on Robotics and Automa-
tion, 1993.

[16]R. Smith, M. Self, P. Cheeseman. “Estimating Uncertain Spa-
tial Relationships in Robotics.” In Autonomous Robot Vehicles,
eds. I.J. Cos and G.T. Wilfong, Springer-Verlag, pp. 167-193,
1990.

[17]S. Thrun. “Exploration and Model Building in Mobile Robot
Domains.” In Proc. IEEE Intl. Conf. on Neural Networks, pp.
175-180, 1993.

[18]S. Thrun. “Learning Metric-Topological Maps for Indoor
Mobile Robot Navigation.” Artificial Intelligence, 99:1, pp. 21-
71, 1998.

[19]S. Thrun, W. Burgard and D. Fox. “A Real-Time Algorithm for
Mobile Robot Mapping With Applications to Multi-Robot and
3D Mapping”. In Proc. Intl. Conf. on Robotics and Automation,
San Francisco CA, May 2000.

[20]S. Thrun, D. Fox and W. Burgard. “A Probabilistic Approach
to Concurrent Mapping and Localization for Mobile Robots.”
Machine Learning, 31, pp. 29-53, 1998.

[21]B. Yamauchi. “Frontier-Based Exploration using Multiple
Robots.” In Proc. Second Intl. Conf. on Autonomous Agents,
Minneapolis MN, 1998.

[22]B. Yamauchi, P. Langley, A.C. Schultz, J. Grefenstette, and W.
Adams. “Magellan: An Integrated Adaptive Architecture for
Mobile Robots.” Tech Report 98-2, Institute for the Study of
Learning and Expertise, Palo Alto, CA, May 1998.

