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ABSTRACT

A time seriesis a sequence of data points in which the order of the data points is important. In
many cases, each data point consists of both inputs and outputs. The reason that the time order of
such a time series is important may be that at a certain time instant, the outputs are determined not
only by the current inputs, but also by some of the more recent inputs and outputs. If we extend
the input vector to include those previous inputs and outputs in addition to the current inputs, then
the outputs are fully determined by the expanded input vector. Thus, we can transform a time
series into a set of data points where the time order is no longer important.

Given a time series, a system classifier’s purpose is to determine to which category the
underlying system belongs, among a set of pre-defined candidate categories. To do so, our system
classification algorithm transforms the time series into a set of expanded data points. It then
employs a memory-based classifier to calculate a sequence of probabilities that measure how
likely these expanded data points are to belong to each of the categories. Finally, it uses likelihood
analysis and hypothesis testing to summarize these classification results. Our method can also
handle the classification of non-time series.

Our contributions include: (1) the methodology that decomposes time series classification into
the likelihood analysis of a sequence of classifications; (2) a new memory-based classifier that has
many desirable properties; (3) re-organization of the memory in the form of a cached kd-tree that
greatly improves the computational efficiency of information retrieval and memory-based
learning algorithms; and (4) fast feature selection based on intensive cross-validation and greedy
searching.

Compared with other methods, our new system classifier is simple to understand, easy to
implement, robust for various types of systems, and adaptive to datasets with different densities
and/or noise levels. It is capable of distinguishing the various categories of the underlying system
without requiring any predefined thresholds. It is efficient not only because it can perform
classification quickly, but also because it can focus on the promising categories while ignoring the
others after only a few iterations. Based on our empirical evaluations, our method tends to be
more accurate than other methods.
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Chapter 1

Introduction

1.1 What is system classification?

With the dramatic development of computer science and technology, we are on the ed

making many machines intelligent by embedding computer systems in them. For example

ple have known how to cook rice for thousands of years, but only in the last two decade

the neuro-controlled automatic rice cooker invented. In the near future, by embedding

puter chips in other kitchen devices, people will be further liberated from the tedious

exhausting cooking tasks which their predecessors have suffered for many centuries. S

things will also happen to vehicles. In next century, we expect cars will become autonom

Once the passengers tell the vehicle where to go, they can go to sleep or watch televis

the short term, cars will become smarter, if not completely autonomous. The smart car’s

ligence has many aspects, including the ability to tell if the human driver’s sobriety lev

good enough for further operation. If necessary, the monitoring system may warn the dri

stop for a break. This is important because inattention may lead to the fatal accidents.

U.S. 1996, there were over 37,000 automobile accidents involving fatalities, in which 42

people were killed. Among these cases, over 21,000 were single vehicle accidents resu

22,500 fatalities [Batavia, 98].
13
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The technique we explore in this thesis is useful for driving sobriety monitoring, as we

other applications. Let’s imagine that we have a vehicle full of smart sensors which can te

velocity of the vehicle, its orientation, its lateral distance to the center of road, and the dist

to the other vehicles nearby, etc. If we regard a driver as a system, the above variables

inputs to the system. Based on the inputs, the driver has to properly steer and control t

and brake pedal. Thus the outputs of the system are the vehicle’s steering angle and its

eration. Suppose we also measure the outputs. Let’s take a record of both the input and

values every time unit, say 0.1 second. We will get a multi-dimensional time series. The dr

time series varies from case to case, even if the driver is the same person and his/her s

condition is identical. The reason is that road conditions and traffic may be different, and

differences will make the driver’s response (system outputs) differ from case to case. How

we believe if the driver is sober, his driving behavior time series should be consistent wit

historic “sober” driving time series. Otherwise, if the driver is intoxicated, his driving (sys

outputs) may differ from those normal cases in memory. In addition, an intoxicated driver

create some unusual input scenarios because of his careless behavior.

How can we formalize the informal discussion above into a useful and reliable algorithm

statistical terms, to classify the driving style we want to calculateProb(Snormal | Oq), which is

the probability that a driver’s sobriety is normal, as inferred from the observation of their d

ing behavior.Oq represents the current driver’s driving behavior time series;q stands forquery,

implying that the underlying state of the driver’s sobriety condition is unknown.Snormal is the

event of the driver being sober. To calculateProb(Snormal | Oq), we compare the unclassified

time seriesOq with those time series in memory generated by the same driver when he

sober. IfProb(Snormal| Oq) is higher than a certain threshold, the driver seems to be sober.

erwise, they are intoxicated. Sometimes, the task can be more complicated. For examp

police department may want to distinguish drowsiness from drunkenness. In this cas

should calculateProb(Sintoxicated| Oq) or Prob(Sdrowsy| Oq), as well asProb(Snormal | Oq), the

largest value indicates the driver’s most likely sobriety condition.
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Generally speaking, we define the task of asystem classifieras the following: given a set of

observations of a system’s inputs and outputs, a system classifier is to figure out the unde

mechanism which generates these observations.

1.2 The applications of system classification

• System diagnosis:

No machine can work perfectly all the time. People need to know when to fix the

machines and how to fix them. This is the purpose of system diagnosis. System dia

nosis can be done by human experts. However, in some cases an on-line autonomo

system diagnosis tool is preferred, because for some complicated machines, no sin

human expert can understand every detail. Also, it is hard to ask the human expert (

a group of them) to do the diagnosis job twenty-four hours a day, seven days a week,

all possible situations including dangerous environments.

• Surveillance

With the progress of video tracking and speech signal processing, we are on the ed

of implementing an autonomous system to liberate human operators from surveillanc

jobs which may be tedious and last long hours. We expect that these autonomous s

tems will have better performance than that of a sleepy human operator. Similarly, w

expect to apply this technique to make some military surveillance devices more intelli

gent. For example, we can invent an automatic radar monitoring system so that the so

diers can be liberated from the radar desk, especially during the tedious period whe

nothing unusual happens.

• Human behavior monitoring

Every year in the U.S., thousands of people die in traffic accidents. Some of these ac

dents are caused by the exhaustion of the drivers. It would be desirable to have a w

to monitor the behavior of the human operators and give them warnings if necessar
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Another possible application is that with the booming of virtual reality stores on the

Internet, more and more customers will go shopping via the Internet. Technically th

e-stores’ server is capable of tracking the behaviors of the visitors, to detect the cu

tomers’ purpose and/or preference. This prospect does raise many moral, ethical, a

social issues which are beyond the scope of this thesis.

• Human skill transition and evaluation

Sometimes people want to learn physical skills from the masters. Some skills shou

be passed on before the old masters die. Some skills should also be transferred

robots, because robots can work in remote or inhospitable environments. Therefor

we need some ways to transfer skills and evaluate the learned performance.

• Financial monitoring

We can apply the techniques of this thesis to keep an eye on the financial climat

which is useful and rewarding.

1.3 The assumptions of OMEGA

In this thesis, we investigate and extend memory-based learning for general propose o

system classification. We name this new technique On-line MEmory-based GenerAl pu

system classifier, (OMEGA). OMEGA calculatesProb(Sp | Oq), which is the probability that

the underlying mechanism of a set of observationsOq is systemSp. It has following the assump-

tions:

1. OMEGA does not approximate the closed-form mechanism of the underlying system.

also assume that the unknown underlying generator ofOq must be one of afiniteset of can-

didate systems. This assumption is not so bad as it looks. For the example mentio

above, it is unnecessary to require every police officer to know the psychological and ph

iological processes underlying intoxication. Instead, if a traffic police officer can correc
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detect any unusual driving behavior, his job is well done.

2. For the same example, to calculate the probabilityProb(Snormal | Oq), we compare the

query driving time seriesOq with those “sober” driving time series in memory. In other

words, we assume that we have collected some training observations of each cand

system’s behavior before the classification job forOq comes. Notice that if there are only a

few sober driving time series samples in memory, it is still possible to approxima

Prob(Snormal | Oq). Of course, the fewer the sober samples in memory, the less reliable

approximatedProb(Snormal | Oq) is.

3. Originally motivated to classify time series, our research ends up with a general purp

technique which is also capable of general pattern classification. In other words, the ob

vationOq may be a time series, but this is not necessary. As defined,Oq is in fact a set of

observation data points, while a data point consists of the inputs of the concerned syste

a certain time instant and their corresponding outputs. WhenOq is not a time series, we can

shuffle its data points randomly.

4. OMEGA works best for those systems whose input and output are fully observable,

the output are fully determined by the input. Note that this assumption is often violated

practice. For example, in driving domain, a driver’s control action may be influenced

some of his hidden psychological and physiological factors. However, like other mach

learning methods, we assume a driver control action is somehow predictable by s

observable input variables.

5. The inputs and outputs of any candidate systems can be of any type. They can be con

ous or discrete, (including categorical), or even a mixture of the two. However we assu

the types of the input and output of all candidate systems are the same.

6. We study stochastic systems; in other words, given a certain input, the corresponding

put is stochastic. The conditional distribution of the output given a certain input can be

any type. For some systems, the outputs corresponding to an identical input may sc
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around a center, so that the conditional distribution can be roughly formed as Gauss

However, as a general purpose approach, OMEGA does not require this uni-mo

assumption.

1.4 Related fields

Conventionally, classification is to detect to which category a single data point belongs.

ever, since a time series consists of a sequence of data points, system classification inv

sequence of classifications, then summarize them so as to draw an overall conclusion.

System classification is different fromsystem identification. The latter estimates the configura

tion and the parameters of an unknown system, but system classification’s task is to rec

an unknown system, without necessarily estimating its parameters.

Another closely related field isfault detection, which is also referred to asnovelty detection.

The task of fault detection is to tell whether or not a system’s current behavior is out of the

erance of its normal performance. System classification is different from fault dete

because system classification concerns multiple systems, and it assumes that every

always works normally. The difficulty of fault detection is that its training data is usually un

anced; in other words, the majority of the training data is collected when the system works

mally. However, it is still straightforward to apply OMEGA to solve the fault detecti

problem: we approximateProb(Snormal | Oq), if this probability value is lower than a certain

threshold, the system is abnormal; in another case, even if the value ofProb(Snormal | Oq) is

higher than the threshold, but it is not reliable (its confidence interval is too large), the sta

the system is uncertain. The threshold can be decided by hypothesis testing methods.
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1.5 The system classification approaches

There are two approaches to system classification: comparing the system parameters, o

paring the predictions.

Comparing the system parameters

This approach is similar to system identification: we approximate the unknown syst

parameters first, then classify the system based on the comparison of the system para

For example, suppose we have a collection of observations(x1, y1), (x2, y2), ..., (xT, yT), where

x’s are the system’s inputs, andy’s are the outputs. Temporarily, let’s assume based on p

knowledge that we know these signals were generated by a linear system:

If there are sufficient observations, we are able to approximate the system parameters,β0 and

β1. To detect if the observation signals(x1, y1), (x2, y2), ..., (xT, yT) were generated by a partic

ular one-input-one-output linear system whose parameters areα0 andα1, we can straightfor-

wardly check if theα’s andβ’s are close to each other respectively.

This approach looks simple, but it has three problems: (1) We need the prior knowledge

closed-form formula of the system. (2) Before we employ this approach, we should make

that identical systems must have the same parameters. When the system is more comp

than a linear one, different sets of parameters may correspond to the same system. Sec

gives an example.

In some circumstances like chemical manufacturing process, it is hard to get precise math

ical models of the systems. Therefore, to design a robust, general purpose system classi

package, we will resort to the other approach.

y βo β1x ξ+ +=
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Comparing the predictions

Given a set of observations whose underlying generator is unknown, the prediction app

temporarily assumes the unknown underlying system is a certain candidate one. Based

knowledge of this assigned candidate system, we can predict the outputs corresponding

inputs of the observations. If the candidate system is indeed the real underlying system, th

dictions must be close to those observed outputs. Otherwise, the assumption is not cor

In more details, let’s suppose there is a collection of observations,(x1, y1), (x2, y2), ..., (xT, yT).

To figure out whether or not they were generated by a certain linear system,

with particularα0 andα1 values, we can use the above formula to predict they value given a

certainx. Therefore, we will get a sequence of predictions, . The differen

between them and the observed valuesy1, y2, ..., yT are the residuals. If the residuals are clo

to zero, the system withα0 andα1 as parameters is likely to be the underlying system wh

generated the observations.

Even with only one observation, the prediction-based approach can still start to work, th

the result will be unreliable. With more observations, this approach can be expected to

improved performance. Therefore, the prediction-based approach is ideal for on-line ap

tions.

Up to now, we have assumed the system is linear. The linear system model has been p

for several decades because it is simple and in many cases it is reasonable. For non-line

tems, we can apply non-linear function approximators such as neural network to do the p

tion job, so that the prediction-based system classification approach still works [Petridis

96].

y αo α1x ξ+ +=

y1
ˆ y2

ˆ ... , yT
ˆ, ,
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The neural prediction approach uses neural networks to approximate every candidate s

If there are one hundred candidate systems, there will be one hundred neural networks.

culateProb(Sp | Oq), we compare the outputs ofOq with the predictions of the neural net, whic

representsSp, given the corresponding inputs.

Although a neural classifier is capable of starting its job to detect the unknown underlying

erator ofOq with very few data points inOq, we should clarify that it does need a large amou

of training data to train the neural net to precisely represent the candidate system, saySp. The

training data are collections of observations similar toOq, but they are labeled by their under

lying systems, say Sp.

There are three concerns with a neural prediction-based system classification approach

is computationally expensive to train a neural network. Things become worse when new

ing data is constantly becoming available. (2) Even if we can afford a supercomputer wh

capable of updating the neural networks quickly, we will have another trouble:interference.

The neural networks will evolve to fit the new data, and the old data will eventually lose

impact. (3) Every candidate system’s neural network, should be included in the compe

until there is convincing evidence that a certain candidate’s neural net is less compe

Therefore, when there are a huge number of candidates, the computational cost becom

hibitively expensive, especially in the early stage when all the candidates are involved

process.

To overcome these problems, the memory-based learning approach is a good choice. A

ory-based learning system stores all the training data in memory. When new data arrive

will be stored into the memory together with the old data. All processing of the training da

deferred until a prediction query is made. Therefore, less interference happens. Second

will introduce in the later chapters, the memory-based learning methods do not requir

parametric model of the system. Hence, there is no model which needs to be trained of

Third, by reorganizing the memory in kd-tree form and caching some information into the
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nodes, the memory-based learning process can be done very quickly. Fourth, also with th

of kd-tree, we can focus on the more promising candidates from the very beginning.

1.6 Thesis outline:

The thesis research consists of four parts: (1) The top-level principle of OMEGA, which

combine a series of classifications in the context of likelihood analysis and hypothesis te

(2) A new memory-based classifier, which has many improvements over existing classifie

Efficient memory information retrieval and regression using the cached kd-tree techniqu

Cross-validation for feature selection and parameter tuning. Although (2) (3) (4) are three

pendent research topics, they act as components in the OMEGA approach.

Chapter 2 introduces the principle and framework of OMEGA to give the readers a birds

view of the whole approach and the relationship of the various components. As a demo

tion, in Chapter 3 we use OMEGA to classify different styles of tennis playing, and com

OMEGA’s performance with those of other methods. From Chapter 4 to Chapter 7, we di

the components of OMEGA in details. Chapter 4 explores the new memory-based clas

and compares it with other classification methods. In Chapter 5 and 6, we discuss a tech

to re-organize the memory so as to improve the efficiency of information retrieval and re

sion. In Chapter 7, we talk about cross-validation, which is useful for feature selection

parameter tuning for the learning process. After that, we combine all the techniques in

OMEGA toolkit, and apply it to classify different driving styles, using both simulation data a

real world data, referring to Chapter 8 and 9. Finally, Chapter 10 is a summary of al

research work, the contributions, and the open questions.

Figure 1-1 illustrates the structure of OMEGA system and the organization of the thesis
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1.7 *1: Hidden Markov Model (HMM)

HMMs have been widely accepted as a time series analysis tool. They stand betwe

parameter comparison approach and the prediction approach. On one hand, it approxima

parameters of the hidden Markov model; on the other hand, it use a method similar to th

diction approach to evaluate whether or not two hidden Markov models with different pa

eters are in fact identical. There is no doubt HMM is an important and interesting techn

but it is questionable if it is a robust, general purpose system classification tool.

Before we argue the reasoning of our conclusion, let’s give a brief introduction to HMM. HM

assume that a system has some internal hidden states. As time passes, the system jum

1. This section can be skipped if the reader does not have much interest in HMM.

Figure 1-1: The structure of OMEGA system and the organization of the thesis.

OMEGA methodology

Memory-based
learning

A new classifier
(Chapter 4)

Kd-tree
information
retrieval

(Chapter 5 6)

(Chapter 2)

Preprocessing

Feature selection
(Chapter 7)

Experiments in Chapter 3 8 9
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one internal state to another. Each hidden state generates an observable signal, but it is p

that one state has several possible signals, and the same signal may be shared by severa

states. The observation time series generated by a HMM is stochastic in two aspects: (

jumps are stochastically decided by the transition probabilities among the hidden state

Even for the same hidden state, we may observe differing signals. Two two-state HMM

illustrated in Figure 1-2. The numbers attached to the arc links are the transition probabi

Since all the transition probabilities in Figure 1-2 (a) are 1.0, the system definitely switch

hidden state every time step. The system of Figure 1-2 (b) has a 50% chance to stay in th

hidden state, but has the other 50% chance to switch. The tables above the diagrams i

the probabilities linking the hidden states to the observations, A and B.

If two time series are different, the underlying HMMs’ parameters must be distinguishable

HMM parameters include the transition probabilities and the probabilities linking the hid

states to the observations.

1.0

1.0

0.5 0.5
0.5

0.5

Figure 1-2: Two identical HMMs

1 2 1 2

Hidden State
Observation

A B

1

2

0.5 0.5

0.5 0.5

Hidden State
Observation

A B

1

2

1.0 0.0

0.0 1.0

An observation sequence: A A B A B A B B A B A B A A B B. The above
two models have the same chance to be the generator of the observation sequen
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However, notice that an identical system may have a different structure and parameter

system of Figure 1-2 (a) is in fact equivalent to that of Figure 1-2 (b), because both sys

have exactly the same chance to generate the observation sequence written in Figu

Therefore, to detect if two HMMs are equivalent, we cannot simply compare their parame

Instead, we should use the first HMM to generate a sample observation sequence, then

way to measure how well the sample observation sequence fits the second HMM.

HMM were originally explored by the speech recognition community. For speech, there

input, all the signals can be regarded as outputs. To extend HMM to systems which hav

inputs and outputs, one solution is to enumerate every possible combination of input and

as a state. Thus, the number of states explodes as the number of possible input and outpu

increases. Therefore, in our opinion, HMMs did not easily fit our tastes.
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Chapter 2

Memory-based System Classification

In this chapter, we study the methodology of the On-line MEmory-based GenerAl purpose

tem classification technique (OMEGA). OMEGA combines a series of classifications in

framework of likelihood analysis and hypothesis testing. In this chapter, we will introduce

lihood analysis and hypothesis testing first, then discuss efficiency issues. Afterwards, w

summarize pre-processing method and briefly discuss alternative memory-based classifi

and prediction methods.

2.1 Likelihood Analysis

As defined in the last chapter, a system classifier should estimate the underlying generat

set of observation signalsOq, under the assumption that the generator must be one of a fi

number of candidate systems,S1, ..., Sn. For example, given a time series of a vehicle’s behav

in traffic,Oq, the task of system classification is to tell the sobriety state of the driver,Sp, assum-

ing that we have sufficient knowledge of the behavior of sober drivers, sleepy drivers and

intoxicated ones.

Average residuals

If we treat a driver as a system, the outputs are the control actions of the driver: the pos

of the steering wheel and the gas and brake pedals. A driver chooses his control actions a
27
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ing to the state of the vehicle, the road condition and the traffic condition, as well as his pre

actions, hence the inputs of the system are the speed of the vehicle, its orientation, its di

to the center of the road, the road curvature, the distances from the vehicle to the neigh

ones in traffic, as well as the driver’s previous control of the steering angle and the gas/

throttle. Usually an observation sequence consists of a series of input-output data point{xqi,

yqi}. Temporarily let’s assume that at any time instant, the outputyqi is fully controlled by the

inputxqi. We will come back to this topic in Section 2.4.

We do not know which candidate system generated the observation sequenceOq, but let’s guess

it is the first system,S1. Assuming somehow we have sufficient knowledge aboutS1, so that

given a specific inputx, we can predict the output . SinceOq consists of a series of data

points{xqi, yqi}, i = 1, ..., Nq, if we pick up one inputxqi from them, we can predict the corre

sponding output, . If S1 is indeed the real underlying generator ofOq, is

expected to be close to the observed output,yqi. In other words, the smaller the residual betwe

andyqi, the more likely the unlabeled data points{xqi, yqi}, i = 1, ..., Nq,were generated

by S1. If there areNq data points inOq, we will getNq such residuals. We can use the avera

of these residuals as a measure of the likelihood.

If there aren candidate systems, we can calculaten such averages of residuals. The smalle

one indicates the particular candidate system which is most likely to be the generator

unlabeled data points,{xqi, yqi}, i = 1, ..., Nq, or equivalently, the observation sequenceOq.

The average residual is a useful metric, but it treats every residual equally. This is not des

because some ’s have better quality than the others, and they should therefore

stronger impact on the likelihood measurement. Hence, we explore the likelihood approa

next subsection.

ŷ S1

yqi
ˆ S1 yqi

ˆ S1

yqi
ˆ S1

yqi
ˆ Sp
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Likelihood

From the Bayesian point of view, the system classification problem can be structured as

latingP(Sp | Oq), p = 1, ..., Ns, which is the probability that given an observation sequenceOq,

the underlying generator is thep’th candidate system. The biggestP(Sp | Oq), ,

indicates the most likely system which generatedOq.

According to Bayes rule,P(Sp | Oq) is proportional toP(Oq | Sp), when the prior probability

P(Sp) is fixed. Let’s assumeOq can be transformed into a set of data points,{xqi, yqi}, i = 1, ...,

Nq, so that temporal order is not important. If so, the following equations hold:

(2-1)

However, temporal order is important for most system because of the system’s delays and

back. Figure 2-1 illustrates a symple driving system with one delay and feedback. For s

system,P(yqi | Sp, xqi) in Equation 2-1 should be changed toP(yqi | Sp, xqi, xq,i-1, yq,i-1), because

the current system output is not only determined by the input at the moment, but also the

xq, i-1 and the feedback yq, i-1. To be convenient, we useXqi to represent the conjunction ofxqi,

xq,i-1 andyq,i-1. P(xqi | Sp) should be changed toP(Xqi | Sp, Xq,i-1). The reason for the appear

ance ofXq,i-1 is that the two components ofXqi: xq,i-1 andyq,i-1, may be partially dependent on

p 1 … Ns, ,{ }∈

P Oq Sp( ) P xqi yqi, Sp( )
i 1=

Nq

∏ P yqi Sp xqi,( )P xqi Sp( )
i 1=

Nq

∏= =

Driver

Car

xt xt, xt-1, yt-1

xt-1

yt-1

yt

Figure 2-1: A driving system with one delay and feedback.
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their ancestors:xq,i-2 andyq,i-2. Theoretically,P(Xqi | Sp) is no bigger thanP(Xqi | Sp, Xq,i-1);

however, in practice, we find that in many cases that we can substituteP(Xqi | Sp) for P(Xqi | Sp,

Xq,i-1), and the classification results are still satisfactory. Therefore, for a system with one

and feedback, the following equations hold:

(2-2)

Therefore, to calculateP(Sp | Oq), an approach is to approximateP(Xqi | Sp) andP(yqi | Sp, Xqi).

To explain their physical meanings, let’s study the driving domain again. Suppose we wa

distinguish a certain driver’s different driving behaviors under two sobriety conditions: s

and intoxicated. We notice that corresponding to the same scenario,Xqi, the driver’s response

when he is intoxicated tends to be different from that when he is sober; in other words, f

a certain situationXqi, the probability that the driver gives a certain responseyqi while he is

intoxicated, i.e.P(yqi | Sintoxicated, Xqi), may be different from the probability when he is sobe

i.e.P(yqi | Ssober, Xqi). Therefore, we believe that the probabilityP(yqi | Sp, Xqi) is a good metric

of the driver’s sobriety condition.

Besides, we also notice that an intoxicated driver may encounter situations which are not

iar to him when he is sober. For example, an intoxicated driver may let his car be very clo

other vehicles in traffic, but when he is sober, the driver may realize that this situation is so

gerous that he would try to avoid it. In other words, the probability that a sober driver enc

ters a certain scenarioXqi, i.e.P(Xqi | Ssober), may be different from the probability that he face

the same situation when he is intoxicated, i.e.P(Xqi | Sintoxicated). Notice that if a sober driver

intentionally does something new, our system classifier may misunderstand him as

drunk. But, we do not have to blame our system classifier for that. Tom Hanks’ performan

Forrest Gump is highly appreciated. Why? Because Tom mimicked the dummy’s beh

P Oq Sp( ) P yqi Sp Xqi,( )P Xqi Sp Xq i 1–,,( )
i 1=

Nq

∏ P yqi Sp Xqi,( )P Xqi Sp( )
i 1=

Nq

∏≈=
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seamlessly. Hence, we believe that by combining the two probabilities,P(Xqi | Sp) andP(Yqi |

Sp, Xqi), we can have a good chance to distinguish the different underlying mechanisms,Sp, p

= 1, 2, ..., Ns.

Let’s assume we know how to approximateP(Xqi | Sp) andP(yqi | Sp, Xqi). The details will be

covered by Section 4. To make the computation more convenient, usually we calculatethe aver-

age of the negative log likelihoodinstead ofP(Oq | Sp). The average of the negative log likeli

hood is defined as:

(2-3)

Notice is a positive real number, because bothP(Xqi | Sp) andP(yqi | Sp, Xqi) are

between0 and1.

For the example in Figure 2-2, we were given a sequence of unlabeled observations of th

ing behavior. The driver is unknown, but he must be one of five candidates: Tony, Larry, C

lik– Sp( ) 1
Nq
------ P Oq Sp( )( )log–=

1
Nq
------ P yqi Sp Xqi,( )P Xqi Sp( )

i 1=

Nq

∏log–=

1
Nq
------ P Xqi Sp( )log

i 1=

Nq

∑–
1

Nq
------ P yqi Sp Xqi,( )log

i 1=

Nq

∑–=

lik– Sp( )
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Figure 2-2: The X-axis is the number of
observation data points. The Y-axis is the
average of the negative log likelihood. To find
the underlying system, one should compare
the tails of the curves. Because Groucho’s tail
is closest to the X-axis, Groucho is most likely
the underlying generator of the observation
sequence.

lik– Sp( )
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Moe and Groucho. Using all the 3,150 unlabeled data points, we calculated five averages

negative log likelihood ,p = 1, ..., 5. Since OMEGA is an on-line approach, the 3,1

data points were not available at the early stage, we also study the with fewer

points. Therefore, we have five curves in the picture, theX-axis is the number of data points

involved in the calculation of , theY-axis is . At the very beginning, the val-

ues of are not reliable, because they were calculated using only a few data point

with more and more data points involved, the curves become more consistent

tails of the curves (to the right extreme) are the based on all the 3,150 data p

Among the five tails, the one closest to the horizontal axis indicates the generator of the o

vation sequences. In Figure 2-2, Groucho’s tail is closest to theX-axis, thus Groucho seems t

be the unknown driver.

2.2 Hypothesis Testing

Closely looking at the picture, of Groucho at the tail is 0.53, while that of Tony

about 1.40. Since 0.53 looks significantly smaller than 1.40, we claim that Groucho, no

other operator, seems to be the unknown driver.

However, we are not always lucky enough to be able to assign a unique candidate system

the generator ofOq. It is possible that more than one candidate’s curves so close to each

that it is hard to tell which one is more likely to be the underlying generator. In Figure 2-3, L

and Tony’s tails are very close to each other. Larry’s is 1.19, while Tony’s is 1

Although Larry is a bit closer to the horizontal axis than Tony, we do not want to stake too m

on Larry to be the only probable operator. Instead we say that the observation sequencOq is

confusing. It is important to distinguish the confusing situation from the exclusive one; bec

if the situation is confusing and we appoint a unique operator, we may end up with a s

mistake.

lik– Sp( )

lik– Sp( )

lik– Sp( ) lik– Sp( )

lik– Sp( )

lik– Sp( )

lik– Sp( )

lik– Sp( )

lik– Sp( )
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To strictly define a confusing situation, we need a threshold. If the gap between the lowe

and the second lowest one is beyond the threshold, the unique generator is easy to deci

erwise, the situation is confusing. A difficulty arises in that there does not exist a fixed thres

applicable to any domain. For different domains, are of differing scales, resultin

different thresholds. Therefore, we resort to the statisticaltwo sample hypothesis testin

method [Devore, 91]. For two candidate systemsSp1 andSp2:

1. We calculate theZ-test value from statistics,1

, (2-4)

where σp1
2 and σp2

2 are the sample variance of-lik(Sp1) and -lik(Sp2) respectively,

defined as,

. (2-5)

1. P(yqi | Sp, Xqi) are independently identifically distributed (iid). Although theoreticallyP(Xqi | Sp) is not iid,
in practice, we roughly regard it as iid, and the hypothesis testing result is satisfactory.
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Figure 2-3: A confusing case. Since Larry and
Tony’s curves, especially their tails to the right
extreme, are so close, that it is hard to tell
which one is more likely.

lik– Sp( )

Z
lik– Sp1( )( ) lik– Sp2( )( )–
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2

Np1⁄ σp2
2

Np2⁄+
-----------------------------------------------------------=

σp
2 1

Np
------- P Xqi Sp( )log P yqi Sp Xqi,( )log––[ ] lik Sp( )–[ ]–{ }

2

i 1=

Np
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Np1 andNp2 are the numbers of data points involved in the calculation of the likelihoo

of systemSp1 andSp2. SometimesNp1 andNp2 are equal. However, this is not a require-

ment. The biggerNp1 and/orNp2, the larger the absolute value of theZ statistic tends to

be.

2. The beauty of statisticZ is that its distribution is close to standard normal distribution i

Np1 andNp2 are big enough, due to Central Limit Theorem. In this way, we can find

standard threshold for any domain and any observation sequence. We define this dom

independent threshold asZα. If Z < -Zα, Sp1 has more potential thanSp2 to be the genera-

tor of the unlabeled observation sequenceOq. If Z > Zα, Sp2 has more potential thanSp1.

Otherwise, the observation sequence is confusing becauseSp1 andSp2 are closely likely to

be its generator.

The value ofZα depends on the significance levelα. Referring to Figure 2-4, the smaller

the significance levelα, the remoter the thresholdZα deviates from zero, then it is harder

for Z to be bigger thanZα or smaller than -Zα, so that maybe no candidate system is foun

to be more competitive than all others to be the underlying generator ofOq. Therefore, the

smallerα is, the “pickier” we are.

In practice, the significance levelα is pre-defined by the user of OMEGA, andZα can be

found by consulting the standard normal distribution table.

3. With more data points, the absolute value of theZ statistic tends to be bigger, and it is eas-

P

Zα α

X

Figure 2-4: The physical meaning of Zα.

0



Chapter 2: Memory-based System Classification 35

Fig-

t the

ue.

there

ndi-

e.

m-

ndi-

the

till

i-

sing

ifi-
ier to distinguish the competitiveness of the various candidate systems. Therefore, in

ure 2-2 and 2-3, with more data points, the five curves become more separated. Bu

redundant data points do not help to distinguish ,p = 1, ..., 5,any further; hence,

the curves become smooth and consistent afterwards.

2.3 Efficiency Issues

The efficiency of OMEGA is important for two reasons: (1) OMEGA is an on-line techniq

(2) Because OMEGA calculates for every possible candidate system, suppose

are one hundred candidate systems,S1, S2, ...,S100, OMEGA will repeat the likelihood calcu-

lation for one hundred times to get , ..., . When there are numerous ca

date systems, the computational cost may be prohibitively high even if the task is off-lin

There are three ways to improve the efficiency,

1. Eliminate non-promising candidate systems from consideration:

Recall that the crucial steps of system classification are to calculate , then co

pare the of the variant candidate systems to eliminate the non-promising ca

dates, and finally select the most likely one. The is calculated according to

following equation:

In fact, it is unnecessary to consume all theNq unlabeled observation data points to

approximate . With fewer data points, even only a single data point, we can s

do it. The problem is that with fewer data points, it is more difficult to distinguish a cand

date from the others, referring to Section 2.2. But if some systems are far less promi

than the others, even with a limited number of data points, its value is sign

cantly larger than the others’, so that they can be neglected afterwards.

lik– Sp( )

lik– Sp( )

lik– S1( ) lik– S100( )

lik– Sp( )

lik– Sp( )

lik– Sp( )

lik– Sp( ) 1
Nq
------ P Xqi Sp( )log

i 1=

Nq

∑–
1

Nq
------ P yqi Sp Xqi,( )log

i 1=

Nq

∑–=

lik– Sp( )

lik– Sp( )
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2. Speed up the calculation of the likelihoods:

Since is decided byP(Xqi | Sp) and P(yqi | Sp, Xqi), a quick calculation or

approximation forP(Xqi | Sp) andP(yqi | Sp, Xqi) would improve the efficiency.

3. Focus on the promising candidates:

Even though we can eliminate unpromising candidate systems after a limited numbe

observations, at the early stage there may still be a large number of candidate sys

involved in the processing. For example, if there are 10,000 candidate systems, per

after 100 observation data points, we can decide 9,999 candidates are irrelevant. Sup

that with fewer than 100 data points, no elimination can be performed and we have to

culate 10,000 times. To enhance the computational efficiency, it may be wor

while to take a risk and focus on the more promising candidates from the beginning.

Compared withP(yqi | Sp, Xqi), the computational cost ofP(Xqi | Sp) is much cheaper.

Therefore, at the early stage with a limited number of(Xqi, yqi), i = 1, 2, ...,we can elimi-

nate those candidate systems whoseP(Xqi | Sp)’s are far lower than the others’. Of course

this selection may make mistakes, but in case there are too many candidate system

risk is worthy of taking.

To implement the second and the third solutions, we need thekd-treetechnique, which will be

described in Chapter 5 and 6. A kd-tree re-organizes the memory of the training data po

a tree structure and caches some useful information in the nodes. A kd-tree is useful i

respects: (1) We can implement alternative memory-based learning methods with drama

less cost. Thus we can greatly enhance the efficiency of calculatingP(yqi | Sp, Xqi). (2) When a

specific queryXqi is given, we can quickly retrieve all its neighboring training data points,

as to approximateP(Xqi | Sp) rapidly. Based on these two aspects, we can improve the efficie

of approximating , as well as focus on the promising candidates from the beginn

lik– Sp( )

lik– Sp( )

lik– Sp( )
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2.4 Pre-processing

In Subsection 2.1.2, we expand the input to include the delays and feedback so that the

at a certain moment is fully determined by the expanded input at that moment. More gene

for an one-input-one-output system illustrated in Figure 2-5, at time instantt, the output is sim-

ply yt, while the input consists ofxt, xt-1, ..., xt-p, andyt-1, ..., yt-q. Thus, the input space dimen

sionality isp + q + 1.

If the time delaysp andq are not known via prior knowledge; we have to figure them out ba

on empirical analysis of the observation data. Cross-validation, which is discussed in Ch

7, is a useful technique to select the proper time delays.

It is straightforward to extend this method to transform time series with multiple input an

output variables. It is not necessary for different input variables to have the same delay, no

wise for the output variables. In the case where there areu input variables, whose time delay

arep1, ..., pu, and there arev output variables withq1, ..., qv feedback variables, then the dimen

sionality of the transformed data point’s input isp1 + ... + pu + u + q1 + ... + qv.

Figure 2-5: An one-input-one-output system with feedbacks and
delays. The time order is important.

Plant (driver)Σ

Delay

x y

Delay Delay

Delay Delay

Delay Delay

Delay Delay

Delay

Car

Car

Car
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The transformation of the time series data is not always necessary. Imagining a set o

points { (x1, y1), (x2, y2), ..., (xT, yT) } are generated by a system which has no time de

and feedback, the output yt is fully determined by xt, and xt is independent from the prev

ones, xt-1, xt-2, .... In this case, although the data points are collected as time passes, th

of time is not important and we can shuffle the data points randomly.

However, a high dimensionality of the data points is always a concern. Especially those

formed time series data points with expanded input tend to have a dimensionality which i

hibitively high for the further OMEGA steps. This motivates the pre-processing: decreasin

dimensionality of the input space.

Other alternatives may exist, but we choose two approaches: feature selection and Pr

Component Analysis (PCA).

Feature selection

In the driving domain, many variables affect our driving performance. While the dista

between our vehicle to the vehicle immediately in front of us is probably important, the

tance from our vehicle to that one behind us may not be very important in most cases. T

fore, we should consider eliminating the latter distance from the input vector.

To perform feature selection, we followcross-validationapproach again. The biggest conce

of cross-validation is the computational cost. Therefore, in Chapter 7, we explore wa

improve its efficiency. Feature selection may not be very crucial in the driving domain du

the large amount of prior knowledge. Feature selection is an important component of OME

as a general purpose toolkit.
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Principal component analysis

In the driving domain, although we have eliminated those irrelevant input variables bas

prior knowledge, the input dimension of the transformed data points may still be as high a

(referring to Chapter 8 and Chapter 9). To reduce the dimensionality, we resort to Prin

Component Analysis (PCA) [Jolliffe, 86].

Each data point consists of two parts: input and output. Assume the input vectorX is d-dimen-

sional. Without loss of generality,X can be represented as a linear combination of a set od

orthonormal vectorsUk,

With fixed orthonormal vectorsUk, k = 1, ..., d, different data points’ inputs have differing coef

ficientszk, k = 1 ,..., d. If we carefully chooseUk, it is sometimes possible that the firstM coef-

ficients contains the most information, i.e.

If so, we can shrink the dimensionality ofX from d down toM. Notice that only when all the

data points satisfy the above equation, is PCA useful for compressing the dimensional

illustrated in Figure 2-6 (a). In the two cases illustrated in Figure 2-6 (b) and (c), PCA doe

help.

In one of our experiments, PCA compressed the input dimensionality of the independen

points from 50 dimensions to 3; and in another case, it helped to reduce from 36 dimensi

8.1

X zkUk
k 1=

d

∑=

X zkUk
k 1=

d

∑ zkUk
k 1=

M

∑ zkUk
k M 1+=

d

∑+ zkUk
k 1=

M

∑≈= =
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2.5 Memory-based learning

In this section, we discuss how to use memory-based learning methods to approximateP(xq |

Sp) andP(yq | Sp, xq). To do so, we need some knowledge of systemSp. Memory-based learning

methods assume that the knowledge about a systemSp comes from a memory which consist

of the observation data points of this system’s previous behavior,{(xp1, yp1), (xp2, yp2), ..., }.

Again, these data points have been pre-processed so that temporal order is no longer imp

When there aren candidate systems, we will have at leastn sets of observation data points. Th

memory contains all of them together. To distinguish the data points generated by differen

tems, each data is labeled by its generator. Suppose thep’th system hasNp memory data points

and there aren candidate systems, the size of memory will beN1 + N2 + ... + Nn.

1. In first case, the loss of information is 14%. The second case loses 17%.

U1
U2

X1

X2

X1

X2

X1

X2

(a) (b) (c)

Figure 2-6: PCA can be used to compress the dimensionality of a set of data points. In (a),
after the transformation of the coordinates, the information along U2 axis is no more
significant, so that the dimension is reduced from two to one. However, PCA may not be
useful for all cases. Although there obviously exist submanifolds in (b) and (c), the
conventional PCA does not help to reduce the dimensionality.
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In Figure 2-7 theX-axis is the input of a system, theY-axis is the output. Each dot represents

data point of systemSp. There should exist data points generated by other systems in the m

ory, too. For example, the triangles are the data points of another system. The cross rep

the unlabeled data point(xq, yq), which is a component of the observation sequenceOq whose

underlying generator is unknown.

To approximateP(xq | Sp), we can simply count the number of the memory data points ofSp

(the dots) in the stripe shown in Figure 2-7. The stripe defines the neighboring region ofxq. It

is a big concern to decide the boundaries of the stripe, but let’s temporarily assume th

boundaries can be easily decided. Suppose the number of dots in the stripe isNq (Nq = 27 in

this case), while the total number of dots in the whole memory space isNp, thenP(xq | Sp) can

be approximated asNq / Np.

To approximateP(yq | Sp, xq), we can simply count the number of dots in the square around

unlabeled data point(xq, yq); in this case, the number is 6.P(yq | Sp, xq) can be approximated

as the ratio of6 to Nq, the number of dots in the stripe.

Figure 2-7: Memory-based learning methods to approximate
P(xq | Sp) and P(yq | Sp, xq)

x

y
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xq

yq
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There is one question here: why do not we simply approximateP((xq, yq) | Sp), instead of

approximating two probabilitiesP(xq | Sp) andP(yq | Sp, xq)? In fact,P((xq, yq) | Sp) can be

approximated as the ratio of the number of dots in the square to the total number of dots

whole memory space; in this case, the ratio is6 / Np.

Recall Equation 2-2 and 2-3, which are

and

.

There are three advantages of decomposingP((xq, yq) | Sp) into P(xq | Sp) andP(yq | Sp, xq).

First of all, we can try any machine learning methods to approximateP(yq | Sp, xq), for example

neural networks and Bayes networks. Hence,P(yq | Sp, xq) is a socket for alternative method

to plug in. Second, the approximation ofP((xq, yq) | Sp) is an interpolation problem, but the

approximation ofP(yq | Sp, xq) can be extrapolation as well. Finally, the probabilityP(yq | Sp,

xq) is about the function relationship between the system input and output. If we have

domain knowledge of the systemSp, we can use them to improve the approximation ofP(yq |

Sp, xq).

The goodness of the naive method is its simplicity. However, it is difficult to define the bou

aries of the stripe and the square. If the stripe is too narrow and the square is too sma

approximation of the probabilities will be too sensitive to the noise of the limited number o

memory data points in the stripe and the square. Otherwise, if the stripe is too wide an

square is too big, it is hard to tell the difference betweenP(xq | Sp) andP((xq+ δ) | Sp), as well

P Oq Sp( ) P yqi Sp Xqi,( )P Xqi Sp( )
i 1=

Nq

∏≈

lik– Sp( ) 1
Nq
------ P xqi Sp( )log

i 1=

Nq

∑–
1

Nq
------ P yqi Sp xqi,( )log

i 1=

Nq

∑–=
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as the difference betweenP(yq | Sp, xq) andP((yq+ξ) | Sp, (xq+δ)). Besides, the inconsistency

of the distribution of the memory data points brings more troubles. In the case of Figure 2

we expand the stripe to be wider, the value ofP(yq | Sp, xq) will chance greatly. In fact, it will

become larger, because there are numerous memory data points residing just outside the

aries.

Therefore, we consider Kernel density estimation, because it does not require any bound

Kernel density estimation

Kernel density estimation does not neglect any data points in memory, so that every me

data point is involved in the approximation ofP(xq | Sp) andP(yq | Sp, xq). However, higher

weights are assigned to those memory data points neighboring to the unlabeled data po(xq,

yq), so that the neighboring memory data points have stronger impact on the approximat

P(xq | Sp) andP(yq | Sp, xq). Conversely, remote memory data points have smaller weig

therefore any single remote data points hardly has any influence on the approximation,

many remote memory data points express the same preference, the approximation w

biased in their favor.

Using Kernel density estimation,P(xq | Sp) can be approximated as,

(2-6)

in whichNp is the total number of data points in memory generated bySp. wi is the weight asso-

ciated with thei’ th one among them, usually defined as a Gaussian function of the Eucli

distance fromxq to the concerned memory data point,

. (2-7)

P xq Sp( ) w xi xq,( )
i 1=

Np

∑ Nq⁄=

w xi xq,( ) Const
xi xq–

2

2Kw
2

----------------------–
 
 
 

exp×=
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Therefore, with respect to differentxq’s, the weights associated with an identical memory da

point may be different. The higher the Euclidean distance||xi - xq||, the smaller the weight.Kw

is thekernel width. The higher the kernel width, the less the weights change with respect to

ferent distances. There are many other possible definitions of the weight [Atkeson et al.

P(yq | Sp, xq) can be approximated as,

. (2-8)

v(yi, yq) is also a weighting function but with respect to the Euclidean distance of|| yi - yq||. If

y’s value is continuous, it is fine to definev(yi, yq) as a Gaussian function in a way similar t

Equation 2-7. However, wheny is discrete or categorical, we should be more careful. For exa

ple, wheny is boolean, the weighting functionv(yi, yq) can be defined as,

.

Kernel density estimation is useful in many cases, its drawback is that it is only good for i

polation, it does not extrapolate. This is not desirable for the approximation ofP(yq | Sp, xq).

P yq Sp xq,( ) w xi xq,( )v yi yq,( )
i 1=

Np

∑
 
 
 

w xi xq,( )
i 1=

Nq

∑
 
 
 

⁄=

v yi yq,( )
1 Whenyi yq=

0 Otherwise



=

Kernel prediction
Kernel prediction

x

y

x

y

(a) (b)

Figure 2-8: Kernel regression does not extrapolate.

xq

yq

xq

yq



Chapter 2: Memory-based System Classification 45

” of

they

tegor-

tion.

icated

linear

ased

the

ted

liable
Referring to Figure 2-8(a), suppose we want to approximateP(yq | Sp, xq), while (xq, yq) locates

at the position of the cross, intuitively it should be fairly large because it is on the “trend

the memory data points. However, Kernel density estimation’s results will be smaller than

should be. Kernel density estimation does not extrapolate in both continuous case and ca

ical one. Figure 2-8(b) shows the similar problem in a categorical case.

Locally weighted linear and logistic regressions

Locally weighted linear regression is applicable for both interpolation and extrapola

Although in many cases, the relationship between the input and the output is more compl

than linear, in any local region, sometimes the relationship can still be approximated as a

one, illustrated in Figure 2-9. Locally weighted linear regression is a popular memory-b

learning method. But it works only when the outputy is continuous.

The counterpart of locally weighted linear regression for cases when the outputy is discrete or

categorical is locally weightedlogisticregression. Logistic regression has been explored by

statistical community since 1970’s. We improve this technique by following a locally weigh

paradigm, so that in the toolkit of memory-based learning method, we have a more re

classifier.

Figure 2-9: Locally weighted linear regression can approximate non-linear functional
relationship. It works for both interpolation and extrapolation. The pairs of horizontal
bars indicate the variance.

Y

X

Query 1 Query 2 Query 3
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Similar to the principle of locally weighted linear regression, locally weightedlogistic regres-

sion assumes the relationship between the input and output in any local region can be a

imated in a form of a simple function. But unlike locally weighted linear regression, wh

assumes the local relationship islinear, locally weighted logistic regression approximates t

local relationship in the form of alogistic function of a linear combination of inputs. Logistic

functions are also referred to assigmoidfunctions, which are monotonic continuous function

between zero and one. The details will be discussed in Chapter 4.

Approximate P(yq | Sp, xq) using regression methods

Kernel regression is good enough to approximateP(xq | Sp). In this subsection, we focus on

how to use the regression methods to approximateP(yq | Sp, xq). We discuss this issue in thre

cases according to the different distribution types ofyq.

1. Suppose the conditional distribution ofyq given a specificxq is Gaussian, i.e.,

,

in which E(yq | Sp, xq) can be predicted using locally weighted linear regression tec

nique, the varianceσq
2 can be approximated as,

.

When the conditional distribution ofyq is continuous anduni-modal, we will always treat

it as a Gaussian distribution. Therefore, the above method is applicable for many cas

2. When outputyq is discrete or categorical, we can approximateP(yq | Sp, xq) using locally

weighted logistic regression.

P yq Sp xq,( ) 1

2πσq

-----------------
yq E yq Sp xq,( )–( )2

2σq
2

-------------------------------------------------–
 
 
 

exp=

σq
2

Var yq Sp xq,( ) E yq
2

Sp xq,( ) E
2

yq Sp xq,( )–= =
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3. When outputyq is continuous, but with multiple modes, there are two approaches. Fir

we can use the techniques like [King et al., 96] to perform the distribution approximatio

But this approach still relies on some prior knowledge of the distribution. Second, a

general purpose approach, we can discretizes the output so as to employ the log

regression approach described in last paragraph.

For example, suppose the outputyq is continuous within [0, 10). Regardless of whethe

y’s distribution is uni-modal or multi-modal, we discretize it into five equal-sized bins; s

that whenyq’s value is between [0, 2), we transform it into a categorical value, (1, 0, 0,

0)T. While y is between [2, 4), the corresponding categorical value is (0, 1, 0, 0, 0)T. Now

we can use locally weighted logistic regression to approximateP(yq | Sp, xq).

However, the discretization approach has two problems. First, in the example above,P(yq

= 2.5| Sp, xq) andP(yq = 3.5 | Sp, xq) will be identical, becauseyq = 2.5 andyq = 3.5 are in

the same bin. Therefore, the variance ofP(yq | Sp, xq) increases with fewer bins.

Second, increasing the discretization resolution causes increased loss of information

example, as categorical values, both (0, 1, 0, 0, 0) and (0, 0, 1, 0, 0) are differing from

0, 0, 0, 0), but one cannot tell that (0, 1, 0, 0, 0) is closer to (1, 0, 0, 0, 0) than (0, 0, 1

0). Thus, we retain the information thatP(yq = 1.0| Sp, xq) andP(yq = 3.9| Sp, xq) are both

different fromP(yq = 4.0 | Sp, xq), but lose the information thatP(yq = 3.9 | Sp, xq) and

P(yq = 4.0| Sp, xq) are closely related to each other.

Overall, we still suggest the discretizing method as a general purpose approach. In our e

ments in Chapters 3, 8 and 9, we discretized the outputs into 8 or 10 categories, and fou

results to be satisfactory.
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2.6 Summary

In this chapter, we introduce the main steps for system classification: pre-processing, p

tion, likelihood calculation, and hypothesis testing. In addition, we discuss three way

improve the efficiency.

This chapter is the framework of OMEGA technique, although we mention other relevant

ics, i.e. feature selection, logistic regression-based classifier and kd-tree technique. We w

cuss these topics in depth in later chapters.

The next chapter discusses an experiment, demonstrating the usefulness of OMEGA s

More complicated experiments will be discussed in Chapter 8 and 9, after we have finish

discussion on feature selection, logistic regression, and kd-tree.
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Chapter 3

Tennis Style Detection

3.1 Experimental Design

In this experiment, we designed a simple simulator of tennis, to study different people’s pla

styles. The ball is served automatically from a random position in the upper half field w

random speed within a certain range and a random direction towards the bottom line. A h

player can control the racket by moving the mouse. The speed of the racket is proportio

the speed of the mouse, and its orientation is perpendicular to the recent trajectory of the m

Figure 3-1: Tennis simulator interface.
49
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The short line segments in Figure 3-1 illustrate the recent movement of the racket. Whe

racket hits the ball, the ball is bounced back as a light beam is reflected by a mirror. Thu

direction of the ball after contact is decided by both the orientation of the racket and the

dent direction of the ball. Concerning the ball’s emitted speed, it is decided by three fac

speed of the racket, the incident speed of the ball and the ball’s incident angle with resp

the orientation of the racket.

This simulation system is not dynamic. Referring to Figure 3-2, if we regard the human p

as a system, the input consists of four variables: the position where the ball is served b

computer, (xs, ys), the ball’s speed (vs) and orientation (θs) after the serve. The output include

the position where the contact between the racket and the ball happens, (xr, yr), the speed and

orientation of the ball after the contact, (vr andθr). We only took records of those shots whe

the racket hits the ball. If the player was so careless that the racket missed the ball, we d

record that shot. We did not consider the ball’s movement after the contact, because we

only interested in distinguishing the different playing styles, instead of evaluating the good

and drawback of each style. Illustrated in Figure 3-2, there is no time delay in the input

there is no feedback from the outputs, hence the system is not dynamic. In other words, th

order of the sequence of the data points,(xs, ys, vs, θs, xr, yr, vr, θr)t, t = 1, ..., T, is not important;

we can shuffle the order of the data points randomly.

Player
Input Output

Input: serve position (xs, ys), serve speed (vs) and orientation (θs).
Output: contact position (xr, yr), the ball’s speed and orientation

Figure 3-2: The tennis simulation system is not dynamic because
there is no feedback from the outputs and no delays for the inputs.

after the contact, (vr, θr).
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Six people were invited to do the experiment. Each of them played twenty runs; and d

each run, they gave one hundred shots. We did not use the data sets of the first thre

because the human players needed some time to learn how to play this game. We did n

the data set of the twentieth run, because when the players realized that they were close

end, they did not pay enough attention to their performance, instead, they only wanted to

the experiments as soon as possible. Thus, for each player, we have sixteen valid data

We did not evaluate the merit of the performance, we only want to distinguish the diffe

styles. However, it is an interesting but open question that if we evaluate the perform

whether or not people will adjust their styles so as to pursue higher scores; also, after

time, whether or not different people will converge to the same style which is preferred b

evaluator.

The style is relevant to the distribution of the eight variables. Some people tended to hit th

when the ball was close to the bottom line; the others gave a quick response once the ba

across the net. Some people wanted the ball to go in a direction as far as possible from th

ing direction; others preferred the ball going back along the way it came, because this ac

safer and easier. However, we cannot distinguish the styles only relying on the distributi

any one variable, because it is influenced by the other variables. As a matter of fact, we

that the speed of racket,vr, was the best single feature to distinguish different players. But co

paring with OMEGA, the single-feature-based classifier’s accuracy is very low (Section 

Since there are six players, and each player has sixteen data sets, totally there are nin

data sets. Randomly we picked out one from the ninety-six datasets, and asked OME

detect who was the underlying player by using the other ninety-five datasets as the tra

datasets. By comparing OMEGA’s result with the real underlying player, we could tell for

data set, whether or not OMEGA’s detection is correct. Similarly, we selected another da

to do this test, thus, we repeated the experiment for ninety-six times. The number of time

OMEGA succeeded to detect the correct underlying players can be used as a measure
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OMEGA’s accuracy. In the same way, we can measure the accuracy of the other method

the single-feature-based classifier.

3.2 OMEGA Result Analysis

This subsection discussed the experiment, which was to test if OMEGA could detect the u

lying player correctly. We picked out one data set from each player’s sixteen data sets

testing set, and used the other fifteen data sets as the memory data sets. To detect who

underlying player of the testing data set, OMEGA compared the testing data set with th

players’ memory data sets one by one. Hence, we got six average negative log likelih

’s. In Figure 3-3, 3-4, 3-5, the six curves correspond to the six players’

with respect to different numbers of data points involved in the calculation. The horizontal

is the number of data points in the unlabeled data set. Thus, the tails of the curve

who were most likely to be the underlying players.

Shown in Figure 3-3 (a) and (b), OMEGA detected Marianne and Colonel were the under

players of the concerned data sets. These results are correct. For the ninety-six dat

OMEGA did correct jobs for eighty-five times. It made mistakes for four times and was c

fused for seven times1. Figure 3-4 (a) shows a confused case, while Figure 3-4 (b) is a wr

one. Even in the wrong cases and the confused ones, OMEGA always found that the tails

real players’ likelihood curves were closer to the horizontal axis than most of the others

Sometimes the likelihood curves are bumpy. This is because the player performed in an u

way that hasn't been observed in memory. If a performance was so strange that it rarel

pened to all the players, including the underlying player himself, then all the likelihood cu

are bumpy, and roughly paralleling each other. In the case illustrated by Figure 3-4 (a), the

ball was served from a position very close to the right edge and also close to the net, w

sharp angle towards the left edge of the opposite field. Although the speed was not too

1. The definition of confusion refers to Chapter 2.2., Hypothesis testing, with significance levelα = 5%.

lik– Sp( ) lik– Sp( )

lik– Sp( )
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left Edward little time to react. Because Edward is right-handed, any ball coming from the

made him uncomfortable. Therefore, Edward’s action for the ninth hit was totally a failure

ball did not go across the net before it went out of the tennis court. Not only that, it see

Edward did not recover from this shock until the twelfth hit. In the eleventh hit, he ha

touched the ball, because the ball’s direction did not change too much after the contact. H

the likelihood curves in Figure 3-4 (a) rose to a peak at the eleventh hit. Fortunately, the tw
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Figure 3-3: Likelihood curves of six human players. Two sample of the correct cases.
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Figure 3-4: A confused case and a wrong case. (a) Confused: OMEGA can hardly
distinguish Edward from Marianne. (b) Wrong: The real play should be Colonel, but
OMEGA decided it was Robert. However, OMEGA did figure out Colonel was also very
likely to be the player.

(a) (b)
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ball was served in a manner Edward preferred: from the top left corner of the court toward

lower-right one, with a slow speed. This gave Edward a break to rebuild his confidence

played in normal way again. Therefore, the likelihood curves start to go downhill. The twe

second ball was another triumph. It started not far from center of the upper field, slowly

straightly downward. This was a great chance for Edward to exaggerate all his unique ch

teristics: he moved his racket rapidly to hit the ball when it arrived the center of the lower

field; after the contact, the ball rushed towards to the top right corner. Therefore, in Figur

(a), we see a great peak around the eleventh data point and a deep valley at the twenty-

The bumpiness implies the consistency of the players. Willoughby was the most cons

players among the six, because comparing Figure 3-5 (b) with other figures, Willough

curves are smoother than the others’.

The distances among the likelihood curves imply whose performances are similar. In

experiment, Margaret and Willoughby behaved similarly, referring to Figure 3-5 (a) and

But they are quite different from the others. As in Figure 3-3, 3-4, their curves were so m

higher than the others that they are off the graphs.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

2

3

4

5

6

7

8

Num of Data Points

−l
og

 L
ik

Real Player: Willoughby, No. 17

Margaret

Willoughby

Marianne

Colonel

Edward

Robert

0 10 20 30 40 50 60 70 80 90 100

2.5

3

3.5

4

4.5

5

5.5

6

Num of Data Points

−l
og

 L
ik

Real Player: Margaret, No. 12

Robert

Edward

Colonel

Marianne

Willoughby

Margaret

Figure 3-5: Willoughby and Margaret behaved similarly all the time. But they are different
from others. Willoughby played more consistently, referring to his likelihood curve in (b)
which is smoother than others.
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The likelihood curves tend to be more bumpy or chaotic at the beginning phase than afterw

Recall that with limited testing data points, OMEGA is still able to start the classification

but with more data points, OMEGA may improve its precision. Therefore, OMEGA is an id

on-line classification technique.

3.3  Comparison with Other Methods

In this section we compare OMEGA’s performance with those of other methods, like B

classifier and linear regression, because Bayes classifier is a popular statistical classifie

linear regression represents the linear control system approach. We also used the bes

feature to do the classification. The purpose was to show that it is not easy to distinguis

ferent tennis playing styles.

Bayes classifier

Bayes classifier assumes the memory data points of each candidate system are of Gaus

tribution, in plain words, each candidate system’s memory data points cluster in a shape

or less like an ellipse. In Figure 3-6, there are two candidate systems,S1 andS2, whose data

Figure 3-6: Bayes classifier assumes the distributions of the
candidate system’s data points are all of Gaussian distributions.

S1

S2

Unlabeled data point
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points are represented by the circles and the triangles respectively. The horizontal axis m

the input, the vertical one may be the output; but this is not a requirement. As a matter o

Bayes classifier does not distinguish the input and output, instead, it treats all the input an

put as features. By adjusting the scales of the axes, Bayes classifier can discriminate the

tance of different features. In Figure 3-6, if the scales of the axes are changed, the ell

shape of the clusters will be different. To classify an unlabeled data point, like the cross in

ure 3-6, we can measure the distances from the unlabeled data point to the centroids of th

tical clusters. The shortest distance indicates to which candidate system (represented

ellipse) the unlabeled data point belong to. Given a set of unlabeled data points, we can

classification one by one, then make an overall judgement.

The Gaussian assumption of Bayes classifier is too restrictive for the tennis style do

Therefore, Bayes classifier’s performance as shown in Table 3-1 is very poor compared

OMEGA.

Linear regression approach

Linear regression assumes the function relationship between the inputs and the outputs

ear. Furthermore,global linear regression assumes the function relationship (the paramete

the function) is fixed anywhere around the input space. If the function parameters of a c

system is distinguishable from the others, the classification job is feasible. In this experi

we did the global linear regression of each candidate system based on its memory data

In other words, we determined the parameters,β’s, in the following linear equations for every

candidate system,

(3-1)

xr β10 β11xs β12ys β13vs β14θs ξ1+ + + + +=

yr β20 β21xs β22ys β23vs β24θs ξ2+ + + + +=

vr β30 β31xs β32ys β33vs β34θs ξ3+ + + + +=

θr β40 β41xs β42ys β43vs β44θs ξ4+ + + + +=









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in which the definitions of the input variables,xs, ys, vs, θs, and the output variablesxr, yr, vr, θr

refer to Section 3.1. When a unlabeled data set came, to detect its underlying player, w

porarily assume the unlabeled set was generated by the first player. Since we have alrea

mated the first player’s function parameters (theβ’s), we picked out a data point(xs, ys, vs, θs,

xr, yr, vr, θr)t from the unlabeled data set, we could predict the outputs(xr, yr, vr, θr)t correspond-

ing to the input(xs, ys, vs, θs)t. If the residual between the predicted outputs and “real” obser

output is small, the first player is likely to be the underlying player. We repeated this test

respect to all the six players, the smallest residual responds to the most likely player.

We used the estimatedβ’s to predict the outputs, then compare the predicted outputs with

real outputs. Usually there is a residual between the predictions and the real outputs. Th

tem with the least residuals is most likely to be the underlying system which generates th

ing dataset.

Referring to Table 3-1, global linear regression can hardly distinguish the variant human

ers, because in most cases, global linear regression is “confused”. To improve it, we can d

things: (1) We can extend the linear equations in Equation 3-1 to polynomials with hi

degrees. In this way, the function is capable of describing more complicated relation

between the input and output. (2) Instead of assuming there is one fixed global linear fun

we can assume in any local region, the input and output relationship is linear, but the

parameters may vary with different inputs.

In Table 3-1, we notice that quadratic model does not do any better than the linear mode

local paradigm does help. However, the local approach, even the local models with qua

items, is still worse than OMEGA by a large margin. The reason is that in this tennis pla

style domain, even for the identical serves, the same player may react in different ways

means, the conditional distribution of the output with respect to a certain input may be of m

modal, instead of uni-modal as the linear model assumes. Therefore, the linear models a

proper for the tennis playing style domain, either.
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3.4 Summary

In this chapter, we used OMEGA to classify different human operators’ behavior in a g

mimicking tennis. Although the simulation system is not dynamic, the classification job is

easy, especially because the distribution of the input and output is complicated. OMEGA

forms very well in this domain, which demonstrates that OMEGA is a good classification t

nique. Although originally it was explored to classify time series, OMEGA is also a gen

purpose classification tool, which is capable of handling both time series and non-time s

Experiments have been done to compare OMEGA with other methods. Although we

tuned up those methods to perform as well as possible, they still are not competitive

OMEGA.

 Table 3-1: Comparison experiment for tennis domain

Correct Wrong Confused

One Feature 21 57 18

Bayes 34 40 22

k-Nearest Neighborsa 17 14 67

Global Linear 9 12 75

Global Quadratic 9 12 75

Local Linear 17 8 71

Local Quadratic 20 5 71

OMEGA 85 4 7

a. We used 9 nearest neighbors here. Also, we tried 3 nearest neighbors as well as 6,
the results do not deviate from those values in the table significantly.
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Chapter 4

Logistic Regression as a Classifier

In this chapter, we discuss how to approximate the probabilityP(yq | Sp, xq), i.e., the probability

that if the underlying system isSp, corresponding to a certain inputxq, the system’s output is

yq. We explore a new memory-based method,locally weighted logistic regression, which aims

at approximatingP(yq | Sp, xq) when the outputyq is categorical.

Figure 4-1 illustrates the task of this chapter. Suppose there is a system,Sp, whose input space

is 2-dimensional, and the output is boolean. Suppose a unlabeled data point is (xq, yq), to

approximateP(yq | Sp, xq), we need some knowledge of systemSp. Memory-based methods

assume that the knowledge comes from the previous observations of the system’s behav

the memory data points or the training data points, as the circles and crosses in Figure 4-

circles correspond to those memory data points ofSp with outputs equal to0, the crosses cor-

respond to the other memory data points with outputs equal to1. Now, if there come two que-

ries, residing at the positions of the dark triangles, if both of the queries’ outputs are “cr

then intuitivelyP((yq = “cross”) | Sp, xq= (2.0, 3.0)T ) should be close to1.0because the major-

ity of its neighbors are crosses, whileP((yq = “cross”) | Sp, xq = (4.5, 1.0)T ) should be near

0.0, based on the similar reasoning.
59
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4.1 Classification methods

Since the outputy is categorical, the approximation ofP(yq | Sp, xq) is a classification problem

by itself. System classification is to summarize a sequence of such classifications. The

many classification methods. The simplest one is nearest neighbor [Duda et al, 73; Aha

89]. Its derivative,k-nearest neighbors, is more popular. Kernel regression, as mention

Chapter 2, is another important method. These methods are referred to asmemory-basedor

instance-basedclassification methods [Atkeson et al, 97], while non-memory-based classi

tion methods include neural network [Bishop, 95], decision-tree [Quinlan, 93], hierarch

mixtures of experts (HME) [Jordan, et al, 93], Bayes classifier [James, 85], etc. Both mem

based classifiers and non-memory-based ones assume the knowledge of the systemSp comes

from the training data points. The distinguishing characteristic of memory-based classific

methods is that they defer most of the processing of the training data points until after a

is made. This characteristic is desirable for processing continuous streams of training da

queries in real-time systems. In addition, the memory-based classifiers are capable of se

ing according to the distribution and noise level of the training data points. Non-memory-b

methods try to learn the underlying function model of the systemSp before any query comes

For example, neural networks have been proved capable of approximating any functio

x1

x2

0

1.0

3.0

2.0 4.5

Figure 4-1: An illustration of the classification task.
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there is no restriction of the numbers of its hidden layers and its hidden nodes. Given a

cient number of training data points, neural network uses them to approximate the unde

function relationship of the input and output. Once the training is done, the training data p

are tossed away. Then, we wholly rely only on the trained neural network to process any

ries.

Let’s pick up some popular classification methods, and discuss them in a little depth.

1. Nearest neighborhood or1-nearest neighborhood doesn’t perform satisfactorily in mos

cases, because it is too sensitive to the noise of the single nearest neighboring data p

k-nearest neighborhood performs quite well in many domains. But notice that it does

recognize the “boundary” of the different patterns. Besides,k-nearest neighborhood may

be influenced by the density of the neighboring data points along the border. In the follo

ing diagram, intuitively the output of the query (the dark triangle) should be a cros

because it is on the cross side. However,k-nearest neighborhood’s conclusion tends to be

circle, because among thek nearest neighboring data points, the majority are circles.

2. Kernel regression is a good method for interpolation. However, it is not ideal for extrap

lation. Suppose a query resides at a location remote from the centroid of other mem

data points, like the reversed triangles in the above diagram, Kernel regression can

clearly decide if the category of the reversed triangle. Instead, it tends to assign 50% to

probability for the query’s output to be “cross” (or “circle”).

3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on

distribution of the data points. The conventional Bayes classifier assumes that if the o
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puts are boolean, the memory data points distribute in two clusters, one for the mem

data points with output equal to 0, the other cluster for the data points with output equa

1. Furthermore, the points are Gaussian-distributed in the input space so that the shap

the clusters are ellipses. Referring to Figure 4-1, these restrictions are too strong for m

classification problems. Even if we extend Bayes classifier to consider multiple clusters

is still too hard to meet the requirement that the shapes of these clusters must be ellip

Another concern about Bayes classifier is that it needs a large number of paramete

decide the centroids and the shapes of the Gaussian ellipses, this problem becomes

severe when we employ multiple ellipses.

4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small se

ments, and label these small segments with one of the various output categories. How

conventional decision tree only does the partitioning to the coordinate axes. It is plaus

that with the growth of the tree, the input space can be partitioned into tiny segments s

to recognize subtle patterns. However, overgrown trees lead to overfitting. More flexi

than the conventional decision tree, CART [Breiman et al, 84] and Linear Machine De

sion Tree [Utgoff et al, 91] can divide the input space using oblique lines. However, a

nonlinear boundary may either make the tree overgrown or reduce the accuracy of

classification.

In this thesis, we explore a locally weighted version of logistic regression which can be us

a new memory-based classification method. Our method shares the properties of other

ory-based classification methods. Besides, our method has some other good properties,

ing simplicity, capability of extrapolating, and a known confidence interval. Concerning

accuracy, our new method is competitive with others, supported by the experimental res
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4.2 Global logistic regression

Locally weighted logistic regression can be used to approximateP(yq | Sp, xq). Let’s begin with

a very simple case with boolean output, shown in the following figure.

The straightforward way to approximate this function is to use two line segments to fit the

which are also referred to as training data points. However, to be learnable, we want to

differentiable function to do the fitting instead of using two line segments.Logistic function,

which is also referred to assigmoidfunction, can be employed here. Logistic function is

monotonic, continuous function between0 and1, whose shape is shown as the grey curve

the above figure. Mathematically, it is defined as,

(4-1)

where is the input vector of the query, and is the parameter vector. as the proba

for  to be1, i.e.

.

Therefore, deciding the output of a query is now equivalent to finding the value of .Global

logistic regression assumes that all data points share the same parameter vector with the

i.e.

x

y

y = 1

y = 0
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˜
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While local logistic regression allows vary cross the input space, but it changes smoo

For example, if and are neighboring to each other, then we assume and mu

close to each other, too. Back to global logistic regression, a good estimate of should

in plain words, “go through”, all the training data points as well as possible. Mathematic

the estimate of  can be derived by maximizing the likelihood as following,

(4-2)

Global logistic regression is a well-established algorithm in statistical literature [McCullag

al, 89]. Although we discuss only the binary output case here, global logistic regression is

to be extended to multiple categorical output cases. We will talk about this later.

The simplest classification problem is illustrated as Figure 4-2. The input is one-dimens

which is represented by the horizontal axis; the output is boolean, represented by0 or 1 on the

vertical axis. The small circles in the pictures are the data points in memory. Global log

regression works perfectly in the noise free case illustrated by Figure 4-2 (a), because the

tic function curve goes through most of the data points in memory. Global logistic regres

also works in the noisy case shown as Figure 4-2 (b). Although the function curve moves

way between the data points, the curve is close to most of the data points. In summary,

logistic regression can be used as a noise tolerant classification method.
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The fatal weakness of global logistic regression is shown in Figure 4-2 (c). Since it con

more than two segments, global logistic regression does not work. Recalling logistic fun

is a monotonic function, that is the reason global logistic regression fails whenever the

more than two segments. There are two approaches to solve this problem. One way to t

that although one logistic function does not work, we can combine several logistic funct

In fact, neural networks, especially feed-forward multi-layer perceptrons, can be regard

an implementation of this idea.

The second approach resorts to the localization paradigm. The idea of local logistic regre

is that although no single logistic function works well globally, in any local region a sin

function should be capable of doing the classification.

There are several versions of local logistic regression that can be investigated.K-nearest neigh-

bor local regression would only select those neighboring data points, and ignores all o

Locally weighted version of logistic regression does not ignore any data points in mem

instead, it discriminates the data points by assigning weights to them.

Figure 4-2: (Global) logistic regression for classification.

Global logistic regression  Global logistic regression
 works for simple pattern
 with noise.

Global logistic regression
does not work for complex
pattern.

works perfectly for simple
pattern.

(a) (b) (c)

x x x

y=1 y=1

y=0

y=1

y=0 y=0
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4.3 Locally Weighted Logistic Regression

4.3.1 Maximum Likelihood Estimation

Locally weighted logistic regression is very similar to the global logistic regression, excep

the locally weighted version assign a weight to . Differing from Equation 4-2,

locally weighted version of likelihood is,

(4-3)

The weight is a function of the Euclidean distance from thei’th memory data point to the query

Other metrics of distance are also possible depending on the specific domains. The

weighting function definition is referred to asKernel width. The influence of Kernel width will

be discussed shortly. Due to the weights, those data points remote from the query have s

weights, while the neighboring memory data points have bigger weights.

Using Newton-Raphson algorithm, and through some algebraic manipulations, the max

likelihood estimate of  can be simplified as,

(4-4)

Suppose there areN data points in the memory, each data point consists of ad-dimensional

input vector and a boolean output.X is then a matrix. Thei’th row of X matrix is

(1, xi
T). And is a diagonal matrix, whosei’th diagonals element is, ,

where  is the derivative of  with respect to , i.e.,

. (4-5)
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is the weight defined in Equation 4-3. The last item, is a ratio of to . Newt

Raphson algorithm starts from a random vector of , usually we assign to be zero v

The recursive process converges very quickly, usually no more than 10 loops. Once we g

maximum likelihood estimate of , we can estimate the query’s .

Also notice that,  is the asymptotic variance matrix of .

Now let us go back to the case of Figure 4-2 (c) and see if locally weighted logistic regre

classifier is capable of solving the problem where global logic regression fails. The res

shown in Figure 4-3 (a). The circles are the memory data points. And each dot on the

curve, which is , is plotted by doing its own locally weighted regression at that local reg

Locally weighted logistic regression works well in this case. Also, in the harder case of Fi

4-3 (b), it still works. Notice, is influenced by the noise but not the distribution of the d

points.

wi e yi πi– π'i

β
˜

βˆ
˜

0( )

β
˜

πq

XtWX( ) 1– β̂
˜

πq

πq

Locally weighted logistic
regression works well
for this noise free multi-
segment classification.

Figure 4-3: Locally weighted logistic regression as a classification technique
works robustly.

(a) (b)
x

y=0

y=1
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4.3.2 Weighting Function and Kernel Width

Referring to Equation 4-3, , the weight can be adjusted by the Kernel width.When the K

width is big, more data points have high weights. Therefore, a bigKw is usually preferred when

the noise level in memory is high. Extremely, whenKw goes to infinity, locally weighted logis-

tic regression is equivalent to the global one. WhenKw is small, only those close neighbors ca

effect the regression. Hence, a smallKw is good at recognizing the details of the memory. T

influence ofKw is demonstrated by Figure 4-4.

4.3.3 Confidence Interval

Our estimate is a point estimate, which is our best guess for the true value of . Repo

only the point estimate is often unsatisfactory. Some measure of how close the point es

is likely to be the true value is required. Theconfidence interval is such a metric.

The confidence interval of is an interval of plausible values for , ; the proba

ity or the confidence for the true value of falling into this interval is , in whic

is theconfidence level. Usually we pre-define a confidence level, then decide the lower

upper bounds,πL andπU, which are also effected by the density and consistency (noise le

of the data points in the neighborhood ofxq.

wi

Small K reduces bias Big K smoothes noise

(a) (b)

Figure 4-4: Kernel width adjusts the weighting function.

y=0

y=1

x
y=0

y=1

x
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πq 100 1 α–( )%
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Referring to Equation 4-1,π is a monotonic function of ; hence, to calculate the low

and upper bounds, we need know the lower and upper bounds of . Referring to

section 4.3.1, we can calculate the asymptotic variance of which is , wher

is decided by the memory data points and is effected by the distances from the query

memory data points. Notice that the asymptotic variance of is likely to be small when t

are more data points in the memory, especially in the neighborhood of the query. It is stra

forward to calculate the confidence interval of based on the upper and lower boun

.

The confidence intervals of the cases of Figure 4-3 (a) and (b) are plotted in Figure 4-5 (a

(b). When the data points distribute uniformly as Figure 4-5 (a), the confidence interval is

consistent. Otherwise, the confidence interval varies cross the input space.

According to ’s definition, referring to Equation 4-5, when is close to1.0, we tend to

predict that the query’s outputyq is likely to be1. However, if at the same time ’s confidenc

interval is too big, we should be conservative about our prediction. Figure 4-5 (b) shows

a situation: is almost zero, therefore, if we only rely on , we should predict the ou

will be 0. But since the confidence interval is very wide, we should be aware that there is

a lot of chance for the outputyq to be1.

1 xq
T,( )β

˜
1 xq

T,( )β
˜

β̂q X
T
WX( )

1–
X

W

β̂q

π̂q

xqβ̂q

The upper curve and the
lower one are the two
boundaries of the confi-
dence interval.

The CI is influenced by
the distribution of the
memory data and the noise.

(a) (b)

Figure 4-5: Confidence intervals for classification.
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Confidence interval is helpful for active learning and/or experimental designs. Whereve

confidence interval is wide, we need more data points in that region.

4.3.4 Multi-categorical classification inference

Up to now, we focus on boolean classification. In case the output has more than two outp

egories, locally weighted logistic regression method is still useful. But we should do s

modifications.

1. Suppose there arem output categories, we can represent the output by am-dimensional

vector. If a data point falls into the first category, its output, , is ; if it is in

the second category, is . In general, the distribution of output is multino

mial, in the form of,

where  the probability for the data point falling into thej’th category.

2. We assume  is decided by a function similar to logistic function,

Notice that the sum of ,j = 1, ...,m, is 1.0. And for each output category, there is a uni-

fying ; totally, there arem of them.

3. The likelihood can be constructed following the descriptions in Section 4.2 and sect

4.3. For example, the global likelihood, which assumes all data points share the same

defined by Equation 4-6,

y
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(4-6)

Now it is straightforward to follow the same inferences described in Sections 4.3 to figur

the locally weighted regression of  and the confidence interval of .

4.4 Comparison Experiment

Artificial Experiments

We artificially generate three data sets, each data consists of two input attributes (2-d input) and

a boolean output. In Figure 4-6, we represent those data points with output values equal0 by

circles, and represent the other data points, whose outputs are1, by crosses.

Figure 4-6 (a-c) are the contours of the values corresponding to three different memor

sets. Figure 4-6 (a) shows a simple case, in which locally weighted logistic regression d

perfect job. Figure 4-6 (b) is similar to Figure 4-6 (a) except that, the “boundary” of the

regions is messier, and there is noise involved as well. In this case, value increases0

to 1, starting from the bottom left corner to the top right one; hence, locally weighted log

regression works well, too. The small gradient of the contour of shows the influence o

inconsistency (noise) of the data points in memory. Figure 4-6 (c) is the hardest case, in

locally weighted logistic regression still works well. Figure 4-6 (d) is the contour ofconfidence

interval for the same memory as Figure 4-6 (c). It is apparent that the memory data po

noise level, as well as their distribution and density, influence the confidence interval.
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Real World Datasets

We use four binary output data sets from UCI’s machine learning dataset repository, Io

Pima., Breast., and Bupa. We try six different classifiers, including nearest neighbor meth1-

Nearest), k-nearest neighbors (k-Nearest), Kernel regression (Kernel), conventional Baye

classifier with two clusters (Bayes), C4.5 decision tree (Decision), feedforward perceptron

(Neural), global logistic regression (Global Logistic) and our locally weighted logistic regres

sion method (Local Logistic). The dimensionalities of the inputs vary from6-d to 34-d.

We split each data set into two parts, the first part contains two thirds of the data points, w

are used as the memory or the training dataset. The remaining one third of the data poi

used as the test set. We can approximate the accuracy of a certain method for a certain
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Figure 4-6: Three artificially generated data sets as the testbeds of locally
weighted logistic regression classifier.
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by theerror rate, which is the ratio of the number of the failures to the number of the tes

data points. For the same dataset, the lower the error rate, the better the classification m

performs.

With different Kernel width, locally weighted logistic regression may have different accurac

We split the range of the Kernel width into ten equal-length steps, and tried the logistic re

sions using these ten different Kernel widths, so as to find the optimal Kernel width. Simil

for k-nearest neighbor method and kernel regression, we enumerated parameterk from 10 to

100with step10; for perceptron, we tried one-hidden layer feedforward perceptron with1 to

10 hidden nodes. In this way, we found the best parameters for the various machine lea

methods.

For each dataset, we shuffled it five times; each time we split it into training set and testin

Hence, for each dataset by each method, we got five error-rates which were the best

mances of the method with the tuned-up parameter(s). We recorded the mean values o

error-rates in Table 4-1, along with the standard deviations in parentheses.

 Table 4-1: Comparison of logistic classifier with other methods

Error rate (%) Ionos. (34-d) Pima (8-d) Breast (9-d) Bupa (6-d)

1-Nearest 12.7 (2.5) 33.9 (1.8) 4.9 (0.6) 40.0 (2.4)

k-Nearnest 13.9 (2.9) 31.5 (4.7) 3.3 (0.5) 37.5 (5.8)

Kernel 12.7 (3.3) 30.9 (3.2) 3.3 (0.6) 37.3 (2.0)

Bayes 12.9 (1.2) 25.3 (2.3) 3.4 (1.2) 34.2 (3.6)

Decision 9.2 (2.1) 28.6 (3.0) 4.2 (1.1) 35.8 (3.2)

Neural 10.5 (3.2) 33.4 (2.0) 3.2 (0.6) 32.1 (4.5)

Global Logistic 12.4 (0.7) 24.9 (3.0) 3.9 (1.4) 34.4 (3.4)

Local Logistic 13.0 (0.4) 22.5 (2.8) 3.1 (0.7) 31.0 (2.7)
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The experiments show that the accuracy of the locally weighted logistic regression m

(Local Logistic) is competitive compared with other classification method. Some remark

listed as following,

1. It is not surprising that locally weighted logistic regression is more accurate in most ca

than 1-nearest neighborhood,k-nearest neighborhood, Kernel regression, convention

Bayes classifier, C4.5 decision tree, and global logistic regression according to our dis

sion in Section 4.1.

2. Global logistic regression’s performance is similar to that of the conventional Bayes cl

sifier with two clusters. But global logistic regression is computationally cheaper than t

conventional Bayes classifier. Suppose the input space’s dimensionality isd and the mem-

ory size is N, the computation cost of locally weighted logistic regression is

, while that of the conventional Bayes classifier with improved efficienc

by some tricks is , wherek is the number of clusters.

3. Concerning neural networks, locally weighted logistic regression does not outperform

in accuracy. Instead, an advantage comes from the general good properties of the mem

based approach over non-memory-based ones. As mentioned in the beginning of

chapter, Section 4.1, as well as [Atkeson et al., 97], because memory-based learning

not process data until the query arrives, the parameters of the logistic regression are

fixed in advance. When we update the memory, unlike neural network, less interfere

will happen, because the previous arrived memory data points are treated equally as

new comers. And by adjusting the parameters, we can shift the logistic regression cont

ously along the global-local spectrum.

4. Locally weighted logistic regression performs poorly on the Ionos dataset. The reaso

that the dimensionality of the input is very high (34-d). Maybe many input attributes a

irrelevant to the classification but only confuse the classifiers. When we selected the fi

O d
3

d N×+( )

O d
3

N d N k××+×( )
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the fourth and the fifth attributes to be input, the mean value of error-rate of the local log

tic classifier dropped from13.0% to 10.7%, with standard deviation 0.7%.

To eliminate those less important input variables, recall that locally weighted logis

regression estimates the parameter vector . In fact, each element of indicates the

nificance of the corresponding input attribute for classification. If one element of

close to zero, it implies that the corresponding input attribute is not very relevant to t

classification job. We can get rid of the irrelevant input attributes using this heurist

Some preliminary experiments showed that the selection result was quite consistent

the nodes of decision tree.

4.5 Summary

In this thesis, we explore a locally weighted version of logistic regression which can be us

a new memory-based classification method. Our method shares the properties of other

ory-based classification methods. Besides, our method has some other desirable pro

including simplicity, competitive accuracy, capability of extrapolating, and confidence inte

In Chapter 5 and Chapter 6, we will discuss the issue about how to improve the efficien

locally weighted logistic regression as well as other memory-based methods.

β β

β
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Chapter 5

Efficient Memory Information Retrieval

In this chapter, we will talk about two topics: (1) What is a kd-tree? (2) How can we use

trees to speed up the memory-based learning algorithms? Since there are many detail

second topic, we only discuss how to improve the efficiency of Kernel regression in this c

ter, to demonstrate the approach in principle. In next chapter, we will explain the deta

applying kd-tree techniques to improve the efficiency of locally linear regression and lo

weighted logistic regression.

5.1 Efficient information retrieval

Suppose there are a set of memory data points whose input space is 2-dimensional, sh

Figure 5-1. Given a query(xq, yq), a task of information retrieval is to find this query’s neigh

boring memory data points. The brute force approach is to measure the distances fro

query to each of the memory data points. Then based on these distances, it is straightf

to decide which memory data points are the query’s neighbors. The distance may be Euc

or another metric depending on the specific domain. The drawback of the brute force m

is obvious: since its computational cost is , whereN is the memory size andd is the

dimensionality of the input space. When the memory sizeN becomes very large, its costs wil

increase, too.

O N d×( )
77
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To improve the efficiency of finding the neighbors, we can partition the input space of the m

ory data points into many cells by means of a grid. When a query arrives, we can consu

cell where the query locates and its neighboring cells, instead of visiting all the memory

points individually. In this way, the computational cost shrink from to

wheren is the number of memory data points in the concerned cell(s). (If we neglect the

of finding the cell where the query resides.) The grid method performs the best when the

ory data points distribute uniformly, so thatn tends to beN / G, in which G is the number of

grids in the whole input space. However, there is no guarantee that the memory data poin

tribute uniformly forever and wherever. Sometimes most of the memory data points are p

in only a limited number of cells, while the other cells are almost vacant. Therefore, the co

bution of the grid method to the efficiency is not reliable.

The kd-tree technique [Preparata et al, 85] is similar to the grid method in the sense that

partitions the input space into many cells. However, the partition is flexible with respect t

density of the data points in the input space. Wherever, the density is high in the input s

the resolution of the kd-tree’s partition at that region is also high, so that the cells tend

x1

x2

Figure 5-1: Grid for efficiency information retrieval.

Query
Query

O N d×( ) O n d
2×( )
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small. Otherwise, for those regions where there are only a limited number of memory

points, the partition resolutions are low, and the cells are large.

5.2 Kd-tree Construction and Information Retrieval

A kd-tree is a binary tree that recursively splits the whole input space into partitions, in a

ner similar to a decision tree [Quinlan, 93] acting on real-valued inputs. Each node in th

tree represents a certain hyper-rectangular partition of the input space; the children of thi

denote subsets of the partition. Hence, the root of the kd-tree is the whole input space,

the leaves are the smallest possible partitions this kd-tree offers. And each leaf exp

records the data points that reside in the leaf. The tree is built in a manner that adapts

local density of input points and so the sizes of partitions at the same level are not neces

equal to each other.

In our formulation of the kd-tree structure, each node records the hyper-rectangle cover

it. This is defined as the smallest bounding box that contains all the data points owned b

node of the tree. Each non-leaf node has two children representing two disjoint subregio

the parent node. The break between the children is defined by two values:split_d is the

splitting dimension, which determines which component of input space the children wi

split upon;split_v determines the numerical value at which each split occurs. The

points owned by the left child of a node are those data points owned by the node which a

than valuesplit_v in input componentsplit_d . The right child contains the other dat

points. A sample kd-tree is shown in Figure 5-2.

To construct a tree from a batch of training data points in memory, we use a top-down rec

procedure. This is the most standard way of constructing kd-trees, described, for exam

[Preparata et al., 85] [Omohundro, 91]. In our work, we use the common variation of spli

a hypercube in the center of the widest dimension instead of at the median point. This m

of splitting does not guarantee a balanced tree, but leads to generally more cubic hyper-r
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s are

tree
gles, which has empirically proved better than other schemes (pathologically imbalance

conceivable, but trivial modifications to the algorithm prevent that.) The cost of making a

from N data points isO(Nd logN).

The base case of the recursion occurs when a node is created withNmin or fewer data points.

Then those data points are explicitly stored in the leaf node. In our experiments,Nmin = 2.

Queries

Figure 5-2: To implement the grouping idea, we use hyper-rectangles with
kd-tree. To find the neighborhood of a certain query (triangle), we can
recursively search the tree from the root towards to the leave where the query
resides. For different query (reversed triangle), we can use the same kd-tree
but choose different nodes.

*
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To incrementally add a new data point to the tree, the leaf node containing the point is d

mined (O(logN)cost). The data point is inserted there (and a new subtree is recursively b

the number of nodes exceedsNmin).

Given a query(xq, yq), to find those memory data points whose input vectors are close toxq, we

can recursively search the tree from the root towards to leaves, referring to Figure 5-2, wi

triangle query. According to the pre-defined range of “neighborhood”, it is straightforwar

find those branches of the kd-tree, which are close to the branches where the query reside

issues to be noticed:

1.With different ranges of the “neighborhood”, the “neighboring” branches can be differ

The neighboring branches with respect to a strict defined neighborhood is a subset of

neighboring branches corresponding to a loose definition. This characteristic is desi

because it allows us to find those neighboring data points corresponding to any definit

the neighborhood along the local-global spectrum.

2.Although we will use the kd-tree to find asetof neighboring data points, it is also possible

find the “exact” nearest neighboring data point. For the example in Figure 5-2 with

reversed triangle query, to find its nearest neighbor data point, we wish we could s

from the root of the tree down towards to the leaf where the query locates, so that the c

, whereN is the memory size. Unfortunately, it is possible that its nearest ne

boring data point is in another leaf of a remote branch of the kd-tree, marked with “*” in

diagram. More theoretical analysis refers to [Kleinberg, 97]. The standard nearest nei

algorithm, [Preparata et al, 85] [Moore, 90], avoids this problem while still only requir

 time.

O Nlog( )

O Nlog( )
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5.3 Cached Kd-tree for Memory-based Learning

The goal of our exploring kd-trees is not to find the nearest neighbor, and not only to find

of nearest neighbors, but mainly to enhance the efficiency of the memory-based learning

ods. The basic principle is to cache useful statistical information into the kd-tree nodes, s

when we do the memory-based learning process, instead of visiting every relevant memo

point, we mainly rely on the statistical information in the tree nodes. In this chapter, we f

on using this cached kd-tree to speed up Kernel regression, to demonstrate the approach

eral.

Kernel regression

In Chapter 2, we discussed using Kernel regression’s idea to approximateP(yq | Sp, xq), i.e. the

probability that a given query data point(xq, yq) belongs to a systemSp, where the knowledge

of Sp comes from a set of memory data point,(x1, y1) ..., (xN, yN), which is the observations of

Sp’s previous behavior. Cached kd-trees can improve the efficiency of Kernel regression

example, [Franke, 82]), not only for the approximation ofP(yq | Sp, xq), but also for the general

purpose use. As a popular machine learning method, Kernel regression is often used to d

diction: given an input vectorxq, which is called query, Kernel regression predicts its outp

, based on the memory data points(x1, y1), ..., (xN, yN). We assume all the memory dat

points were generated by an identical system.

Kernel regression use the weighted average of the outputs of all the memory data points

dict :

(5-1)

yq
ˆ xq( )

yq
ˆ xq( )

yq
ˆ xq( ) wi yi

i 1=

N

∑
 
 
 

wi
i 1=

N

∑
 
 
 

⁄=
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wherewi is the weight assigned to thei’th datapoint in our memory, and is large for points clos

to the query and almost zero for points far from the query. It is usually calculated as a dec

ing function of Euclidean distance, for example by Gaussian:

As we have mentioned previously,Kw is the Kernel width. The bigger the parameterKw is, the

flatter the weight function curve is, which means that many memory points contribute

evenly to the regression. AsKw tends to infinity the predictions approach the global average

all points in the database. If theKw is very small, only closely neighboring data points make

significant contribution.Kw is an important smoothing parameter for kernel regression. If

data is noise free then a smallKw will avoid smearing away fine details in the function. If th

data is relatively noisy, we expect to obtain smaller prediction errors with a relatively largeKw.

This is illustrated in Figure 5-3.

The drawback of kernel regression is the expense of enumerating all the distances and w

from the memory points to the query. This expense is incurred every time a predicti

required. Several methods have been proposed to address this problem, reviewed as fol

wi Const exp
xq xi, 2

2Kw
2

---------------------–
 
 
 

×=

K is small
K is big

K is big
K is small

Figure 5-3: For the noiseless data in the top example, a small K gives the best
regression (in terms of future predictive accuracy). For the noisy data in the bottom
example, a large K is preferable.



84 Chapter 5: Efficient Memory Information Retrieval

thod,

, and

if the

nt

oints

the

ually

(e.g.

ing

is can

idths.

cannot

onal

local

tree

pro-

e new

redic-

e, 89]

st all
1.[Preparataet al, 85] proposed a range-search solution. Similar to our cached kd-tree me

the range-search solution finds all points in the kd-tree that have significant weights

then only sum together the weighted components of those points. This is only practical

kernel widthKw is small. If it is large, all the memory data points may have significa

weights, but with only small local variations, thus range searching would sum all the p

individually. Even in cases of small kernel widths, but if there are many data points in

neighborhood, the range search method will need to search all the data points individ

and may still end up with a large computational cost.

2.Another solution to the cost of conventional Kernel regression isediting (or prototypes):

most data points are forgotten and only particularly representative ones are used

[Kibler and Aha, 88] [Skalak, 94]). Kibler and Aha extended this idea further by allow

data points to represent local averages of sets of previously-observed data points. Th

be effective, and unlike range-searching can be applicable even for wide kernel w

However, the degree of local averaging must be decided in advance, and queries

occur with different kernel widths without rebuilding the prototypes. A second occasi

problem is that if we require very local predictions, the prototypes must either lose

details by averaging, or else all the data points are stored as prototypes.

3.Decision trees andkd-trees have been previously used to cache local mappings in the

leaves [Grosse, 89], [Moore, 90], [Omohundro, 91], [Quinlan, 93]. These algorithms

vide fast access once the tree is built, but a new structure needs to be built each tim

learning parameters, such as Kernel width, are required. Furthermore, the resulting p

tions from the tree have substantial discontinuities between boundaries. Only in [Gross

is continuity enforced, but at the cost of tree-size, tree-building-cost and prediction-co

being exponential in the number of input variables.
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Computing the kernel regression sums

Now it is time for us to use the cached kd-tree to improve the efficiency of Kernel regres

and at the same time avoid the drawbacks of the other competing methods.

Recall that each kd-tree node represents a hyper-rectangle sub-region of the input space

covers a set of memory data points. Assume in one node there aren data points, and corre-

sponding to a certain query, thesen data points’ weights are all close to a valuew; in other

words, the weight of thei’th data point in this node iswi = w + ξi, where allξi’s are small.

Referring to Equation 5-1, when performing Kernel regression, we need to accumulat

sums over all data points in memory, including thesen data points in this node,

 and

Restricting our attention to summations over then data points in the concerned kd-tree nod

we have,

Providing we known, w andΣyi for the current node, we can therefore compute an approxim

tion toΣwiyi andΣwi in constant time without needing to sum individual data points contain

in the node. This approximation to the partial sums is good to the extent thatΣεiyi is small with

respect towΣyi andΣεi is small with respect tonw.

Therefore, we should cache two other pieces of information into each kd-tree node in con

tion with split_v and split_d : the number of data points below the current nod

n_below , and the sumΣyi of all output values of the data points contained in the node,sum.

These are two of the three values needed to compute the contribution of a kd-tree node

partial sums in Kernel regression. The third component,w, depends upon the location of th

query and is determined dynamically in a manner described shortly.

wi yi∑ wi∑

wi yi∑ w εi+( )yi∑ w yi∑ εi yi∑+= = and

wi∑ w εi+( )∑ nw εi∑+= =
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With such cached information in each kd-tree node, we can efficiently approximateΣwiyi and

Σwi, summed over all data points in the kd-tree, so as to speed up the process of Kernel r

sion. This is performed by a top-down search over the tree. At each node we make a de

between:

1.(Cutoff) Treat all the points in this node as one group (a cheap operation) or

2.(Recurse) search the children.

We will use the cutoff option if we are confident that all weights inside the node are sim

Given the current queryxq and the hyper-rectangle of the current node it is an easy matte

computeDmin andDmax: the minimum and maximum possible distances of any datapoin

this node to the query (computational cost is linear in the number of dimensions). From

values one can then compute the maximum and minimum possible weightswmaxandwmin of

any data points owned by this node, since the weight of a point is a decreasing function o

tance to the query. We thus decide ifwmax andwmin are close enough to warrant the cut-o

option.

The search is thus a recursive procedure which returns two values:sum-weightsandsum-wy. If

the cutoff option is taken, then estimate the weight of all data points as

and return:

Dmax

xq
Dmin

w wmin wmax+( ) 2⁄=

sum-weights n_below w×=

sum-wy sum w×=
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If the cutoff option is not taken, recursively computesum-weightsandsum-wyfor the left and

right children, and then return:

sum-weights = sum-weights(left) + sum-weights(right)

sum-wy = sum-wy(left) + sum-wy(right)

Search cutoffs

Last section described how we can make our approximation arbitrarily accurate by bou

the maximum deviation we will permit from the true weight estimate with a valueεmax> 0 and

then makingεmaxarbitrarily small. Thus the simplest cutoff rule in the kd-tree search would

to cutoff if wmax- wmin < εmax. It is easy to show that this guarantees that the total sum of ab

lute deviations|Σεi| is less thanNTεmax / 2 whereNT is the number of points in the tree. Ther

are, however, other possible cutoff criteria which provide arbitrary accuracy in the limit,

which, when used as an approximation, have more satisfactory properties.

The simple cutoff rule does not take into account that a larger total error will occur if the n

contains very many points than if the node contains only a few points. It does also not ac

for the fact that in a practical case we are less concerned about the absolute value of the

deviations|Σεi| but rather the size of|Σεi| relative to the sum of the weightsΣwi. Some simple

analysis reveals a cutoff criterion to satisfy both of these intuitions. Cutoff only if

(wmax - wmin) NB < τ Σwi

whereNB is the number of data points below the current node. Simple algebra reveals tha

guarantees

| Σεi | < 0.5 Gτ Σwi

where G is the number of groups finally used in the search (and thus G <NT, hopefully consid-

erably less). Notice that this cutoff rule requires us to knowΣwi in advance, which of course
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we do not. Fortunately the sum of weights obtained so far in the search can be used as

lower bound, and so the real algorithm makes a cutoff if

whereτ is a system constant.

5.4 Experiments and Results

Let us review the performance of the Kernel regression with the help of cached kd-tree in

parison to the conventional Kernel regression. In the first experiment we use a trigonom

function of two inputs with added noise:xi = uniformly generated random vector with all com

ponents between 0 and 100 andyi = a function ofxi (which ranges between 0 and 100 in heigh

with gaussian noise of standard deviation 10.

10,000 data points were generated. Experiments were run for different values of kernel

Kw. In all experiments, the cutoff thresholdτ was 0.005. Figure 5-4 (a1) shows the test-set er

on 1000 test points for both regular kernel regression (“Regular KR”) and cached kd-tree’

nel regression (“Tree KR”) graphed for different values ofKw. The values are very close, indi

cating that Tree KR is providing, for a wide range of kernel widths, a very close approxima

to Regular KR. Figure 5-4 (a2) shows the computational cost (in terms of the summation

dominate the cost of KR) of the two methods. Regular KR sums all points, and so is a con

10,000 in cost. Tree KR is substantially cheaper for all values ofKw, but particularly so for very

small and very large values.

Figures 5-4 (b1) and (b2) show corresponding figures for a similar trigonometric functio

five inputs. This still shows similar prediction performance as Regular KR. The cost of

tree’s Kernel regression is still always less than Regular KR, but in the worst case the co

tational saving is only a factor of three (whenKw = 40, Tree KR cost = 3,200). This is not a

wmax wmin–( )NB

weight so far in search
------------------------------------------------------ τ<
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especially impressive result. However, for any fixed dimensionality and kernel width, cost

sub-linearly (in principle logarithmically) with the number of data points. To check this, we

the same set of experiments for a dataset of ten times the size: 100,000 points. The res

Figure 5-4 (c1) and (c2), show that with this large increase in data, the effectiveness of c

kd-tree’s KR becomes more apparent. For example, consider theKw = 40 case. With 100,000

data points instead of 10,000, the cost is only increased from 3,200 to 5,700 while the c

Regular KR (of course) increased from 10,000 to 100,000.
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Figure 5-4: Comparison between the errors (*1) and the costs (*2) between regular
kernel regression versus cached kd-tree’s one. In the cases of (a*), the dataset is of 2-
d inputs, of size 10,000. In (b*), 5-d inputs, dataset size 10,000. In (*c), 5-d inputs,
100,000 data points.
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Investigating theτ threshold parameter

Next, we will examine the effect of theτ parameter on the behavior of the algorithm. Asτ is

increased we expect the computational cost to be reduced, but at the expense of the ac

of the predictions in comparison to the regular KR. The results in Figure 5-5 agree with

expectation: the left hand graph shows that for 2-d, 3-d, 4-d and 5-d datasets (each with 1

points) the proportional error between cached kd-tree’s and regular regression increase

τ. The right hand graph shows a corresponding decrease in computational cost.

Real datasets

In another experiment, we ran cached kd-tree’s KR on data from several real-world and r

learning datasets. Further details of the datasets can be found in [Maron et al, 94]. They in

an industrial packaging process for which the slowness of prediction had been a reaso

cause for concern. Encouragingly, cached kd-tree’s KR speeds up prediction by a factor

with no discernible difference in prediction quality between cached kd-tree’s and regular

This and other results are tabulated below. The costs and error values given are average
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Figure 5-5: (Upper) the relative accuracy and (lower) the computational
cost of kd-tree’s KR against τ --- the cutoff threshold.
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over an independent test set. Notably, the datasets with the least savings werepool, which had

few data points, androbot, which was high dimensional.

High dimensional, non-uniform data

Our final experiment concerned the question of how well the method performs if the nu

of input variables is relatively large, but if the attributes are not independent. For examp

common scenario in robot learning is for the input vectors to be embedded on a lower-d

sional manifold. We performed two experiments, each with 9 inputs and 10,000 data poin

the first experiment, the components of the input vectors were distributed uniformly rando

In the second experiment the input vectors were distributed on a non-linear 2-d manifold

9-d input space. The results were:

 Table 5-1: Real dataset test of cached kd-tree’s kernel regression

Domain
Dataset

Size
Dim of
Input

Regular
KR Cost

Tree’s KR
Cost

Regular
KR Err.

Tree’s KR
Error

Energy 2144 5-d 2144 232.9 1.687 1.690

Package 32000 3-d 32000 289.0 6.07 6.09

Pool 213 3-d 213 50.7 2.125 2.123

Protein 4664 3-d 4664 383.8 1.036 1.106

Robot 871 14-d 871 225 6.354 6.976

 Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

9-d uniform 9-d inputs on 2-d manifold

Regular KR cost 10,000 10,000

Cached kd-tree’s KR cost 3,100 430

Regular KR mean testset error 13.07 1.06

Cached kd-tree’s KR mean testset error 13.08 1.15
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The results indicate that, as would be expected, the cost advantage of cached kd-tree’s

not large (a factor of 3) for 9-d uniform inputs, but is far better if the inputs are distribu

within a lower-dimensional space.

5.5 Summary

Kernel regression with the help of the cached kd-tree is preferable in case the application

the following properties:

•Flexibility to work throughout the local/global spectrum.

•The ability to make predictions with different parameters without needing a retrain

phase.

In addition, cached kd-tree’s Kernel regression has a number of additional flexibilities. O

the kd-tree structure is built, it is possible to make different queries with not only different

nel widthsKw, but also different Euclidean distance metrics, with subsets of attributes igno

or with some other distance metrics such as Manhattan. It is also possible to apply the

technique with different weight functions and for classification instead of regression.

Dimensionality is a weakness of cached kd-tree’s Kernel regression. Diminishing returns

above approximately 10 dimensions if the data points are distributed uniformly. This i

inherent problem for which no solution seems likely because uniform data points in

dimensions will have almost all data points almost exactly the same distance apart, and a

notion of locality breaks down.

This chapter discussed an efficient implementation of kernel regression. In next chapte

will apply exactly the same algorithm to locally weighted linear regression and loc

weighted logistic regression, in which a prediction fits a local polynomial or a local logi

function to minimize the locally weighted sum squared error. The only difference is that

node of the kd-tree stores the regression design matrices of all points below it in the tree
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Chapter 6

Using Kd-trees for Various Regressions

In last chapter, we discussed how to use kd-tree to make kernel regression more effici

fact, kd-tree can be used for other regressions, too. In this chapter, we will introduce h

apply it to speed up locally weighted linear regression and locally weighted logistic regres

6.1 Locally Weighted Linear Regression

Linear regression can be used as a function approximator. Given a set of memory data

known astraining data points, aglobal linear regression finds a line with parameters such t

the sum of the residual squares from the training data points to the line is minimized. I

example of Figure 6-1(a), each data point has one input and one output. A global linear r

sion finds a line,

with β0 andβ1, so that the sum of the residual squares is minimized, i.e.,

ŷ x( ) β0 β1x+=

βo β1,( ) minarg yi ŷ xi( )–( )2

i 1=

N

∑ minarg yi βo β1xi––( )2

i 1=

N

∑= =
95
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By global, we meanβ0 and β1 are fixed for any possiblex. Obviously, this linear function

approximator would not work for any non-linear functions. That is the reason we have m

interest inlocally weighted linear regression.

Locally weighted regression assumes for any local region around a query point,xq, the relation-

ship between the input and output is linear. To construct the local function approximato

local linear parameters can be approximated by minimizing theweightedsum of residual

squares. For the example as shown in Figure 6-1(b), the weighted sum of residual squa

The weight,wi, is usually a function of the Euclidean distance from thei’th training data points

to the query,|| xq - xi ||. A popular form of the function is Gaussian.

After some algebra which requires no gradient descent, the linear parameters can be ob

directly by,

X

Y

X

Y

Query

Local linear model
at a certain query

As you vary the
query, you get
this curve.

(a) (b)

Figure 6-1: (a) A global linear regression (b) A locally weighted linear regression.

wi
2

yi βo β1xi––( )
2

i 1=

N

∑
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(6-1)

whereX is aN-row M-column matrix,N is the number of the training data points in memor

M is the dimensionality of the input space plus1. If the input vector of thek’th data point in

memory isxk, thek’th row of X is (1, xk
T). Y is a vector consisting of the training data point

outputs.W is a diagonal matrix, whosek’th element is the square of the weight of thek’th train-

ing data point,wk
2.

6.2 Efficient locally weighted linear regression

As we have known in last section, the crucial thing to improve the efficiency of loc

weighted linear regression is to speed up the calculation ofXTWXandXTWY. SinceW is a diag-

onal matrix,XTWXand XTWYcan be transformed as,

and

in which vectorxi corresponds to thei’th row of X, andyi is thei’th element ofY vector.

Recall that the kd-tree is a binary tree, the root of the tree covers the whole input space,

contains all the training data points in memory. The root can be split into two nodes: th

node and the right node, each of them covers a partition of the input space. Furthermo

left node can be split into another pair of nodes, so does the right node. Hence, in the s

layer there are four nodes at most. Therefore, to calculateXTWXof all the memory data points,

we can follow a recursion process,

β̂ X
T
WX( )

1–
X

T
WY( )=

X
T
WX wi

2
xi xi

T

i 1=

N

∑= X
T
WY wi

2
xi yi

i 1=

N

∑=



98 Chapter 6: Using Kd-trees for Various Regressions

um

cause

the

tical
in which N is the total number of training data points in memory, the sum ofNLeft andNRight,

as well as the sum ofNLeftLeft, NLeftRight, NRightLeft, andNRightRight, are equal toN.

Hence, to calculateXTWXof the root, or any other node of the kd-tree, we can recursively s

its two children’sXTWX’s. A leaf’sXTWXcan be calculated according to the definition:

However, this recursion process does not bring us any gain in computational efficiency, be

it still visits every training data point in memory. But sometimes we may be able to cutoff

computation at a node, if all the memory data points within this node have near-iden

weights. In other words,

(6-2)

X
T
WX( )Root wi

2
xi xi

T

i 1=

N

∑= wi
2
xi xi

T

i 1=

NLeft

∑ wi
2
xi xi

T

i 1=

NRight

∑+=

X
T
WX( )Left= X

T
WX( )Right+

wi
2
xi xi

T

i 1=

NLeftLeft

∑ wi
2
xi xi

T

i 1=

NLeftRight

∑ wi
2
xi xi

T

i 1=

NRightLeft

∑ wi
2
xi xi

T

i 1=

NRightRight

∑+ + +=

X
T
WX( )LeftLeft X

T
WX( )LeftRight X

T
WX( )RightLeft X

T
WX( )RightRight+ + +=

X
T
WX( )Leaf wi

2
xi xi

T

i 1=

NLeaf

∑=

X
T
WX)Node wi

2
xi xi

T

i 1=

NNode

∑ wNode
2

xi xi
T

i 1=

NNode

∑
 
 
 

≈ wNode
2

X
T

X( )Node= =

If wi i 1 … NNode are near identical., , ,=,
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This scenario happens for three reasons:

• All data points within the node are so far from the query vector,xq, that their weights are
near zeroes.

•   All the data points are close together, providing no room for weight variation.

• The weight function varies negligibly over the partition of the input space covered by
current node.

Given a certain query,xq, and a certain node, to judge if any of these situations happens, we

rely on the comparison of the lower bound and the upper bound of the weights of the me

data points within this node. Roughly speaking, if the difference between the upper boun

the lower bound is smaller than a threshold, then Equation 6-2 holds and the cutoff is perm

Further discussion on the threshold will come latter in this section. To calculate the l

bound and the upper bound of the weights, recall that each node of the kd-tree correspo

a hyper-rectangular partition of the input space, thus, given a query,xq, it is straightforward to

calculate the longest and the shortest distances from the query to the concerned hyper-

gle. Because the weight function is a monotonic function of the distance, it is not difficu

calculate the lower bound and the upper bound of the weights based on the range of th

tance.

Therefore, to calculateXTWX for all the data points in memory, we can follow the recursi

algorithm listed in Figure 6-2.

Similarly, we can efficiently calculateXTWY. But be aware that we need to cacheXTX andXTY

into each node of kd-tree. When we build a kd-tree, we calculateXTX andXTY for each node,

from the leaves in the bottom, upward to the root. Once this is done, the kd-tree is ready to

dle any queries. When a query occurs, we follow the recursion algorithm in Figure 6-2,
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the root downward to the leaves, to calculate (XTWX)Root, as well as (XTWY)Root, then we can

do the locally weighted linear regression.

Concerning the threshold in Figure 6-2, a simple way is to assign a fixed one,ε, and see ifWmax

- Wmin < ε. However, this is dangerous. Suppose a query is far away from all the memory

points, then even the root node of the kd-tree may satisfywmax- wmin< ε, so that all the memory

data points have the same weight, . This means that the prediction o

output of the query will be equal to the mean value of all the memory data points’ outputs

.

This may be wildly different from the non-approximate linear regression without kd-t

which takes the prediction as an extrapolation of the linear function fitting those memory

points, referring to Figure 6-3,

calc_linear_XtWX(Node, Query)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. If ( Wmax - Wmin ) < Threshold

 Then

Node->XtWX = 0.25 * (Wmax + Wmin) 2 * Node->XtX;

 Else

(Node->Left)->XtWX = calc_XtWX(Node->left, Query);

(Node->Right)->XtWX = calc_XtWX(Node->right, Query);

Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;

3. Return result;

}

Figure 6-2: Using divide-and-conquer algorithm to calculate XtWX of a node.

0.5 wmax wmin+( )×

ŷq yi
i 1=

N

∑
 
 
 

N⁄=
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This problem can be solved by settingε to be a fraction of the total sum of weights involved i

the regression: for some small fractionτ. So we would then like to cutoff

if and only if, . But we do not know the value of

before we begin the prediction, and computing it would not be desirable (costO(N)). Instead,

we estimate a lower bound on . If, during the computation so far, we have accu

lated sum-of-weights,wsofar, and if currently we are visiting theNode’th node in the kd-tree

and there areNNode within this node, then,

.

Therefore, the improved cutoff condition is to judge if,

. (6-3)

6.3 Technical details

There are several details which we summarize briefly here,

X

Y

Query

Non-approx. linear regression prediction

Approximate prediction with wrong threshold.

Figure 6-3: The danger of a wrong threshold of the cutoff condition.

ε τ N

k 1=
wk∑×=

wmax wmin– τ N

k 1=
wk∑×< N

k 1=
wk∑

N

k 1=
wk∑

wSoFar NNodewmin
N

k 1=
wk∑≤+

wmax wmin– τ wSoFar NNodewmin+( )<
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• To ensure numerical stability of this algorithm, all attributes must be pre-scaled to a h

cube centered around the origin.

• The cost of building the tree is , whereM is the input space’s dimension

ality plus 1, andN is the number of data points in memory. It can be built lazily, (growi

on-demand as queries occur) and data points can be added in

though occasional rebalancing may be needed. The tree occupies space.

memory savings are possible if nodes with fewer thanM data points are not split, but instea

retain the data points in a linked list.

• Instead of always searching the left child first it is advantageous to search the node clo

xq first. This strengthens thewSoFarbound.

• Ball trees [Omohundro, 91] plays a similar role to kd-trees used for range searching, bu

possible that a hierarchy of balls, each containing the sufficient statistics of data points

contain, could be used beneficially in place of the bounding boxes we used.

• The algorithms can be modified to permit thek nearest neighbors ofxq to receive a weight of

1 each no matter how far they are from the query. This can make the regression more r

6.4 Empirical Evaluation

We evaluated five algorithms for comparison.

First of all, we examined prediction on a dataset ABALONE from UCI repository, with

inputs and 4177 data points; the task was to predict the number of rings in a shellfish. In

experiments we removed a hundred data points at random as a testset, and examined ea

rithm performing a hundred predictions; all variables were scaled to [0..1], and a kernel w

of 0.03 was used. As Table 6-2 shows, theRegularmethod took almost a second per predictio

O M
2
N N Nlog+( )

O M
2

Tree depth×( )

O M
2
N( )
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Regzerosaved 20% of that.Tree reducedRegular’s time by 50%, producing identical predic

tions (shown by the identical mean absolute errors ofRegular, Regzero, and Tree). The

Approx. algorithm gives an eighty-fold saving compared withTree, and theFastalgorithm is

about three times faster still. What price doApprox. andFastpay in terms of predictive accu-

racy? Compare the standard error of the dataset (2.65 if the mean value of the trainin

points’ outputs was always given as the predicted value) againstTree’s error of 1.65,Approx.’s

error of 1.67, andFast’s error of 1.71. We notice a small but not insignificant penalty relat

to the percentage variance explained.

The above results are from one run on a testset of size 100. Are they representative? Ta

should reassure that reader, containing averages and confidence intervals from 20 runs w

ferent randomly chosen testsets. The bottom row shows that the error ofApprox. andFast rel-

ative to theRegular algorithm is confidently estimated as being small.

 Table 6-1: Five linear regression algorithms

Regular Direct computation ofXTWX as .

Regzero
Direct computation ofXTX with an obvious and useful tweak. Whenever

wk = 0, do not bother withO(M2) operation of addingwkxk xk
T.

Tree The near-exact tree based algorithm. (we setτ = 10-7).

Approx. The approximate tree-based algorithm withτ = 0.05.

Fast
A wildly approximate tree-based algorithm withτ = 0.5. This gives an
extremely rough approximation to the weight function.

 Table 6-2: Costs and errors predicting the ABALONE dataset

Regular Regzero Tree Approx. Fast

Millisecs per prediction 980 800 460 5.7 1.7

Mean absolute error 1.65 1.65 1.65 1.67 1.71

N

k 1=
wk

2
xkxk

T∑
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We also examined the algorithms applied to a collection of five UCI-repository datasets an

robot dataset (described in [Atkeson et al., 97]). Table 6-4 shows results in which all da

had the same local model: locally weighted linear regression with a kernel width of 0.03 o

unit-scaled input attributes. Table 6-5 shows the results on a variety of different local po

 Table 6-3: Millisecs to do the predictions, errors of the predictions, and
errors relative to Regular.

Algorithms: Regular Regzero Tree Approx. Fast

Millisecs

Abs. Error Mean

Excess error
compared w/Regular

Table 6-4: Performance on 5 UCI datasets and one robot dataset. All use
locally weighted linear regression with kernel width 0.03

Regular Regzero Tree Approx. Fast

Heart, 3-d,
170 datapnts.
StdErr. 0.43

Cost 42.16 32.95 21.23 18.93 14.12

Error 0.27 0.28 0.28 0.28 0.28

Pool, 3-d,
153 datapnts.
StdErr. 2.21

Cost 34.65 33.45 22.33 4.41 0.80

Error 0.63 0.63 0.63 0.63 0.62

Energy, 5-d,
2344 datapnts.
StdErr. 286.07

Cost 535.87 484.30 323.37 5.11 1.10

Error 11.93 11.93 11.93 15.15 21.60

Abalone,10-d,
4077 datapnts.
StdErr. 2.66

Cost 964.00 806.00 469.00 5.80 1.70

Error 1.65 1.65 1.65 1.67 1.71

MPG, 9-d,
292 datapnts.
StdErr. 6.82

Cost 70.10 55.18 34.35 11.61 2.00

Error 1.92 1.92 1.92 1.92 1.93

Breast,9-d,
599 datapnts.
StdErr. 0.3

Cost 143.40 126.18 59.88 13.82 6.21

Error 0.03 0.03 0.03 0.03 0.02

982.0 2.5± 814. 3.3± 468. 0.8± 6.00 0.2± 1.70 0.04±

1.534 0.062± 1.534 0.062± 1.534 0.062± 1.536 0.061± 1.556 0.063±

0 0± 0 0± 0 0± 0.023 0.034± 0.032 0.032±
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mial models. The pattern of computational savings without serious accuracy penalties is

sistent with our earlier experiment.

The above examples all have fixed kernel widths. There are datasets for which an adaptiv

nel-width (dependent on the currentxq) are desirable. At this point, two issues arise: the sta

tical issue of how to evaluate different kernel widths (for example, by the confidence inte

width on the resulting prediction, or by an estimate of local variance, or by an estimate of

data density) and the computational cost of searching for the best kernel width for our ch

criterion. Here we are interested in the computational issue and so we resort to a very s

criterion: the local weight, .

 Table 6-5: Same experiments, but with a variety of models. The models
were selected by cross-validation depending on the specific domains.

Regular Regzero Tree Approx. Fast

Heart, Kernel regress.
kw = 0.015

Cost 37.86 25.84 14.32 13.42 0.50

Error 0.22 0.22 0.22 0.22 0.24

Pool,Loc. wgted quad.
regress., kw = 0.06

Cost 36.05 35.95 25.43 8.12 1.20

Error 0.63 0.63 0.63 0.63 0.62

Energy, LW Quad.
regress. without cross

terms

Cost 546.48 356.12 202.29 25.53 1.60

Error 6.12 6.12 6.12 6.03 7.50

Abalone, LW Linear
regress. ignore 1 input.

Cost 958.90 717.34 203.91 2.35 1.40

Error 1.33 1.33 1.33 1.33 1.34

MPG, Using all inputs
but only has three in

the dist. metrics

Cost 66.79 54.18 8.41 1.70 1.20

Error 1.95 1.95 1.95 1.94 1.92

Breast, Only use five
out of ten inputs.

Cost 44.06 43.96 2.20 2.20 0.50

Error 0.01 0.01 0.01 0.01 0.02

wi∑
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We artificially generated a dataset with 2-dimensional inputs, for which a variable kernel w

is desirable. When evaluated on a testset of 100 data points we saw that no fixed kerne

did better than a mean error of 0.20 (Table 6-6, first two columns). We chose the simplest

inable adaptive kernel-width prediction algorithm: on each top level prediction make e

inner-loop predictions make eight inner-loop predictions, with the kernel widths {2-2, 2-3, ...,

2-9}; then choose to predict with the kernel width that produces a local weight close

some fixed goal weight. For dense data a small kernel width will thus be chosen, and for s

data the kernel will be wide. The results are striking: The middle two columns of Table

reveal that for a wide range of goal-weights a testset error of 0.10 is achieved. At the same

as the rightmost three columns show, the approximate methods continue to win comput

ally.

 Table 6-6: Prediction-time optimization of kernel width.

Using fixed Kernel
width

Using variable
Kernel width

Using variable Kernel width
Goal weight is 8.0

Kernel
width

Mean
error

Goal
weight

Mean
error

Algorithm
Mean
error

Millisecs per
prediction

0.25000 0.41 64 0.19 Regular 0.104 2000

0.12500 0.24 32 0.13 Regzero 0.104 1400

0.06250 0.24 16 0.11 Tree 0.104 395

0.03125 0.22 8 0.10 Approx. 0.103 181

0.01562 0.29 4 0.10 Fast 0.107 165

0.00781 0.37 2 0.11

0.00391 0.41 1 0.15

0.00195 0.51 0.5 0.51

wi∑
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6.5 Kd-tree for logistic regression

Recall in Chapter 5, locally weighted logistic regression is to approximate the parameter v

 in the following formula,

(6-4)

To do so, we should follow the Newton-Raphson recursion:

(6-5)

Suppose there areN training data points in memory, each training data point consists of ad-

dimensional input vector and a boolean output.X is a matrix. Thei’th row of X

matrix is (1, xi
T). And is a diagonal matrix, whosei’th element is ,

where is a scalar, which is the derivative value of with respect to the current estima

 at the queryxq:

(6-6)

For example, when a training data point’s input isxi = [2] , while the current estimate ofβ is

[0.5, 1]T, thenπi' is equal to0.07. As mentioned above, thei’th element ofW diagonal matrix

is also decided by the weight, , which is a function of the distance from thei’th training data

point to the queryxq. The last item, is the ratio of to , i.e. . New

ton-Raphson starts from a random estimate of , usually we assign to be zero v

Although it is not strictly proved, usually with no more than 10 loops, the recursive pro

comes to a satisfactory estimate of .

β

P yq 1= Sp xq,( ) πq
1

1 1 xq
T,[ ]β–( )exp+

-----------------------------------------------= =

β̂ r 1+( ) β̂ r( ) X
T
WX( )

1–
X

T
We+=

N 1 d+( )×

W N N× Wi wi
2π'i=

π'i πi

β

πi'
1 xi

T,[ ]β–( )exp

1 1 xi
T,[ ]β–( )exp+{ }

2
--------------------------------------------------------

β β̂ r( )=

=
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e yi πi– π'i e yi πi–( ) πi'⁄=

β βˆ 0( )
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Now, our task is that what information we should cache into the nodes of kd-tree, so th

can approximateXTWX andXTWequickly without any significant loss of the accuracy. Th

most important characteristic of the cached information is that it must be independent from

specific query, because we want to exploit the same cached information to handle variou

ries.

Our solution is to cache , and , which are expressed as1TX,

XTX, andXTY, too.

To calculate(XTWX)Nodeof a particular kd-tree node, we can either do it precisely followi

its definition:

(6-7)

where is the derivative value of the logistic function defined in Equation 6-6, is

weight of thei’th data point with respect to the query.

When all the weights,wi, , are near identical, and so are the derivative values,πi’,

, we can approximate(XTWX)Nodeas,

(6-8)

There are three scenarios that the weights,wi, within a kd-tree node, are near identical, referrin

to Section 6-2. Hence, the cutoff condition and the threshold discussed in Section 6-2 s

be employed for logistic regression, too. In other words, to make Equation 6-8 hold, the

cerned kd-tree node should satisfy:

(6-9)

xi
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∑ xi xi
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i Node∈
∑

X
T
WX( )Node wi
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To tell if the derivative values,πi’, , do not differ too much, it looks that we can us

a simple fixed threshold,ε1:

However, it is not easy to find the upper bound and lower bound ofπi’. Referring to Figure 6-

4 (a) and (b), if Equation 6-10 holds,

(6-10)

the gap between and must be small, too. Since logistic function is monotonic,

ally we can rely on the calculation of the logistic function values at the corners of the hy

rectangle region in the input space represented by the kd-tree node, to find  and

Therefore, given a specific queryxq in conjunction with a certain estimate ofβ, to calculate

(XTWX)Rootefficiently, we can recursively sum the twoXTWX’s of the child nodes from the root

on the top of the kd-tree downward to the leaves, in a way similar to that of locally weig

linear regression described in Figure 6-2. Sometimes the recursion can be cut off if both th

conditions in Equation 6-9 and 6-10 are satisfied, then theXTWXof that node can be approxi-
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Figure 6-4: (a) The derivative function of logistic, which has symmetric two
tails close to zero and a peak in the center. (b) The logistic function which is
monotonic between 0 and 1.
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mated as . Thus, we need to cache into each node of the kd-tree before any

occurs.

More interestingly, notice that in Figure 6-4(a), the derivative of logistic function with resp

to the scalar, , has a pair of long tails close to zero. That means, when the s

deviates from the origin, the derivative value,π’, approaches zero quickly; and whe

theπ'maxvalue of a kd-tree’s node is near zero, it is unnecessary to calculate theXTWXmatrix

of that node, because it must be a zero matrix according to

Now, let’s considerXTWeof the training data points within a kd-tree’s node, according to

definition,

(6-11)

In case the following two conditions are satisfied: (1) all the individual weights,wi, ,

are near identical, (2) all the predictions,πi, , are near identical,XTWecan be approx-

imated as,

(6-12)

Concerning the first cutoff condition related to the weights, we can use Equation 6-9 ag

tell if the situation happens. Concerning the second cutoff condition about the predictionπi, we

can pre-define a fixed threshold,ε2, to see if the following relationship is satisfied,

(6-13)
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This cutoff condition is the same as Equation 6-10; furthermore, usually thresholdε2 can be

assigned to be equal to thresholdε1. Referring to Figure 6-4(b), the function curve ofπi

becomes flat when deviates from the origin. Hence, there should be many chanc

Equation 6-13 to hold. To findπmaxandπmin, we can calculate theπ values at the corners of

the hyper-rectangular partition of the input space which the kd-tree node corresponds to

In summary, to quickly approximateXTWX andXTWe, first of all, we should calculate1TX,

XTX, andXTY for each kd-tree node respectively, and cache them into each node in conjun

with the number of data points within the node,num, split_d andsplit_v . When a query

occurs, we follow a recursive algorithm similar to that of Figure 6-2, except that the cutoff

ditions are different. The pseudo-code of the recursive algorithm for logistic regression is

as Figure 6-5.

6.6 Empirical evaluation

In this section, we want to evaluate the performance of cached kd-tree’s locally weighted

tic regression in two aspects: (1) how fast is it in comparison with the non-approximate lo

weighted logistic regression? (2) how much does it lose in the accuracy?

We used again the four datasets from the UCI data repository which have been used in S

4.4. Similar to the experiments we have done in Section 4.4, we shuffled the datasets five

each. Every time, we selected one third of the data points as the testing dataset, used the

ing two-thirds of the dataset as the training dataset. For every data point in the testing da

we assigned the input as a query, used locally weighted logistic regression based on the t

dataset to predict its output, and compared the prediction with the real output of the data

to see if locally weighted logistic regression did correct job. We defined the error rate a

ratio of the number of wrong predictions to the number of total testing data points. Hence

1 xq
T,[ ]β
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calc_logistic_XtWX(Node, Query, est_Beta, W_SoFar)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. Computer dev_Pi_min(Node, est_Beta), dev_Pi_max(Node, est_Beta);

3. If ( Wmax - Wmin ) < τ * (W_SoFar + Node->num * Wmin)

and ( Pi_max - Pi_min ) < ε

Then Node->XtWX = 0.125 * (Wmax + Wmin) 2

* (dev_Pi_max + dev_Pi_min) * Node->XtX;

 Else

(Node->Left)->XtWX =

calc_logistic_XtWX(Node->left, Query, est_Beta, W_SoFar);

(Node->Right)->XtWX = calc_logistic_XtWX(Node->right, ...);

Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;

Update W_SoFar to include 0.25 * (Wmax + Wmin) 2;

4. Return Node->XtWX;

}

calc_logistic_XtWe(Node, Query, est_Beta, W_SoFar)

{

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. Computer Pi_min(Node, est_Beta), Pi_max(Node, est_Beta);

3. If ( Wmax - Wmin ) < τ * (W_SoFar + Node->num * Wmin)

and ( Pi_max - Pi_min ) < ε

Then Node->XtWe = 0.25 * (Wmax + Wmin) 2 * ( Node->XtY

- 0.5 * (Pi_max + Pi_min) * Node->1tX );

 Else

(Node->Left)->XtWe =

calc_logistic_XtWe(Node->left, Query, est_Beta, W_SoFar);

(Node->Right)->XtWe = calc_logistic_XtWX(Node->right, ...);

Node->XtWX = (Node->Left)->XtWe + (Node->Right)->XtWe;

Update W_SoFar to include 0.25 * (Wmax + Wmin) 2;

4. Return Node->XtWe;

}

Figure 6-5: Using the cached information of kd-tree to quickly approximate the
XtWX and XtWe for locally weighted logistic regression.
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lower the error rate, the more accurate the locally weighted logistic regression algorithm

Since for every raw UCI dataset, we shuffled it for five times, thus we got five error rate

Table 6-7, we listed the mean values of the error rates in conjunction with their standard

ations. In this way, we want to reassure the readers the representativeness of our resul

The first two rows of Table 6-7 are the performance of the regular locally weighted log

regression without the help of cached kd-tree. As we expected, the error rates (in the s

row) are exactly the same as those in Table 4-1. The first row recorded the milliseconds i

the regular locally weighted logistic regression to do one prediction for each datasets. A

have noticed, the computational cost varies a lot from 119.20 to 880.20. That is becau

datasets have various dimensionalities of the input space which range from 6 to 34

because the sizes of the training datasets differ a lot from 230 to 512.

The third and the fourth rows show the performance of the cached kd-tree’s locally weig

logistic regression1. We expected that the improved logistic regression was much faster

the regular one while it did not lose too much in the accuracy. To make the comparison e

to follow, in the fifth row we calculated the multiplications of the costs of the regular logi

 Table 6-7: Performance on 4 UCI datasets

Ionos.
234 datapnts

34 dim

Pima
512 datapnts

8 dim

Breast
191 datapnts

9 dim

Bupa
230 datapnts

6 dim

Non-
approx.

Cost

Error (%)

Kd-tree
Cost

Error (%)

Cost gain 0.971 48.75 36.36 103.22

Accuracy loss -38.93% 4.00% 0.0% 2.26%

880.20 5.63± 263.20 1.48± 119.20 7.85± 548.10 4.47±

13.0 0.4± 22.5 2.8± 3.1 0.7± 31.0 2.7±

906.20 11.19± 5.40 0.13± 8.28 1.09± 5.03 0.04±

7.9 2.8± 23.4 3.0± 3.1 1.2± 31.7 2.2±
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regression to those of the kd-tree’s. As we see in the table, “Bupa” dataset, which is o

dimensionality with fairly small number of data points, benefited the most from the cache

tree: the efficiency improved more than 100 times. “Breast” dataset has a medium dimen

ality and the number of data points is small. But still, the cached kd-tree improved the effic

of locally weighted logistic regression 36 times. “Pima” consists of more data points, so

not surprising that its multiplication is higher than that of “Breast”’s. “Ionos.” is a spec

dataset because its dimensionality is high. In this case, cached kd-tree does not help to s

computational cost, instead it slightly enlarges the cost.

However, an interesting thing is that cached kd-tree improved the accuracy of locally weig

logistic regression applied to the “Ionos.” dataset: the error rate dropped from 13.0% to 7

in other words, the accuracy improved 38.93%, as shown in the last row in the table. O

datasets like “Pima” and “Bupa” did lose some accuracy, but not significantly.

6.7 Summary

In Chapter 5, we explored the use of kd-trees with some cached information, and we

improvements in the efficiency of kernel regression. In this chapter, we discussed how to

different information into the kd-tree’s node so as to improve the efficiency of locally weigh

linear regression and locally weighted logistic regression. We found that for different mem

based learning, the cached information is different. Consequently, the cutoff thresholds s

also be modified. Cached kd-trees can help both locally weighted linear regression and l

weighted logistic regression improve their computational efficiency, and at the same tim

sacrifice their accuracy too much. This contribution is more significant when the size o

training dataset becomes larger. The limitation of cached kd-tree is that when the input s

1. There are several control knobs for cached kd-tree’s locally weighted logistic regression: Kernel widt
(kw), the fraction parameter for the weight’s cutoff (τ), the fixed thresholds for the derivative and the
prediction (ε1 andε2). We found that the prediction accuracy is not very sensitive toε1 andε2, so we set
both of them as 0.01.τ is also assigned to be 0.01. But Kernel width (kw) varies from dataset to dataset,
tuned up by cross-validation.
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. Fur-
dimensionality is higher than 10, a kd-tree cannot help to improve the efficiency too much

ther research needs to be done combat the curse of dimensionality.
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Chapter 7

Feature Selection

Feature selection is not used in the system classification experiments, which will be disc

in Chapter 8 and 9. However, as an autonomous system, OMEGA includes feature selec

an important module.

7.1 Introduction

A fundamental problem of machine learning is to approximate the functional relationshif( )

between an input and an outputY, based on a memory of data points

, i = 1, ..., N, usually theXi’s are vectors of reals and theYi’s are real numbers. Some

times the outputY is not determined by the complete set of the input features

instead, it is decided only by a subset of them , where . With s

ficient data and time, it is fine to use all the input features, including those irrelevant feat

to approximate the underlying function between the input and the output. But in practice,

are two problems which may be evoked by the irrelevant features involved in the learning

cess.

1. The irrelevant input features will induce greater computational cost. For example, us

cachedkd-trees as we discussed in last chapter, locally weighted linear regression’s co

putational expense isO(m3 + m2 log N) for doing a single prediction, whereN is the num-

X x1 x2 ... ,, , xM{ }=

Xi Yi,{ }

x1 x2 ... ,, , xM{ }

x 1( ) x 2( ) ... x m( ), , ,{ } m M<
117
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ber of data points in memory andm is the number of features used. Apparently, with more

features, the computational cost for predictions will increase polynomially; especia

when there are a large number of such predictions, the computational cost will incre

immensely.

2. The irrelevant input features may lead to overfitting. For example, in the domain of me

ical diagnosis, our purpose is to infer the relationship between the symptoms and their

responding diagnosis. If by mistake we include the patient ID number as one input feat

an over-tuned machine learning process may come to the conclusion that the illnes

determined by the ID number.

Another motivation for feature selection is that, since our goal is to approximate the under

function between the input and the output, it is reasonable and important to ignore those

features with little effect on the output, so as to keep the size of the approximator model s

For example, [Akaike, 73] proposed several versions of model selection criteria, which

cally are the trade-offs between high accuracy and small model size.

The feature selection problem has been studied by the statistics and machine learning c

nities for many years. It has received more attention recently because of enthusiastic re

in data mining. According to [John et al., 94]’s definition, [Kira et al, 92] [Almuallim et al., 9

[Moore et al, 94] [Skalak, 94] [Koller et al, 96] can be labelled as “filter” models, while [Ca

ana et al., 94] [Langley et al, 94]’s research is classified as “wrapped around” methods.

statistics community, feature selection is also known as “subset selection”, which is surv

thoroughly in [Miller, 90].

The brute-force feature selection method is to exhaustively evaluate all possible combin

of the input features, and then find the best subset. Obviously, the exhaustive search’s c

tational cost is prohibitively high, with considerable danger of overfitting. Hence, people re
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to greedy methods, such as forward selection. In this paper, we propose three greedier se

algorithms in order to further enhance the efficiency. We use real-world data sets from ov

different domains to compare the accuracy and efficiency of the various algorithms.

7.2 Cross Validation vs. Overfitting

The goal of feature selection is to choose a subset of the complete set of input fea

so that the subset can predict the outputYwith accuracy comparable

to the performance of the complete input setX, and with great reduction of the computation

cost.

First, let us clarify how to evaluate the performance of a set of input features. In this chapt

use a very conservative form of feature set evaluation in order to avoid overfitting. Th

important. Even if feature sets are evaluated by testset cross-validation or leave-one-ou

validation, an exhaustive search of possible feature-sets is likely to find a misleadingly

scoring feature-set by chance. To prevent this, we use thecascaded cross-validationprocedure

in Figure 7-1, which selects from increasingly large sets of features (and thus from increas

Xs

X x1 x2 ... , xM, , ,{ }= Xs

1. Shuffle the data set and split into a training set of 70% of the
data and a testset of the remaining 30%.

2. Let j vary among feature-set sizes: j = ( 0 , 1 , 2 , ... , m )
a. Let fsj = best feature set of size j, where “best” is mea-

sured as the minimizer of the leave-one-out cross-valida-
tion error over the training set.

b. Let Testscorej = the RMS prediction error of feature set fsj
on the test set.

End of loop of (j).
3. Select the feature set fsj for which the test-set score is min-

imized.

Figure 7-1: Cascaded cross-validation procedure for finding
the best set of up to m features.
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large model classes). The score for the best feature set of a given size is computed by a

pendent cross-validation from the score for the best size of feature set.

Two notes about the procedure in Figure 7-1: First, the choice of 70/30 split for training

testing is somewhat arbitrary, but is empirically a good practical ratio according to m

detailed experiments. Second, note that Figure 7-1 does not describe how we search for t

feature set of sizej in Step 2a. This is the subject of Section 7-3.

To evaluate the performance a feature selection algorithm is more complicated than to ev

a feature set. This is because in order to evaluate an algorithm, we must first ask the alg

to find the best feature subset. Second, to give a fair estimate of how well the feature sel

algorithm performs, we should try the first step on different datasets. Therefore, the full p

dure of evaluating the performance of a feature selection algorithm, which is described in

ure 7-2, has two layers of loops. The inner loop is to use an algorithm to find the best sub

features. The outer loop is to evaluate the performance of the algorithm using different dat

7.3 Feature selection algorithms

In this section, we introduce the conventional feature selection algorithm: forward fea

selection algorithm; then we explore three greedy variants of the forward algorithm, in ord

improve the computational efficiency without sacrificing too much accuracy.

7.3.1 Forward feature selection

The forward feature selection procedure begins by evaluating all feature subsets which c

of only one input attribute. In other words, we start by measuring the Leave-One-Out C

Validation (LOOCV) error of the one-component subsets,{X1}, {X2}, ..., {XM}, whereM is the

input dimensionality; so that we can find the best individual feature,X(1).
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Next, forward selection finds the best subset consisting of two components,X(1) and one other

feature from the remainingM - 1 input attributes. Hence, there are a total ofM - 1 pairs. Let’s

assumeX(2) is the other attribute in the best pair besidesX(1).

Afterwards, the input subsets with three, four, and more features are evaluated. Accord

forward selection, the best subset withm features is them-tuple consisting ofX(1), X(2), ..., X(m),

while overall the best feature set is the winner out of all theM steps. Assuming the cost of a

LOOCV evaluation withi features isC(i), then the computational cost of forward selectio

searching for a feature subset of sizem out ofM total input attributes will be

.

For example, the cost of one prediction with one-nearest-neighbor as the function appro

tor, using a kd-tree withj inputs, isO(j log N) whereN is the number of datapoints. Thus, th

Figure 7-2: Full procedure for evaluating feature
selection of up to m attributes.

1. Collect a training data set from the specific domain.
2. Shuffle the data set.
3. Break it into P partitions, (say P = 20)
4. For each partition  ( i = 0, 1, ..., P-1 )

a. Let OuterTrainset(i) = all partitions except i.
b. Let OuterTestset(i) = the i’th partition
c. Let InnerTrain(i) = randomly chosen 70% of the Outer-

Trainset(i).
d. Let InnerTest(i) = the remaining 30% of the OuterTrain-

set(i).
e. For j = 0, 1, ..., m

Search for the best feature set with j components,
fsij.using leave-one-out on InnerTrain(i)
Let InnerTestScoreij = RMS score of fsij on InnerT-
est(i).

End loop of (j).
f. Select the fsij with the best inner test score.
g. Let OuterScorei = RMS score of the selected feature set

on OuterTestset(i)
End of loop of (i).

5. Return the mean Outer Score.

MC 1( ) M 1–( )C 2( ) ...+ + M m– 1+( )C m( )+
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cost of computing the mean leave-one-out error, which involvesN predictions, isO(j N log N).

And so the full cost of feature selection using the above formula isO(m2 M N log N).

To find the overall best input feature set, we can also employ exhaustive search. Exha

search begins with searching the best one-component subset of the input features, whic

same in the forward selection algorithm; then it goes to find the best two-component fe

subset which may consist ofanypairs of the input features. Afterwards, it moves to find th

best triple out of all the combinations of any three input features, etc. It is straightforwa

see that the cost of exhaustive search is the following:

Compared with the exhaustive search, forward selection is much cheaper.

However, forward selection may suffer because of its greediness. For example, ifX(1) is the best

individual feature, it does not guarantee that either{X(1), X(2)} or {X(1), X(3)} must be better than

{X(2), X(3)}. Therefore, a forward selection algorithm may select a feature set different from

selected by exhaustive searching. With a bad selection of the input features, the predict

of a query  may be significantly different from the true .

7.3.2 Three Variants of Forward Selection

In this subsection, we will investigate the following two questions based on empirical ana

using real world datasets mixed with artificially designed features.

1. How severely does the greediness of forward selection lead to a bad selection of the i

features?

2. If the greediness of forward selection does not have a significantly negative effect

accuracy, how can we modify forward selection algorithm to be greedier in order

MC 1( ) M
2 

  C 2( ) ...
M
m 

  C m( )+ + +

Ŷq

Xq x1 x2 ... ,xM, ,{ }= Yq
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We postpone the first question until the next section. In this chapter, we propose three gr

feature selection algorithms whose goal is to select no more thanm features from a total ofM

input attributes, and with tolerable loss of prediction accuracy.

Super Greedy Algorithm

Do all the 1-attribute LOOCV calculations, sort the individual features according to t

LOOCV mean error, then take thembest features as the selected subset. We thus doM compu-

tations involving one feature and one computation involvingm features. If nearest neighbor i

the function approximator, the cost of super greedy algorithm isO((M + m) N log N).

Greedy Algorithm

Do all the 1-attribute LOOCVs and sort them, take the best two individual features and eva

their LOOCV error, then take the best three individual features, and so on, untilm features have

been evaluated. Compared with the super greedy algorithm, this algorithm may conclud

subset whose size is smaller thanm but whose inner testset error is smaller than that of them-

component feature set. Hence, the greedy algorithm may end up with a better feature s

the super-greedy one does. The cost of the greedy algorithm for nearest neighbor isO((M + m2)

N log N).

Restricted Forward Selection (RFS)

1. Calculate all the 1-feature set LOOCV errors, and sort the features according to the

responding LOOCV errors. Suppose the features ranking from the most important to

least important are .

2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first round,X(1),

along with another feature, eitherX(2), or X(3), or any other one untilX(M / 2). There are

X 1( ) X 2( ) ... X M( ), , ,
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of these pairs. The winner of this round will be the best 2-component feature sub

chosen by RFS.

3. Calculate the LOOCV errors of subsets which consist of the winner of the seco

round, along with the other features at the top of the remaining rank. In this wa

RFS will select its best feature triple.

4.  Continue this procedure, until RFS has found the bestm-component feature set.

5. From Step 1 to Step 4, RFS has foundm feature sets whose sizes range from1 to m. By

comparing their LOOCV errors, RFS can find the best overall feature set.

The difference between RFS and conventional Forward Selection (FS) is that at each s

insert an additional feature into the subset, FS considers all the remaining features, whil

only tries a part of them which seem more promising. The cost of RFS for nearest neigh

O(M m N log N).

For all these varieties of forward selection, we want to know how cheap and how accurate

are compared with the conventional forward selection method. To answer these questio

resort to experiments using real world datasets.

7.4 Experiments

In this section, we compare the greedy algorithms with the conventional methods empiri

We run ten experiments; for each experiment, we try two datasets with different input di

sionalities; and for each dataset, we use three different function approximators.

To evaluate the influence of the greediness on the accuracy and efficiency of the feature

tion process, we use twelve real world datasets from StatLib/CMU and UCI’s machine lea

data repository. These datasets come from different domains, such as biology, sociology,

ics, etc. The datasets each contain 62 to 1601 points, and each point consists of an inpu

M 2⁄

M 3⁄

M 3⁄
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and a scalar output. The dimensionality of the input varies from 3 to 13. In all of these exam

we setm (the maximum feature set size) to be 10.

Our first experiment demonstrates that Exhaustive Search (ES) is prohibitively time-con

ing. We choose four domains with not-too-large datasets and limited input dimensionalit

this test. Referring to Table 7-1, even for these easy cases, ES is far more expensive th

Forward Selection algorithm (FS), while it is not significantly more accurate than FS. How

the features selected by FS may differ from the result of ES. That is because some of the

features are not mutually independent.

Our second experiment investigates the influence of greediness. We compare the three g

algorithms, Super Greedy, Greedy and Restricted Forward Selection (RFS), with the co

tional FS in three aspects:(1) The probabilities for these algorithms to select any useles

tures, (2) The prediction errors using the feature set selected by these algorithms, and (

time cost for these algorithms to find their feature sets.

For example, if a raw data file consists of three input attributes,U, V, W and an outputY, we

generate a new dataset consisting of more input features,U, V, W, cU, cV, cW, R1, R2,..., R10,

and the outputY, in which cU, cV andcWare copies ofU, V andW but corrupted with 20%

 Table 7-1: Preliminary comparison of ES vs. FS

Domain
(dim)

20Fold Mean Errors Time Cost Selected Features

ES FS ES / FS ES FS ES / FS ES FS

Crab (7) 0.415 0.469 0.885 35644 522 68.28 A,F,G A,E

Halibut (7) 57.972 52.267 1.109 61759 713 86.62 B,C,G A,D,E,G

Irish (5) 0.863 0.905 0.954 138088 1142 120.91 A,C,E A,D

Litter (3) 0.780 0.868 0.899 4982 117 42.58 A,B,C A,B,C
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noise, whileR1 to R10 are independent random numbers. The chance that any of these us

features is selected can be treated as an estimation of the probability for the certain f

selection algorithm to make a mistake.

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

# Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS

Bodyfat
(13)

Nearest 0.23 0.12 0.10 0.12 0.10 0.05 0.05 0.06

LocLin 0.31 0.08 0.17 0.18 0.00 0.00 0.05 0.20

GlbLin 0.31 0.23 0.15 0.00 0.00 0.00 0.00 0.40

Boston
(13)

Nearest 0.23 0.19 0.21 0.17 0.20 0.20 0.23 0.35

LocLin 0.15 0.15 0.12 0.15 0.30 0.30 0.30 0.33

GlbLin 0.15 0.12 0.15 0.23 0.40 0.30 0.30 0.40

Crab
(7)

Nearest 0.29 0.29 0.29 0.29 0.30 0.13 0.17 0.20

LocLin 0.29 0.14‘ 0.21 0.21 0.40 0.40 0.20 0.15

GlbLin 0.29 0.14 0.29 0.24 0.40 0.30 0.15 0.17

Halibut
(7)

Nearest 0.57 0.57 0.14 0.43 0.10 0.10 0.10 0.10

LocLin 0.43 0.21 0.04 0.24 0.20 0.10 0.10 0.20

GlbLin 0.36 0.29 0.00 0.14 0.25 0.10 0.20 0.10

Irish
(5)

Nearest 0.60 0.60 0.00 0.00 0.20 0.20 0.10 0.10

LocLin 0.40 0.40 0.38 0.38 0.30 0.30 0.15 0.25

GlbLin 0.60 0.60 0.30 0.40 0.30 0.30 0.40 0.25

Litter
(3)

Nearest 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

LocLin 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

GlbLin 0.33 0.33 0.00 0.43 0.50 0.20 0.35 0.50
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Mpg
(9)

Nearest 0.44 0.44 0.41 0.44 0.00 0.00 0.07 0.05

LocLin 0.44 0.33 0.22 0.30 0.00 0.00 0.10 0.23

GlbLin 0.33 0.28 0.22 0.17 0.00 0.00 0.20 0.20

Nursing
(6)

Nearest 0.33 0.00 0.25 0.25 0.30 0.10 0.15 0.15

LocLin 0.33 0.08 0.33 0.22 0.40 0.25 0.20 0.20

GlbLin 0.33 0.25 0.33 0.25 0.40 0.35 0.20 0.30

Places
(8)

Nearest 0.31 0.00 0.00 0.00 0.15 0.00 0.00 0.00

LocLin 0.38 0.24 0.16 0.40 0.20 0.10 0.00 0.10

GlbLin 0.25 0.25 0.23 0.31 0.35 0.15 0.15 0.25

Sleep
(7)

Nearest 0.29 0.00 0.04 0.04 0.25 0.10 0.13 0.17

LocLin 0.43 0.11 0.03 0.00 0.20 0.03 0.08 0.10

GlbLin 0.26 0.21 0.26 0.29 0.40 0.15 0.18 0.40

Strike
(6)

Nearest 0.33 0.17 0.17 0.17 0.30 0.00 0.03 0.03

LocLin 0.58 0.00 0.00 0.00 0.15 0.00 0.00 0.05

GlbLin 0.50 0.33 0.22 0.33 0.15 0.00 0.08 0.18

White-
cell (13)

Nearest 0.15 0.15 0.08 0.23 0.40 0.20 0.15 0.25

LocLin 0.15 0.04 0.02 0.02 0.04 0.10 0.27 0.27

GlbLin 0.12 0.14 0.08 0.04 0.40 0.35 0.25 0.25

Mean
over all
twelve
datasets

Nearest 0.37 0.27 0.17 0.21 0.23 0.10 0.11 0.13

LocLin 0.38 0.18 0.17 0.20 0.24 0.13 0.13 0.18

GlbLin 0.30 0.26 0.19 0.23 0.29 0.18 0.21 0.28

TOTAL - 0.35 0.24 0.18 0.21 0.25 0.14 0.15 0.20

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

# Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS
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As we observe in Table 7-2, FS does not eliminate more useless features than the greedie

petitors except the Super Greedy one. However, the greedier an algorithm is, the more e

is confused by the relevant but corrupted features.

Since the input features may be mutually dependent, the different algorithms may find diff

feature sets. To measure the goodness of these selected feature sets, we calculate the m

fold score. As described in Section 7-2, our scoring is carefully designed to avoid overfi

so that the smaller the score, the better the corresponding feature set is. To confirm the c

tency, we test the four algorithms in all the twelve domains from StatLib and UCI. For e

domain, we apply the algorithms to two datasets. Both of the datasets are generated ba

the same raw data file, but with different numbers of corrupted features and independent

And for each dataset, we try three function approximators, nearest neighbor (Nearest), l

weighted linear regression (LocLin) and global linear regression (GlbLin). For the sake of

ciseness, we only list the ratios. If a ratio is close to 1.0, the corresponding algorithm’s pe

mance is not significantly different from that of FS. The experimental results are show

Table 7-3. In addition, we also list the ratios of the number of seconds consumed by the gr

algorithms to that of FS.

First, we observe in Table 7-3 that the three greedier feature selection algorithms do not

great loss in accuracy, since the average ratios of the 20-fold scores to those of FS are ver

to 1.0. In fact, RFS performs almost as well as FS. Second, as we expected, the greedie

rithms improve the efficiency. Super greedy algorithm (Super) is ten times faster than for

selection (FS), while greedy algorithm (Greedy) seven times, and the restricted forward

tion (RFS) three times. Finally, restricted forward selection (RFS) performs better than the

ventional FS in all aspects.

To further confirm our conclusion, we do the third experiment. This time, we insert more i

pendent random noise and corrupted features to the datasets. For example, if the origin
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 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Bodyfat
(13)

Nearest 0.975 0.969 0.915 0.095 0.126 0.330

LocLin 1.080 1.015 0.973 0.062 0.092 0.287

GlbLin 0.984 0.981 0.966 0.084 0.109 0.247

Boston
(13)

Nearest 0.876 0.872 0.881 0.105 0.145 0.389

LocLin 1.091 1.091 0.969 0.058 0.080 0.270

GlbLin 1.059 1.052 1.068 0.084 0.127 0.287

Crab
(7)

Nearest 1.107 1.039 0.973 0.123 0.149 0.358

LocLin 1.121 1.093 1.024 0.095 0.128 0.349

GlbLin 1.123 1.101 0.957 0.079 0.116 0.319

Halibut
(7)

Nearest 1.089 1.108 1.051 0.133 0.163 0.376

LocLin 1.395 1.322 1.198 0.079 0.130 0.312

GlbLin 1.073 1.018 1.022 0.079 0.137 0.273

Irish
(5)

Nearest 1.132 1.072 0.954 0.127 0.171 0.343

LocLin 1.039 0.979 0.984 0.086 0.137 0.316

GlbLin 0.981 0.981 0.992 0.096 0.180 0.373

Litter
(3)

Nearest 1.370 1.014 1.000 0.145 0.222 0.419

LocLin 1.301 0.960 0.989 0.099 0.179 0.361

GlbLin 0.886 0.902 0.930 0.111 0.179 0.410

Mpg
(9)

Nearest 1.384 1.250 1.084 0.112 0.165 0.398

LocLin 1.550 1.524 1.081 0.074 0.093 0.271

GlbLin 1.295 1.317 1.014 0.086 0.142 0.298

Nursing
(6)

Nearest 1.315 1.128 0.998 0.102 0.172 0.327

LocLin 1.171 1.106 1.063 0.072 0.121 0.260

GlbLin 1.044 1.043 1.002 0.092 0.137 0.267
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set consists of three input features,{U,V,W}, the new artificial data file contains{U, cU, V, cV,

cU * cV, W, cW, cV * cW, R1,..., R40}. The results are listed in Table 7-4 and Table 7-5.

Comparing Table 7-2 with Table 7-4, we notice that with more input features, the probab

for any corrupted feature to be selected remains almost the same, while that of indepe

noise reduces greatly. Comparing Table 7-3 with Table 7-5, with more input features, (1

prediction accuracies of the feature sets selected by the variety of the algorithms are ro

Places
(8)

Nearest 1.367 1.000 1.000 0.118 0.154 0.364

LocLin 0.998 1.017 0.993 0.071 0.112 0.316

GlbLin 1.041 1.044 1.064 0.091 0.130 0.265

Sleep
(7)

Nearest 1.098 0.883 0.981 0.143 0.165 0.361

LocLin 1.170 0.852 0.922 0.090 0.113 0.273

GlbLin 0.918 0.925 1.026 0.096 0.122 0.276

Strike
(6)

Nearest 1.142 0.952 1.000 0.161 0.178 0.424

LocLin 1.172 0.987 1.003 0.068 0.108 0.293

GlbLin 1.004 0.992 0.993 0.093 0.166 0.310

White-
cell (13)

Nearest 0.854 0.718 0.906 0.100 0.138 0.288

LocLin 1.259 0.821 0.931 0.077 0.088 0.254

GlbLin 0.940 0.942 0.910 0.098 0.109 0.291

Mean
over all
twelve
datasets

Nearest 1.142 1.001 0.978 0.122 0.163 0.365

LocLin 1.196 1.064 1.011 0.077 0.115 0.296

GlbLin 1.029 1.025 0.995 0.091 0.138 0.301

TOTAL - 1.122 1.030 0.995 0.097 0.138 0.321

 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS
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consistent, because the 20fold scores in the two tables are almost the same; (2) the effi

ratio of the greedier alternatives to FS is a little higher.

In summary, in theory the greediness of feature selection algorithms may lead to great r

tion in the accuracy of function approximating, but in practice it does not happen quite o

The three greedier algorithms we propose in this paper improve the efficiency of the for

selection algorithm, especially for larger datasets with high input dimensionalities, withou

nificant loss in accuracy. Even in the case the accuracy is more crucial than the effic

restricted forward selection is more competitive than the conventional forward selection

 Table 7-4: Greediness comparison with more inputs

Funct.
Apprx.

# Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super
Greed

y
RFS FS

Mean
Values

Nearest 0.29 0.33 0.30 0.38 0.04 0.04 0.03 0.04

LocLin 0.38 0.38 0.25 0.41 0.05 0.03 0.02 0.03

GlbLin 0.38 0.25 0.29 0.16 0.05 0.05 0.08 0.07

TOTAL - 0.35 0.32 0.28 0.32 0.05 0.04 0.04 0.05

 Table 7-5: Greediness comparison with more inputs

Funct.
Apprx.

20Fold( ) / 20Fold(FS) Cost( ) / Cost(FS)

Super Greedy RFS Super Greedy RFS

Mean
Values

Nearest 1.197 1.056 1.001 0.080 0.080 0.282

LocLin 1.202 1.059 1.040 0.071 0.084 0.281

GlbLin 1.032 1.026 0.998 0.079 0.104 0.294

TOTAL - 1.144 1.047 1.013 0.077 0.088 0.286
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7.5 Summary

In this chapter, we explore three greedier variants of the forward selection method. Our i

tigation shows that the greediness of the feature selection algorithms greatly improves th

ciency, while does not corrupt the correctness of the selected feature set so that the pre

accuracy using the selected features remains satisfactory. As an application, we apply f

selection to a prototype system of Chinese and Japanese handwriting recognition.
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Driving Simulation

The goal of this experiment is to distinguish different people’s driving styles. The data was

lected from five people using a simulator. The simulator, shown in Figure 8-1, was design

M.C.Nechyba.

Figure 8-1: Driving simulator interface. (Courtesy M.C.Nechyba)

road trajectory
133



134 Chapter 8: Driving Simulation

brake

sim-

man

at the

circular

ited to

record

times
8.1 Experimental data

The human operator has the full control over steering (horizontal mouse position), the

(left mouse button) and the accelerator (right mouse button). Although the dynamics of the

ulator strictly follows the form of some real vehicles [Nechyba et al, 98, (a) and (b)], the hu

drivers’ behavior is quite different from the real one on the real roads. One reason is th

road trajectory of the simulator is generated as a sequence of straight-line segments and

arcs, which differs from the real roads in the real world, illustrated by Figure 8-2.

We generated three road trajectories, each of them is around 20km. Five people were inv

operate on these three different roads after they had warmed up. The simulator took the

of the state of the vehicle and the environmental variables (described in details later) five

per second, while the simulator itself runs 50 Hz. Thus, we collected fifteen datasets,Oij, i =

length length

curvature curvature

(a) (b)

Figure 8-2: The simulator’s road trajectory is generated in a way illustrated by (a), in
which the curvature of the road changes abruptly. However, a high way in the real world
is actually designed in the style of (b), in which the curvature changes smoothly.
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1, 2, ..., 5, j = 1, 2, 3, i represents the operators, andj corresponds to the different road trajec

tories.

The state and environmental variables are listed in the following table:

If a human driver is viewed as a system, the input consists of the following information: (1

current and recent vehicle states,{vξ(t-nξ), ..., vξ(t-1), vξ(t)}, {vη(t-nη), ..., vη(t-1), vη(t)}, {ω(t-

nω), ..., ω(t-1), ω(t)}, wherenξ, nη, nω are the time delays. (2) previous control actions,{α(t-

nα), ...,α(t-1), α(t)}, {δ(t-nδ), ...,δ(t-1), δ(t)}. (3) The visible view of the road ahead,{x(t+1),

y(t+1), ..., x(t+nr), y(t+nr)}. The outputs should beδ(t+1) andα(t+1).

Notice that even for the same human driver, very similar inputs may lead to radically diffe

outputsδ(t+1) andα(t+1), referring to [Nechyba, 98 (b)].

The time delays of the inputs (includingnr of the road median ahead) were decided based

our empirical experiments. Because of the time delays, the input dimensionality of a dyn

system tends to be very high, in this case, it is 50. The high dimensionality may have s

negative impact on the efficiency of both the information retrieval from memory and the c

 Table 8-1: State of vehicle and the environmental variables

Description
Time Delay

(0.42 Seconds)

vξ The lateral velocity 6

vη The longitudinal velocity 6

ω The angular velocity 6

(x, y) The car-body-relative coordinates of the road median 10

δ The user-applied steering angle 6

α The user-applied longitudinal force on the front tires 6
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sification process afterwards. For kernel regression, the computational cost isO(Nd), whereN

is the memory size andd is the input space dimensionality. Even though we used kd-tree

re-organize the memory in order to speed up the information retrieval process, kd-tree p

mance is not satisfactory when the input dimensionality is too high.

Principal Component Analysis (PCA) [Jolliffe, 86] can be used to compress the input spa

some of the inputs are linearly correlated. Notice that, theoretically there is no guarante

PCA can shrink the dimensionality of the dataset in all cases especially when the

attributes are not linearly correlated; however in practice, PCA is a very popular method.

simulation driving experiment, we used PCA to compress the input space from 50 dimen

to 3 dimensions, with only 7.2% loss of information.

8.2 Experimental results

As mentioned above, we collected fifteen datasets from five people driving on three roa

jectories. We assigned one dataset to be a testing dataset; say,O21, which is actually the datase

generated by the second driver along the first road. We did not tell OMEGA who was the

driver, and asked OMEGA to figure it out. To do so, OMEGA needed somelabeledtraining

datasets. In our experiments, we let those datasets collected from the other roads be the

datasets, i.e.Oik, i = 1, ..., 5, k = 2, 3. By “labeled” we mean for each training dataset, OMEG

knew exactly who was the operator.

Using the OMEGA technique described in Chapter 2, we calculated the average of the ne

log likelihood of each testing dataset with respect to all five human operators. Hence, for

testing dataset, we got five likelihood curves corresponding to the five possible dri

OMEGA detected the hidden driver according to the tails of the likelihood curves: the lo

one indicates the most likely operator.
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There are in total fifteen testing datasets, OMEGA succeeded in detecting the hidden d

correctly thirteen times. A typical correct case is demonstrated in Figure 8-3(a), which s

how OMEGA detected the underlying operator of a testing dataset,O11. The horizontal axis is

the number of data points in the testing dataset OMEGA has processed. The vertical axis

average of the negative log likelihood. Tony’s negative log likelihood curve is closest to

horizon, and it is remote from all other drivers’ curves. Hence, Tony is the most likely ope

of the testing dataset,O11. At the early stage when only a few testing data points have been

cessed, the curves are not stable, but afterwards they become smoother and more stab

Although OMEGA did not make any mistakes in the fifteen experiments, it was confuse

two cases1. One of them is shown in Figure 8-3(b), in which the lowest curve does corresp

the real driver, Larry; however, Tony’s curve is too close to Larry’s, so that OMEGA can ha

tell who is more likely to be the hidden driver between Larry and Tony.

1. To distinguish the confusing cases, we assign the significance levelα to be 5%, referring to Chapter 2.
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Figure 8-3: Simulation driving style OMEGA detection. (a) A correct case. (b) A
sample of the confused cases. There are two confused cases out of the fifteen
experiments, all others are correct.
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As an on-line detection tool, OMEGA is capable of starting its job with very few data poi

As expected, the precision is very bad. Thus, the likelihood curves look chaotic at first. But

more and more data come, the curves converge to be stable.

Sometimes the likelihood curves are bumpy, because the driver did something unusua

pared with his behavior in the training datasets. After studying the datasets carefully, we n

that the abnormal behavior usually occurs when the curvatures of the road change ra

referring to Figure 8-2(a). If the human operator does not pay sufficient attention, he may

off the road when the abrupt change of the curvature happens. Therefore, a careful d

curve is smoother and more stable than others, illustrated by Figure 8-4(a). However, som

the curvature changes so much and so suddenly that no one was able to keep his opera

consistent manner. In those cases, all the curves are bumpy and roughly parallel to each

referring to Figure 8-4(b).

Another interesting observation is that some people’s curves tend to be close to each oth

example, Moe’s and Groucho’s. The short distances between their curves implies tha
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Figure 8-4: When some data points in the testing dataset are not consistent with a
certain training dataset, the corresponding likelihood curve may look bumpy. If the
data points are so unusual that there is no similar scenario in all the training datasets,
then all the curves are bumpy, and roughly paralleling to each other, referring to (b).
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driving behaviors are close to each other in the experiments. But does it give any hint t

similarity of their personalities? This is an open question, but it is interesting to observe

Moe and Groucho do spend a lot of time together during weekends.

8.3 Comparison with other methods

Although OMEGA works well for detecting the hidden drivers in these simulation exp

ments, some legitimate questions are still opened, such as: is there any simpler method

can work as well or better?

8.3.1 Bayes classifier

Bayes classifier is a simple method which compares the features. Referring to Table 8-

state of the vehicle and the driver’s action are the instantaneous velocity (includingvξ andvη),

angular velocityω, user applied steering angleδ and acceleration or brake forceα. We treated

the vehicle’s state variables, the environmental variables, in conjunction with the co

actions as the feature and applied Bayes classifier, with tuned-up parameters, to distingu

five human operators. The result is shown in the first row of Table 8-2 :

Obviously, feature-based Bayes classifier did not perform well. The reason are that: (1

tures-based approach does not consider the mapping between the inputs and the outp

 Table 8-2: Comparison of OMEGA with other alternatives

Correct Wrong Confused

Bayes classifier 6 6 10

HMM 13 0 2

Global linear 12 1 2

OMEGA 13 0 2



140 Chapter 8: Driving Simulation

riving

ibited

angular

d devi-

eful

stem

, due

are not

, it can

ds

differ-

relies
some features are also influenced by the road conditions, besides the different human d

styles. (3) different human operators’ feature values have a large overlapping region, exh

in Table 8-3.

The numbers in parentheses are the standard deviations. Since the mean values of

velocities and steering angles depend on the specific road trajectories, only their standar

ations are listed in the table.

8.3.2 Hidden Markov Model

With rich mathematical fundamentals, the Hidden Markov Model [Rabiner, 89] is very us

in speech recognition. When we hear the sentence “I love you”, in fact, our perception sy

recognizes the states [ai] [la] [v] [ju:] in sequence. The order is also important. However

to the difference in emphasis, skipping, and pausing, the transitions among the states

deterministic. Some states may last longer, others may be skipped. For the same example

be expressed in a different way: [ai] [pause] [la] [la] [v] [ju:], or “I, lo-ve you”, which soun

more romantic than the plain tone. Therefore, HMM assumes the transitions among the

ent states are probabilistic instead of deterministic. To recognize a piece of speech, HMM

on the approximation of those state transition probabilities.

 Table 8-3: Aggregate features of human simulation data (based on
Nechyba’s data)

Velocity
( v )

Angularvelocity
( ω )

Steering angle
( δ )

Longitudinal
force (α )

Tony 67.2 (12.6) (0.205) (0.097) 2.03 (3.86)

Larry 72.2 (7.8) (0.193) (0.072) 1.85 (2.37)

Moe 70.5 (7.9) (0.198) (0.074) 1.91 (3.25)

Curly 63.3 (10.1) (0.175) (0.056) 1.33 (1.88)

Groucho 73.2 (9.3) (0.259) (0.100) 2.33 (2.68)
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Due to accents and/or personal styles, few people can precisely pronounce every word

the states (i.e. [ai], [la], [v], and [ju:]) are hidden underneath the stream of the sound sig

The mapping between the sound signals and the hidden states is not so simple as one-

instead their relationship is also probabilistic. HMM is capable of approximating the prob

listic mapping between the sound signal and the states, as well as the transition probab

Although HMM is very successful for speech recognition, one should be careful before u

HMM as a general purpose time series recognizer. The reason is that HMM assumes th

transition probabilities are the most fundamental characteristic of a time series. And us

the transition probabilities are assumed to be time-invariant.

[Nechyba, 98 (a)] applied HMM to distinguish different simulation driving styles. He did

separate the inputs and outputs, instead, he treated the states of the vehicle and the envir

tal variables equally as parts of observations. He assumed that the observations were s

tically decided by some hidden states. Although the physical meanings of those states we

clear, he conjectured that their transitions probabilities differed with different drivers. Th

fore, given a unlabeled driving time series, Nechyba approximated a HMM which fit the

series well. Then he compared the new HMM with those in memory whose underlying dr

were known. Usually one HMM in memory is closer to the new one than the others are

closest HMM in memory indicated the driver who is most likely to be generator of the u

beled driving time series.

As Table 8-2 shows, the experimental performance of HMM is as good as that of OMEG

Why does HMM approach work in this domain? In our point of view, a hidden state is

abstract scenario of the state of the vehicle in conjunction with the environmental situation

the human driver’s control action. Facing a certain scenario, different drivers may give dis

ilar control responses which lead to different new scenarios at the next time step. Thus, dif
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drivers’ diverse responses make the transition probabilities of his HMM distinguishable

those of others.

Therefore, we think the fundamental methodology of [Nechyba, 98(a)] is similar to tha

OMEGA. There is no surprise that the accuracies of HMM and OMEGA are close to

other. While Table 8-2 gives a top-level comparison, Table 8-4 and Table 8-5 view the prec

in depth. Each number in the tables is a probability of a testing dataset being generate

certain operator. Each row corresponds to a specific testing data set, and the real opera

the leftmost column. The other columns represent the five candidate drivers. The number

(2,3)’th cell is the probability that a testing dataset, which was secretly generated by L

would be detected as the performance of Moe. Thus, the sum of the five probability valu

each row is always 1.0. The number on the shaded diagonal is expected to be bigger th

others. And the bigger the diagonal number is, the better the detection system performs

erwise, the detection fails.

Comparing Table 8-4 and Table 8-5, we claim that HMM and OMEGA have similar accu

in this simulation domain. No one is significant better than the other.

However, OMEGA outperforms HMM in other aspects, such as efficiency, data consump

flexibility, robustness, etc., referring to Chapter 2.

 Table 8-4: Cross validation of OMEGA

Tony Larry Moe Curly Groucho

Tony 0.677 0.139 0.020 0.031 0.133

Larry 0.243 0.441 0.014 0.129 0.173

Moe 0.037 0.001 0.836 0.114 0.012

Curly 0.060 0.030 0.272 0.570 0.068

Groucho 0.130 0.070 0.199 0.156 0.445



Chapter 8: Driving Simulation 143

ut the

rm,

y pop-

linear

linear

in-

aset,

m’s

ata

l out-

the

e one

g

test-
8.3.3 Global linear model

OMEGA is a non-parametric method, which means it does not need any assumption abo

function relationship between the input and output. However, if we do know the function fo

we have more options to detect the system. For example, linear system is simple and ver

ular in practice, which assumes the output is a linear function of the inputs. To detect a

system, we can either follow the residual approach or compare the parameters of the

functions.

• Residual approach:For each training dataset, we approximate the parameters of the l

ear function between the inputs and the outputs. Then, given a unlabeled testing dat

we temporarily suppose it was generated by the first system. Through the first syste

linear function, we predict the outputs corresponding to the inputs of the testing d

points. There usually exist some residuals between the predicted outputs and the rea

puts in the testing dataset. The smaller the residuals, the more likely the first system is

underlying system of the testing datasets. We enumerate all the candidate systems, th

with the smallest residuals is most likely to be the underlying system.

• Parameter approach:We can approximate the linear function’s parameters of the testin

dataset, as well as those of each training dataset. By comparing the parameters of the

 Table 8-5: Cross validation of HMM (based on Nechyba’s data)

Tony Larry Moe Curly Groucho

Tony 0.425 0.157 0.217 0.154 0.047

Larry 0.202 0.538 0.116 0.101 0.043

Moe 0.212 0.077 0.429 0.172 0.110

Curly 0.154 0.073 0.180 0.413 0.180

Groucho 0.066 0.040 0.163 0.237 0.494
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ing dataset with those of each training dataset, one by one, we can tell which train

dataset is most similar to the testing dataset, hence, we detect the underlying operat

the unlabeled testing dataset.

It is interesting to find that the simulation driving domainhappensto be linear. Referring to

Table 8-2, the global linear approach performed satisfactorily compared with OMEGA

HMM. It did the correct detection job in most cases.

In our previous work [Deng et al, 97], we compared the driving behaviors of an identical hu

operator, but under two conditions: sober and intoxicated. We found that ARMA(4,4)1 was a

good model for the behaviors under both conditions. We approximated the ARMA param

of the datasets under different sobriety conditions, and found the parameters of the intox

driving behavior deviated from the sober ones, shown in Figure 8-5. The drunken param

were more widely scattered due to the fact that the human operator experienced the varyi

els of intoxication.

8.4 Summary

In this chapter, we applied OMEGA to detect the driving style using simulation datasets.

domain is more complicated than the tennis one because driving is dynamic with feedbac

there are a large number of variables effecting the driver’s control action. Hence, the pre

cessing of the datasets is important. We used PCA technique to compress the input spa

OMEGA does very job in this domain, but is not significantly better than the other meth

However, OMEGA has other good properties: it is simple, it is easy to update the memory

1. Auto Regression Moving Average (ARMA(p,q)) model [Brockwell et al, 91] is a popular linear time series
model. (p,q) refers to the window sizes of its AR part and MA part.
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computational efficient, it consumes fewer data, and finally it is an on-line system, with m

data involved in, it becomes more precise.

In next chapter, we will ask OMEGA to handle an even harder problem. We will see OME

performs more accurately than the other competing methods.
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Figure 8-5: ARMA(4,4) parameters of the sober driving behavior are deviated from
those of the intoxicated ones.
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Chapter 9

Real World Driving

9.1 Data collection

The real world driving data were collected using the CMU Navlab 8 test vehicle, shown in

ure 9-1 [Pomerleau et al, 96]. A CCD camera is mounted on the windshield, undernea

rear-view mirror. This camera is used for lane tracking and vision based obstacle detect

radar obstacle sensor is mounted behind the front license plate, and is used for detectin

cles directly ahead and to the front-left/right. Two side sensors are mounted on the sides

vehicles, near the rear. A single line laser range finder is mounted behind the rear bum

also has a Differential Global Positioning System receiver, which has a resolution of +/- 3

Finally, a yaw-rate gyro is mounted in the rear, along with a tilt sensor. Hence, this ve

allows us to take the time series records of the vehicle’s states, the environmental situat

well as the control actions. Notice that currently there is no sensor to measure the throttle

engine in NavLab 8.

After eliminating not-important ones using our prior domain knowledge, the variables liste

Table 9-1 were used for the detection experiments. The shaded variable in the table, s

angle (ϖ), is the only output variable; the other output variable, the throttle of the gas in c
147
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junction with the brake force, is absent. All others, including the previous records ofϖ, were

used as inputs. All the variables were taken record at a frequency between 14 Hz and 1

Seven people were invited to drive the vehicle. They were selected from both genders an

a range of ages from twenty to fifty. All of them have valid U.S. driver’s licenses, and hav

least four years driving experience in the U.S., with no major traffic violations, accident

DUIs. The subjects were told only that we were interested in learning driving behaviors. De

were kept sketchy, to help avoid biasing the drivers’ behaviors. They were not told how to d

but the only instruction was to drive safely.

The operators were asked to drive from CMU to Grove City, a small town about 50 miles n

of Pittsburgh, then back. “The route is primarily two lane (in each direction) highway driv

Figure 9-1: NavLab’s smart van. (Courtesy of Navlab, CMU).
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with short stretches of three lanes.” Each operator drove for over two hours round trip.

concern is that the subjects most likely have never driven a Silhouette, or even a mini-v

mini-van is large enough that it is hard to get a good feel for the boundaries and available s

particularly on the right hand side. Due to this, most drivers initially tended to hug the left

of the road. However, this effect seems to subside within a half hour or so of driving.”

Unlike the simulation cases discussed in last chapter, it seems to us that linear models

appropriate for describing the real world driving behavior, because of the existence of tr

For example, most drivers tend to take cut to the inside on a curvy road if there is no traffi

illustrated by the dash curve in Figure 9-2. However, in case there is traffic, especially if

are other vehicles in the shortcut route, the drivers are more likely to stay in the middle o

lane. We can measure the distance from our vehicle to other vehicles in the curve, suchd”

in Figure 9-2. If there is no traffic in the curve,d goes to infinity or1/d is equal to zero. To

decide to take the shortcut, the crucial issue is that1/dshould be zero, however, it does not ma

ter that1/d is equal to 0.25 or 0.32. Therefore, it is not proper to model the relationship am

the vehicle’s lateral position, the road curvature and1/d as a linear function.

 Table 9-1: Real world driving variables

Variables Description Variables Description

xξ The lateral position 1/sF Inv. distance to the front obstacle

vξ The lateral velocity 1/sFL Inv. dist. to the front-left obstacle

vη The longitudinal velocity 1/sFR Inv. dist. to the front-right obstacle

θ Road Curvature 1/sB Inv. distance to the back obstacle

φ Vehicle yaw 1/sBL Inv. dist. to the back-left obstacle

ϖ Steering angle 1/sBR Inv. dist. to the back-right obstacle



150 Chapter 9: Real World Driving

A to

rds

r each

com-

from

las-

ve City

ect the

ity,

ted
Based on empirical analysis, we found three seconds’ time delay was sufficient for OMEG

work properly. Hence, for each variable, we took its previous forty-eight reco

into account, except that for the road curvature, we took its forty-eight records ahead. Fo

variable, we used PCA to compress its dimensionality from forty-eight to three. Then we

bined the twelve variables together, and used PCA again to reduce the dimensionality

thirty-six to eight. The compression of the dimensionality is to make the further c

sification process feasible; however, as the price, we lost 17.8% information.

9.2 OMEGA result

Since there were seven drivers, and each one had two datasets, from Pittsburgh to Gro

and back, so that there were totally fourteen datasets:Oij, i = 1, ..., 7, j = 1, 2. We can randomly

select one dataset as a testing dataset, hide the real driver to OMEGA, and ask it to det

driver to see if OMEGA is capable of detecting correctly.

To do so, OMEGA needs some training datasets. Define the datasets such thatOij corresponds

to journeyj by driveri. If the testing dataset corresponds to a trip from Pittsburgh to Grove C

sayO31, where1 refers to the route,3 indicates the real driver. We assign the datasets collec

Figure 9-2: Driving in traffic may be non-linear. If there is no traffic, a driver
tends to take a shortcut. Otherwise, he may stick to the same lane.

d

3 16 Hz( )×( )

12 3×( )
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on the way back from Grove City to Pittsburgh, as the training datasets. Thus, for each t

dataset, we have seven training datasets. For example, if the testing dataset isO31, the training

datasets will beOk2, k = 1, ..., 7.

Since we can assign any dataset to be the testing dataset, totally we can do fourteen de

experiments. OMEGA succeeded in ten cases, failed three times and was confused on1.

Referring to Figure 9-3, at the early stage of the detections, due to the insufficient numb

data points involved in the analysis, the likelihood curves are unstable. With more and

data, the curves converge eventually. However, overall the curves look bumpier than th

the simulation experiments discussed in Chapter 8, referring to Figure 8-3. There are fou

sible reasons: (1) The real world datasets may be noisier than the simulation datasets b

of the resolutions of the sensors. (2) We lost 17.8% information when we did the PCA pre

cessing. (3) One of the two output variables, the throttle of the gas/brake is absent. (4) Alth

1. Again, we assigned the significance levelα to be 5%, referring to Chapter 2.
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Figure 9-3: OMEGA detects the real world driving style. Two correct cases. (a)
From Pittsburgh to Grove City, (b) From Grove City back to Pittsburgh.

Early stage Early stage
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the real world driving datasets are large in size, the majority of their contents consist of no

but very routine operations which are not helpful for distinguishing different people’s driv

styles.

Both Figure 9-3 (a) and (b) were generated by the same driver, “d1”. Figure 9-3 (a) corresp

to the trip from Pittsburgh to Grove City, and Figure 9-3(b) corresponds to the way back. C

paring the early stages of Figure 9-3 (a) and (b), we notice that the curves in (a) were mor

otic than (b)’s. As a matter of fact, we observed the same phenomena happened to alm

the drivers, in other words, all drivers’ initial performance were not so well-controlled as a

wards. In Table 9-2, we compare the standard deviations of the log likelihood of each dr

performance at the early stages of the trips from Pittsburgh to Grove City, with their cou

parts on the ways back. Obviously, most operator’s initial performance was significantly

disordered than the latter one, except that “d5” seems more ready to drive from the very b

ning. These phenomena are supported by the observation mentioned in Section 9-1: “On

cern is that the subjects most likely have never driven a Silhouette, or even a mini-va

However, this effect seems to subside within a half hour or so of driving.”

As usual, the curve whose tail is the lowest indicates who is the real driver. In the correct c

as in the examples of Figure 9-3, the lowest curves are underneath the others by large m

Figure 9-4 (a) and (b) are examples of the confused cases and the incorrect ones. In fact

wrong cases are similar to Figure 9-4 (b): Although the real driver’s curve is not the lowest

it is lower than most others. That is to say, although OMEGA may make mistakes, the co

one is usually within the attention scope.

 Table 9-2: Standard deviations of the likelihood at the early stages.

D1 D2 D3 D4 D5 D6 D7

Pgh - Grove 0.162 0.232 0.215 0.161 0.175 0.182 0.192

Grove - Pgh 0.120 0.095 0.159 0.118 0.163 0.053 0.047
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9.3 Comparison with other methods

Table 9-3 is the comparison of OMEGA with other methods.

As we expected, the linear approach does not work properly due to the reason we discu

the end of Section 9.1.

[Nechyba, 98, (a)]’s method did work in this domain. However, unlike OMEGA which se

rated the real driver from the others with a salient margin in log likelihood, [Nechyba, 98,

could not make a decisive detection between two or more candidates.

 Table 9-3: Comparison of OMEGA with other methods

Correct Wrong Confused

Global linear 4 7 3

HMMa

a. Nechyba has done only half of the experiments.

4 0 3

OMEGA 10 3 1
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Figure 9-4: (a) A confused case. (b) A wrong case. Even as a wrong case, the real
driver’s curve is close to the lowest one.
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While Table 9-3 gives a top-level comparison, Table 9-4 and 9-5 view the precision in d

Each number in the tables is a probability of a testing dataset being generated by a certai

ator. Each row corresponds to a specific testing data set, and the real operator is in the le

column. The other columns represent the seven candidate drivers. The testing datasets o

9-5 were collected on the way from Pittsburgh to Grove City, and the training datasets

collected on the way back. To be fair, so did those for Table 9-4. The number in the (2,3)’th

is the probability that a testing dataset, which was secretly generated by the second

would be detected as the performance of the third driver. Thus, the sum of the seven prob

values in each row is always 1.0. The number on the shaded diagonal is expected to be

than the others. And the bigger the diagonal number is, the better the detection syste

forms. Otherwise, the detection fails. We used 0.030 as a threshold to judge if the probab

on the diagonal are significantly bigger than all the other six probabilities in the row. We n

in Table 9-4, OMEGA made wrong decisions twice. But when OMEGA made correct d

sions, it was quite decisive. Conversely, HMM did not make any wrong decision, but wh

came to the correct conclusion, for three times, the numbers on the diagonal could not b

arated from the other six numbers in the rows by the 0.030 threshold.

 Table 9-4: Cross-validation of OMEGA. a

D1 D2 D3 D4 D5 D6 D7

D1 0.346 0.142 0.031 0.150 0.169 0.047 0.115

D2 0.213 0.247 0.096 0.155 0.129 0.074 0.086

D3 0.182 0.167 0.176 0.144 0.182 0.048 0.102

D4 0.159 0.119 0.059 0.337 0.126 0.087 0.113

D5 0.156 0.105 0.077 0.098 0.435 0.034 0.094

D6 0.124 0.161 0.123 0.124 0.185 0.174 0.108

D7 0.154 0.120 0.065 0.100 0.199 0.050 0.312

a. Using the datasets collected on the way from Pgh to Grove city as the training dataset, and using t
datasets collected on the way back as the testing datasets.
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9.4 Summary

This chapter demonstrated that OMEGA is capable of detecting different systems accu

even in a complicated domain, where the conventional linear system identification approa

not functional any more.

 Table 9-5: Cross-validation of HMM, a

D1 D2 D3 D4 D5 D6 D7

D1 0.359 0.309 0.066 0.113 0.040 0.037 0.076

D2 0.108 0.226 0.123 0.193 0.098 0.090 0.162

D3 0.055 0.159 0.243 0.126 0.202 0.124 0.092

D4 0.106 0.196 0.102 0.216 0.097 0.123 0.160

D5 0.180 0.164 0.174 0.089 0.207 0.134 0.052

D6 0.053 0.127 0.087 0.208 0.105 0.232 0.188

D7 0.041 0.149 0.056 0.244 0.058 0.161 0.291

a. The same as the footnote of Table 9-4.
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Chapter 10

Conclusion

10.1 Discussion

Question 1:Usually a dynamic system has delays and feedback. Can OMEGA handle sy

with infinite delays, and with elastic delays?

OMEGA handles those systems with finite orders of delays. A system with elastic de

means that the order of delay varies from time to time. OMEGA is applicable to systems

elastic delays, if we know the range of the delays. We can assign the maximum order

elastic delays to be the order for OMEGA. However, notice that with redundant order of de

OMEGA may perform inefficiently.

Question 2:Both OMEGA and Hidden Markov Models can handle time series. When sh

we use OMEGA instead of HMM?

Some systems have hidden states, and the observable input and/or output of the systems

manifestation of the hidden states. Hidden Markov Models are good at modeling the h

states and their transition relationships. Conversely, OMEGA analyzes the complicated

bution of the input and output. To some extent, OMEGA may be capable of handling sys

with hidden states. However, in case there are no hidden states, OMEGA will perform b
157
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For example, in the driving domain, because of different road conditions and traffic condit

the distribution of the input and output tends to be very complicated. However, it seems

that probably there are not too many hidden states standing between the input and o

Therefore, OMEGA may be better for the driving domain.

Question 3:Neural Networks, especially Recurrent Networks, are often used for forecas

Can Neural Networks be used to do system classification? If so, what is the advanta

OMEGA compared with Neural Networks?

As we mention in Section 2.5., we decomposeP((xi, yi) | Sp) into the product ofP(xi | Sp) and

P(yi | Sp, xi). We can use any machine learning method to approximateP(yi | Sp, xi). Hence,

Neural Networks can also be used to do system classification.

However, for each candidate systemSp, we should prepare a Neural Network. If we hav

10,000 candidate systems, and the time series to be classified is 40,000 units long (i = 1, ...,

40,000), then we will have to try all of the candidate system at every time step. The comp

tional cost will be 4 million units, which is not desirable. However, as a memory-based lear

method, OMEGA can focus on the promising candidate systems from the very beginnin

this sense, OMEGA is cheaper than any parametric machine learning methods, such as

Networks.

Question 4:What about the computational efficiency of OMEGA compared with HMM, glo

linear model ARMA, as well as Neural Networks?

Concerning computational complexity, the training cost of the global linear model, ARMA

, whereT is the total length of training time series samples, whileM is decided byO M
3

T+( )
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the model size of ARMA1. The training cost of HMM is , whereN is the number

of hidden states in the HMM. Typically, the training process of a Neural Network is divi

into several epochs. If there areW weights in a Neural Network, each epoch takes

However, the worst-case number of epochs can be exponential ind, which is the number of

input attributes. OMEGA does not need any training process, but it re-organizes the me

of training time series data points in the form of a kd-tree, which takes

To evaluate a time series query, the ARMA approach is to estimate the parameters

ARMA model. Hence, the computational cost of evaluating a time series query is similar t

training cost. If the length of a time series query ist, the computation cost of evaluating i

. The evaluating cost in HMM model is , while that of a Neural Netwo

is . The order of computation complexity in OMEGA is also proportional tot, but in

addition depends on what machine learning method is used to approximateP(Xqi | Sp) andP(yqi

| Sp, Xqi). For example, if OMEGA uses locally weighted logistic regression as the approx

tor, the computational cost is , whereT is the number of training data

points. However, with the help of cached kd-tree, the cost can be greatly reduced if the d

sionality,d, is not too large.

In summary, unlike HMMs and Neural Networks, OMEGA is not expensive to train. Howe

evaluating a time series query in OMEGA is not trivial in computation. Based-on our empi

knowledge, OMEGA2 is still fast enough to be an on-line system classifier. Also notice t

ARMA, HMMs and Neural Networks have to try all candidate systems at every time step

time series query, hence if there areScandidate systems, their computational cost of evaluat

a time series query are , and respectively. On t

1. An ARMA model consists of two parts: AutoRegression (AR) and Moving Average (MA). If the window
size of AutoRegression isp, and the window size of Moving Average isq, thenM = max ( p, q + 1 ).

2. In our experiments, we used locally weighted logistic regression as the approximator ofP(Xqi | Sp) and
P(yqi | Sp, Xqi).

O N
2

T
2×( )

O W T×( )

O d
2

T T Tlog×+×( )

O M
3

t+( ) O N t×( )

O W t×( )

O d
3

d T×+( ) t×( )

O M
3

t+( ) S×( ) O N t S××( ) O W t S××( )



160 Chapter 10: Conclusion

ing of

tput

How

n. If

stems,

le.

and

lar to

is to

s and

, if we

now

alman

his is

sim-

e ball

right-
other hand, OMEGA can quickly focus on the promising candidate systems at the beginn

the query, so that its cost is , sometimess << S.

Question 5:Ideally OMEGA assumes the input and output are fully observable and the ou

is fully determined by the input. However, in practice, this assumption is often violated.

badly will OMEGA perform when the assumption is violated?

OMEGA studies the mapping between the input distribution and the output distributio

there are some patterns in the mapping which can be used to distinguish different sy

OMEGA will work well, no matter whether or not the input and output are fully observab

Question 6:The principle of OMEGA is to calculate the residuals between the predictions

the observed results, then summarize the residuals in the form of likelihood. This is simi

Kalman filter. What is the difference between OMEGA and Kalman filters?

Kalman filters assume that we know the closed-form formula for a system, and its goal

estimate the parameters of the formula by minimizing the residuals between the prediction

the observations. The Kalman filter approach can be modified to do system classification

know the closed-form formula of the system. However in many cases we do not explicitly k

the mechanism of the system, so we cannot go through the mathematical process of K

filters. OMEGA is a non-parametric method, which regards the system as a black box. T

the main difference between OMEGA and Kalman filters.

Question 7:What makes some people’s tennis styles similar? Is there any way to learn the

ilarity of individual styles directly?

For the tennis experiment, the only instruction that we gave to the participants was: “hit th

to make it move across the net.” Based on our observation of the tennis experiment, the

O d
3

d T×+( ) t s××( )
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handed people are more likely to hit the ball toward the top-left corner of the court, while s

left-handed people tend to make the ball move to the top-middle or top-right. Some peop

the ball harder than others, some people hit the ball once it comes across the net, etc.

above are relevant to individual tennis styles.

Can we use some simple statistical features to do the system classification, such as th

values of the contact angle, speed, the position of the contact? It is possible that the simp

tures work in some cases. However, in those cases, the input variables, i.e. the serving va

must be uniformly distributed, because the contact angle, speed and the position of the c

are also dependent on the input variables. OMEGA is more powerful than the feature app

since OMEGA studies the mapping between the input distribution and output distributio

Question 8:Suppose OMEGA is employed to detect several drivers’ sobriety conditions.

driver has both “sober” training data sets and “drunk” training data sets. Certainly we ca

use each driver’s two kinds of training data sets to detect his sobriety. But is it helpful to

every driver’s sober training data sets together as a mega sober training data set?

Since all alert drivers share some common behavior, it is helpful to collect all “sober” trai

datasets into a big pool. However, for different drivers, the definition of being alert may be

ferent. A cowboy’s alert action may look very wild to a conservative person. Thus, if poss

a better idea is to put the training dataset generated by thesame type of people together.

Question 9:Is OMEGA good for speech?

Because of accent and emphasis, the same sentence may be pronounced in different w

other words, for the same sentence, the distribution of the signal may be different, but th

den states are always the same. Referring to the answer to Question 2, OMEGA is not g
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approximating the relationship among the hidden states, but focuses on the distribution p

of the signals. Therefore, in our point of view, OMEGA is not good for speech recognitio

10.2 Contributions

In this thesis, we explore a coherent framework to detect the underlying system that pro

a given sequence of data points. This set of data points can be a time series in which the

of the sequence is important, or it can be a non-time series as well. Our approach is to tran

the time series or non-time series into a set of data points with low input dimensionality,

use efficient memory information retrieval techniques and machine learning methods to

series of classifications, and employ likelihood analysis and hypothesis testing to summ

the classification results as the final detection conclusion. The framework of our system is

trated in Figure 10-1. The original contributions of this work are:

1. To our best knowledge, our work, for the first time in the literature, employs state-of-art

mining techniques in conjunction with memory-based learning methods to approach

series detection problem. Compared with other alternative methods, our method is sim

understand and easy to implement, it is robust for different types of systems with n

training data points, it is adaptive when the density and the noise level of the training

points vary in different regions, it is flexible because it does not request fixed threshol

distinguish various categories, it is efficient not only because it is capable of processin

classification quickly but also can it focus on the promising categories from the very be

ning, and based on our empirical evaluation, it is more accurate than other methods.

2. We combined the locally weighted paradigm with logistic regression to be a new mem

based classification methods. Unlike the other memory-based classifiers, it is capa

extrapolating as well as interpolating. It is competent in accuracy, and with some extra

ful features, especially, confidence interval. With the help of cached kd-tree, it is a very

cient classification method.
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3. As known for many years, kd-tree can be used to re-organize the memory so as to re

the useful information efficiently. By caching well-selected information into the kd-tre

node, we found a way to dramatically improve the efficiency of memory-based lear

methods, including Kernel regression, locally weighted linear regression, and lo

weighted logistic regression. Recently, cached kd-trees have also been applied to im

the efficiency of EM clustering [Moore, 98].

4. Due to the progress in improving the efficiency of the variety of learning methods, inten

cross-validation becomes feasible. We used intensive cross-validation to do feature

tion, especially we explored several greedy algorithms to perform the selecting even

while without severe loss in precision. We tried applying these algorithms to select the

ful features so as to recognize Chinese handwriting off-line. Our prototype showed the

Figure 10-1: The structure of OMEGA system and the organization of the thesis.

OMEGA methodology

Memory-based
learning

A new classifier
(Chapter 4)

Kd-tree
information
retrieval

(Chapter 5 6)

(Chapter 2)

Preprocessing

Feature selection
(Chapter 7)

Experiments in Chapter 3 8 9
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racy could be over 95%.

10.3 Future research

1. Referring to Figure 10-1, the pre-processing module is to transform a time series into

of data points in which the time order is no longer important, and to reduce the dimensi

ity of the dataset. Although in our system, we employ Principal Component Analysis

Feature Selection to reduce the dimensionality, there is no guarantee that we achie

goal in any domain. In case the memory data points distribute in clusters, [Agrawal et a

may be worth trying. More research should be done to attack the curse of dimensiona

One promising solution is that we can approximate the relationship among the input a

bues using Bayesian network [Pearl, 88] or dynamic Bayesian network [Dean et al, 88]

learning the configuration and the transition probabilities of the Bayes net [Heckerma

al, 95], we can compress each data points from high-dimensional space into a lower

even a scalar [Frey, 98] [Davis, 98].

2. In this thesis research, we treated the system as a blackbox, we only study its inputs a

puts. This is desirable for many domains, because sometimes we do not have the p

domain knowledge. However, sometimes wedo know somethings about the internal struc

ture of the system, then we should exploit this knowledge because it is helpful to enh

the detection accuracy. [Heckerman, 96] and many other papers suggest that Bayesi

work is capable of being a good system approximator with many advantageous prope

We propose that by using a same Bayes network, we can get double benefits: impro

the accuracy, as well as reducing the dimensionality so as to improve the computati

efficiency.
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10.4 Applications

There are many possible applications, listed in Chapter 1. In this section, we discuss

applications in further depth.

Financial modeling

The importance of financial modeling is obvious: it helps to gain profit from the stock ma

and avoid bad investments, such as the recent failure of Long Term Capital Manage

(LTCM) hedge fund. There are many researchers doing financial modeling, including s

Nobel Prize winners. Why should we compete with them?

Most financial models assume the behavior of the financial market is controlled by a un

mechanism. Most Wall Street researchers want to make this unique model more compl

in order to fit all possible scenarios in the financial world. In contrary, we believe that altho

the stock index, like S&P index, is only an one-dimensional time series, the underlying m

anism of the financial market is not unique, instead, there are several different underlying

trol systems either working at the same time or switching from time to time. Suppose give

recent behavior of the stock market, including the various influencing factors like Fed’s i

ests, we can use OMEGA to retrieve the similar historic data clips from the database, figu

which underlying mechanism is working nowadays. And based on that, we can predict

will happen to the stock market, with a certain confidence measurement.

Web server monitoring

The rapid growth of internet has greatly increased the pressure on administrators to q

detect and resolve service problems. Typically, the detection job is done either by some a

models to estimate weekly patterns [Maxion, 90], or by specifying threshold testing [He

stein et al, 98].
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Using the techniques explored in this thesis, we are capable of detecting more complicate

terns efficiently, and distinguishing the patterns by specifying thresholds which are adap

to datasets with different distribution densities and different noise levels. In other words

technique may be more robust and accurate than the previous approaches.

Embedded detection device

To monitor if an engine works normally, we can embed a chip into the engine so that whe

it runs, the chip takes records of the engine’s signals. If one day, the operator finds “somet

the engine did not work normally, he can pull out the chip from the engine, insert it into a de

hooked to his home PC. His home PC is linked to a super server somewhere else throu

internet. By comparing this engine’s signal time series with those in the super server’s data

the server can tell the operator when and how his engine went wrong. Thus, it is more c

nient for the operator to decide if the engine needs repairing.

Compared with the conventional methods, which are based on the domain knowledg

approach has more advantages: (1) Since there are so many engine nowadays in the wo

they are updated so quickly, it is not very convenient to update the conventional diagnosi

tem, because usually they are installed in the engines. For our distributed system, we ca

ply update the knowledge in our central super server, we do not need to modify the produ

have sold to our customers one by one. (2) The conventional methods are of “we desig

use” style, our approach can interactively collect new data from the customers, then learn

them. Hence, with more and more experience, our system can automatically become

intelligent.
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Appendix A

Chinese Handwriting Recognition

As a side experiment, we used the feature selection techniques discussed in Chapter 7

ognize Chinese handwriting. Our goals are: (1) to demonstrate feature selection is imp

because it is the crucial part for the recognition job. (2) to compare the feature set found b

feature selection algorithms with a human expert’s selection.

1.1 Feature selection for Chinese handwriting recognition

Although most of the research in handwriting recognition is for on-line systems [Singer e

94], there is no doubt that off-line systems are also very important especially in domains

as automatic tax form processing.

To date, research for Chinese and Japanese character recognition is still preliminary1. Because

the number of Kanji, i.e. Chinese characters, is over fifty thousand, it is hard to rely on any

eral-purpose global model to recognize all Chinese characters. Alternatively, a prom

approach is to separate the Chinese characters into several groups. For each group,

model is developed to distinguish the different characters.

1. There are some Chinese and Japanese recognition products on the market. The product introductions c
that their accuracy is over 90%. However, we do not know what kind of principles they apply. And we
notice some of those products can only recognize rigidly written characters.
167
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Although it may be possible to build the local models off-line, manually, it is better if we h

an on-line automatic configuration mechanism. Not only does this automatic system sav

ware developers from tedious and time-consuming work, but also it is adaptive and can

different personal handwriting styles.

In this section, we propose an idea to recognize Chinese and Japanese handwriting o

with automatically configured adaptive local models. We also give a prototype of this syst

Chinese characters are constructed by ten fundamental strokes.

The different combinations with different relative positioning determine different charac

For example, there are eight different Chinese characters plus “F” and the Japanese ch

“ki” containing two horizontal lines and one vertical line, illustrated in Figure A-1.

In this prototype system, some features are useful for recognition, while others may not

significant, or, can be substituted, referring to Figure A-2. Notice: (1) The human exp

selection, as shown in Figure A-2(a), is not the only functional set, there exist multiple opt

(2) Among the multiple functional feature sets, some of them may lead to more accurat

ognition than the others.

To find the features including those not-so-significant, we can follow these three steps:

•   Figure out the horizontal lines, vertical lines, and other strokes, respectively.

•   Sort the lines from top to bottom, or from left to right.

• Calculate all the possible features according to prior knowledge. In the case of Figure

each stroke has two ends. The features can be the distances from the ends of each s
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hr1

hr2

w1

w2

lf1

lf2

rg1

rg2

tr2tr1

hg1
hg2

hg3

tr3 tr4

cr1 cr2

(a) Features selected by human
expert

(b) Other candidate features,
including those not-important ones.

Figure A-2: The features used for the Chinese handwriting
recognition prototype system.

Figure A-1: A prototype of Chinese handwriting recognition system.
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those of others, as well as the distances to all the intersections, illustrated in Figure A

After we have found the candidate features, we can apply the various feature selection

rithms to select the proper features for the recognition job. In the experiment, we try four

ture selection algorithms: Super-greedy (Super), Greedy (Greedy), Restricted Fo

Selection (RFS) and conventional Forward Selection (FS). We request that any selected

sets contain no more than eight components. To evaluate the goodness of the selected

sets, we calculate their 20-fold scores. Since our procedure is carefully designed to avoid

fitting, the smaller a feature set’s score is, the more accurately this feature set is able to

nize any one out of the ten characters. We also count the numbers of seconds consumed

four algorithms so as to compare their computational costs.

In Table A-1, we observe that different selection algorithms may find different sets of feat

When we carefully study these various sets with respect to Figure A-2, we find all of them

functional. Second, we find that the feature sets selected by RFS and FS are very similar

human expert’s preference, but different from the sets found by Super and Greedy. T

although all of these feature sets have satisfactory accuracy, those found by the greedie

rithms lead to less accurate recognition performance. However, if we allow more compo

 Table A-1: Chinese character feature selection

Selection
Methods

m = 8 = Max Number of features m = 12

Selected feature set
20fold
score

Cost
20fold
score

Cost

Super w2, lf1, lf2, hg1, tr1, tr2, tr3, tr4 0.038 532 0.018 529

Greedy w2, lf1, lf2, hg1, tr2, tr3, tr4 0.041 767 0.022 916

RFS hr1, w1, lf1, lf2, hg1, hg3, cr2, tr1 0.018 1414 0.016 1570

FS hr1, hr2, w1, lf1, lf2, hg1, tr3 0.016 3586 0.018 4829

Human hr1, hr2, w1, w2, lf1, lf2 0.016 -- 0.016 --
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to enter the feature sets, even the greedier algorithms’ selections become more pow

Finally, the greedier algorithms are cheaper than the others.

1.2 Future work

The prototype system is sufficient to demonstrate the importance and capability of the fe

selection algorithms. But to pursue a good Chinese handwriting recognition system, som

ther work has to be done. Since this topic is a digression from the discussion of feature

tion, we only give a brief introduction.

For more complicated Chinese character, for example which means “hide” and “Tibet

number of possible features will explode. Fortunately, every Chinese character can be sp

some standard particles, and the number of these standard particles is no more than o

dred. Indexed by these particles and their relative positioning, any Chinese character c

represented by no more than five digits. One example is illustrated in Figure A-3. This

nique is called Wang-coding or Five-stroke coding, which has become one of the nationa

dard typing methods in China.

Now the remaining difficulty is how to find those standard particles from any Chinese cha

ters. One promising approach isA* search.

23 (  )  24 ( ) 1 ( left to right )

23 ( )  24 (  )  2 ( up and down )

Figure A-3: An illustration of Wang-coding of a Chinese character.
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