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ABSTRACT

A time seriess a sequence of data points in which the order of the data points is important. In
many cases, each data point consists of both inputs and outputs. The reason that the time order of
such a time series is important may be that at a certain time instant, the outputs are determined not
only by the current inputs, but also by some of the more recent inputs and outputs. If we extend
the input vector to include those previous inputs and outputs in addition to the current inputs, then
the outputs are fully determined by the expanded input vector. Thus, we can transform a time
series into a set of data points where the time order is no longer important.

Given a time series, a system classifier's purpose is to determine to which category the
underlying system belongs, among a set of pre-defined candidate categories. To do so, our system
classification algorithm transforms the time series into a set of expanded data points. It then
employs a memory-based classifier to calculate a sequence of probabilities that measure how
likely these expanded data points are to belong to each of the categories. Finally, it uses likelihood
analysis and hypothesis testing to summarize these classification results. Our method can also
handle the classification of non-time series.

Our contributions include: (1) the methodology that decomposes time series classification into
the likelihood analysis of a sequence of classifications; (2) a new memory-based classifier that has
many desirable properties; (3) re-organization of the memory in the form of a cached kd-tree that
greatly improves the computational efficiency of information retrieval and memory-based
learning algorithms; and (4) fast feature selection based on intensive cross-validation and greedy
searching.

Compared with other methods, our new system classifier is simple to understand, easy to
implement, robust for various types of systems, and adaptive to datasets with different densities
and/or noise levels. It is capable of distinguishing the various categories of the underlying system
without requiring any predefined thresholds. It is efficient not only because it can perform
classification quickly, but also because it can focus on the promising categories while ignoring the
others after only a few iterations. Based on our empirical evaluations, our method tends to be
more accurate than other methods.
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Chapter 1

Introduction

1.1 What is system classification?

With the dramatic development of computer science and technology, we are on the edge of
making many machines intelligent by embedding computer systems in them. For example, peo-
ple have known how to cook rice for thousands of years, but only in the last two decades was
the neuro-controlled automatic rice cooker invented. In the near future, by embedding com-
puter chips in other kitchen devices, people will be further liberated from the tedious and
exhausting cooking tasks which their predecessors have suffered for many centuries. Similar
things will also happen to vehicles. In next century, we expect cars will become autonomous.
Once the passengers tell the vehicle where to go, they can go to sleep or watch television. In
the short term, cars will become smatrter, if not completely autonomous. The smart car’s intel-
ligence has many aspects, including the ability to tell if the human driver’s sobriety level is
good enough for further operation. If necessary, the monitoring system may warn the driver to
stop for a break. This is important because inattention may lead to the fatal accidents. In the
U.S. 1996, there were over 37,000 automobile accidents involving fatalities, in which 42,000
people were killed. Among these cases, over 21,000 were single vehicle accidents resulted in
22,500 fatalities [Batavia, 98].

13



14 Chapter 1: Introduction

The technique we explore in this thesis is useful for driving sobriety monitoring, as well as
other applications. Let’s imagine that we have a vehicle full of smart sensors which can tell the
velocity of the vehicle, its orientation, its lateral distance to the center of road, and the distances
to the other vehicles nearby, etc. If we regard a driver as a system, the above variables are the
inputs to the system. Based on the inputs, the driver has to properly steer and control the gas
and brake pedal. Thus the outputs of the system are the vehicle’s steering angle and its accel-
eration. Suppose we also measure the outputs. Let’s take a record of both the input and output
values every time unit, say 0.1 second. We will get a multi-dimensional time series. The driving
time series varies from case to case, even if the driver is the same person and his/her sobriety
condition is identical. The reason is that road conditions and traffic may be different, and these
differences will make the driver’s response (system outputs) differ from case to case. However,
we believe if the driver is sober, his driving behavior time series should be consistent with his
historic “sober” driving time series. Otherwise, if the driver is intoxicated, his driving (system
outputs) may differ from those normal cases in memory. In addition, an intoxicated driver may

create some unusual input scenarios because of his careless behavior.

How can we formalize the informal discussion above into a useful and reliable algorithm? In
statistical terms, to classify the driving style we want to calcuatE(S,ormal| Og), which is

the probability that a driver’s sobriety is normal, as inferred from the observation of their driv-
ing behaviorOq represents the current driver’s driving behavior time segesands foquery
implying that the underlying state of the driver’s sobriety condition is unkn@ygy4iS the

event of the driver being sober. To calcul&®b(S,ormal | Og), Wwe compare the unclassified
time seriesOy with those time series in memory generated by the same driver when he was
sober. IfProb(S,ormall Og) is higher than a certain threshold, the driver seems to be sober. Oth-
erwise, they are intoxicated. Sometimes, the task can be more complicated. For example, the
police department may want to distinguish drowsiness from drunkenness. In this case, we
should calculat®rob(Shtoxicated| Og) OF Prob(Qirowsyl Og), @s well asProb(S,ormall Og), the

largest value indicates the driver’s most likely sobriety condition.
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Generally speaking, we define the task dfyatem classifieas the following: given a set of
observations of a system'’s inputs and outputs, a system classifier is to figure out the underlying

mechanism which generates these observations.

1.2 The applications of system classification

» System diagnosis:

No machine can work perfectly all the time. People need to know when to fix the
machines and how to fix them. This is the purpose of system diagnosis. System diag-
nosis can be done by human experts. However, in some cases an on-line autonomous
system diagnosis tool is preferred, because for some complicated machines, no single
human expert can understand every detail. Also, it is hard to ask the human expert (or
a group of them) to do the diagnosis job twenty-four hours a day, seven days a week, in

all possible situations including dangerous environments.

» Surveillance

With the progress of video tracking and speech signal processing, we are on the edge
of implementing an autonomous system to liberate human operators from surveillance
jobs which may be tedious and last long hours. We expect that these autonomous sys-
tems will have better performance than that of a sleepy human operator. Similarly, we

expect to apply this technique to make some military surveillance devices more intelli-

gent. For example, we can invent an automatic radar monitoring system so that the sol-
diers can be liberated from the radar desk, especially during the tedious period when

nothing unusual happens.

* Human behavior monitoring

Every year in the U.S., thousands of people die in traffic accidents. Some of these acci-
dents are caused by the exhaustion of the drivers. It would be desirable to have a way

to monitor the behavior of the human operators and give them warnings if necessary.
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Another possible application is that with the booming of virtual reality stores on the
Internet, more and more customers will go shopping via the Internet. Technically the
e-stores’ server is capable of tracking the behaviors of the visitors, to detect the cus-
tomers’ purpose and/or preference. This prospect does raise many moral, ethical, and

social issues which are beyond the scope of this thesis.

* Human skill transition and evaluation

Sometimes people want to learn physical skills from the masters. Some skills should
be passed on before the old masters die. Some skills should also be transferred to
robots, because robots can work in remote or inhospitable environments. Therefore,

we need some ways to transfer skills and evaluate the learned performance.

* Financial monitoring

We can apply the techniques of this thesis to keep an eye on the financial climate,

which is useful and rewarding.

1.3 The assumptions of OMEGA

In this thesis, we investigate and extend memory-based learning for general propose on-line
system classification. We name this new technique On-line MEmory-based GenerAl purpose
system classifier, (OMEGA). OMEGA calculatBsob(S, | Og), which is the probability that
the underlying mechanism of a set of observatiogts systent,. It has following the assump-

tions:

1. OMEGA does not approximate the closed-form mechanism of the underlying system. We
also assume that the unknown underlying generat@@hust be one of &nite set of can-
didate systems. This assumption is not so bad as it looks. For the example mentioned
above, itis unnecessary to require every police officer to know the psychological and phys-

iological processes underlying intoxication. Instead, if a traffic police officer can correctly
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detect any unusual driving behavior, his job is well done.

2. For the same example, to calculate the probabiityb(S,ormai | Og), we compare the
query driving time serie© with those “sober” driving time series in memory. In other
words, we assume that we have collected some training observations of each candidate
system’s behavior before the classification job@grcomes. Notice that if there are only a
few sober driving time series samples in memory, it is still possible to approximate

Prob(Syormail Og)- Of course, the fewer the sober samples in memory, the less reliable the
approximatedProb(S,ormai | Og) is.

3. Originally motivated to classify time series, our research ends up with a general purpose
technique which is also capable of general pattern classification. In other words, the obser-
vation Oy may be a time series, but this is not necessary. As deflbgd in fact a set of
observation data points, while a data point consists of the inputs of the concerned system at
a certain time instant and their corresponding outputs. \\hgs not a time series, we can
shuffle its data points randomly.

4. OMEGA works best for those systems whose input and output are fully observable, and
the output are fully determined by the input. Note that this assumption is often violated in
practice. For example, in driving domain, a driver’'s control action may be influenced by
some of his hidden psychological and physiological factors. However, like other machine
learning methods, we assume a driver control action is somehow predictable by some
observable input variables.

5. The inputs and outputs of any candidate systems can be of any type. They can be continu-
ous or discrete, (including categorical), or even a mixture of the two. However we assume

the types of the input and output of all candidate systems are the same.

6. We study stochastic systems; in other words, given a certain input, the corresponding out-
put is stochastic. The conditional distribution of the output given a certain input can be of

any type. For some systems, the outputs corresponding to an identical input may scatter
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around a center, so that the conditional distribution can be roughly formed as Gaussian.
However, as a general purpose approach, OMEGA does not require this uni-modal

assumption.

1.4 Related fields

Conventionally, classification is to detect to which category a single data point belongs. How-
ever, since a time series consists of a sequence of data points, system classification involves a

sequence of classifications, then summarize them so as to draw an overall conclusion.

System classification is different frogystem identificatiarThe latter estimates the configura-
tion and the parameters of an unknown system, but system classification’s task is to recognize

an unknown system, without necessarily estimating its parameters.

Another closely related field i®ult detectionwhich is also referred to asovelty detection

The task of fault detection is to tell whether or not a system’s current behavior is out of the tol-
erance of its normal performance. System classification is different from fault detection
because system classification concerns multiple systems, and it assumes that every system
always works normally. The difficulty of fault detection is that its training data is usually unbal-
anced; in other words, the majority of the training data is collected when the system works nor-
mally. However, it is still straightforward to apply OMEGA to solve the fault detection
problem: we approximaterob($,ormai | Og), If this probability value is lower than a certain
threshold, the system is abnormal; in another case, even if the vaR®InfS,omal | O) is

higher than the threshold, but it is not reliable (its confidence interval is too large), the state of

the system is uncertain. The threshold can be decided by hypothesis testing methods.




Chapter 1: Introduction 19

1.5 The system classification approaches

There are two approaches to system classification: comparing the system parameters, or com-

paring the predictions.

Comparing the system parameters

This approach is similar to system identification: we approximate the unknown system’s
parameters first, then classify the system based on the comparison of the system parameters.
For example, suppose we have a collection of observafqng,), (%, ¥»), ..., (4 Y1), where

X's are the system’s inputs, ay are the outputs. Temporarily, let's assume based on prior

knowledge that we know these signals were generated by a linear system:

y = [30 + B]_X + E
If there are sufficient observations, we are able to approximate the system parafizetercs,
1. To detect if the observation signdls, y1), (%, ¥5), ..., (4 Yy) were generated by a partic-
ular one-input-one-output linear system whose parametersgaada,, we can straightfor-

wardly check if thex’s andf’s are close to each other respectively.

This approach looks simple, but it has three problems: (1) We need the prior knowledge of the
closed-form formula of the system. (2) Before we employ this approach, we should make sure
that identical systems must have the same parameters. When the system is more complicated
than a linear one, different sets of parameters may correspond to the same system. Section 1.7

gives an example.

In some circumstances like chemical manufacturing process, it is hard to get precise mathemat-
ical models of the systems. Therefore, to design a robust, general purpose system classification

package, we will resort to the other approach.
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Comparing the predictions

Given a set of observations whose underlying generator is unknown, the prediction approach

temporarily assumes the unknown underlying system is a certain candidate one. Based on our
knowledge of this assigned candidate system, we can predict the outputs corresponding to the
inputs of the observations. If the candidate system is indeed the real underlying system, the pre-

dictions must be close to those observed outputs. Otherwise, the assumption is not correct.

In more details, let’s suppose there is a collection of observat{gnsy), (X, ¥5), .., (4 ¥1)-

To figure out whether or not they were generated by a certain linear system,

Yy = a,+0X+¢

with particularag anda4 values, we can use the above formula to predictythalue given a
certainx. Therefore, we will get a sequence of predictiory%k, 372, ,37T . The difference
between them and the observed valygsy,, ..., yr are the residuals. If the residuals are close
to zero, the system witbiy anda4 as parameters is likely to be the underlying system which

generated the observations.

Even with only one observation, the prediction-based approach can still start to work, though
the result will be unreliable. With more observations, this approach can be expected to have
improved performance. Therefore, the prediction-based approach is ideal for on-line applica-

tions.

Up to now, we have assumed the system is linear. The linear system model has been popular
for several decades because it is simple and in many cases it is reasonable. For non-linear sys-
tems, we can apply non-linear function approximators such as neural network to do the predic-
tion job, so that the prediction-based system classification approach still works [Petridis et al.,
96].
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The neural prediction approach uses neural networks to approximate every candidate system.
If there are one hundred candidate systems, there will be one hundred neural networks. To cal-
culateProb(S, | Og), we compare the outputs 6, with the predictions of the neural net, which

represents, given the corresponding inputs.

Although a neural classifier is capable of starting its job to detect the unknown underlying gen-
erator ofOq with very few data points i®,, we should clarify that it does need a large amount

of training data to train the neural net to precisely represent the candidate systesy, Bag
training data are collections of observations simila®fp but they are labeled by their under-

lying systems, sa,.

There are three concerns with a neural prediction-based system classification approach. (1) It
is computationally expensive to train a neural network. Things become worse when new train-
ing data is constantly becoming available. (2) Even if we can afford a supercomputer which is
capable of updating the neural networks quickly, we will have another trouttérference

The neural networks will evolve to fit the new data, and the old data will eventually lose their
impact. (3) Every candidate system’s neural network, should be included in the competition,
until there is convincing evidence that a certain candidate’s neural net is less competitive.
Therefore, when there are a huge number of candidates, the computational cost becomes pro-
hibitively expensive, especially in the early stage when all the candidates are involved in the

process.

To overcome these problems, the memory-based learning approach is a good choice. A mem-
ory-based learning system stores all the training data in memory. When new data arrive, they
will be stored into the memory together with the old data. All processing of the training data is
deferred until a prediction query is made. Therefore, less interference happens. Second, as we
will introduce in the later chapters, the memory-based learning methods do not require any
parametric model of the system. Hence, there is no model which needs to be trained off-line.

Third, by reorganizing the memory in kd-tree form and caching some information into the tree
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nodes, the memory-based learning process can be done very quickly. Fourth, also with the help

of kd-tree, we can focus on the more promising candidates from the very beginning.

1.6 Thesis outline:

The thesis research consists of four parts: (1) The top-level principle of OMEGA, which is to

combine a series of classifications in the context of likelihood analysis and hypothesis testing.
(2) A new memory-based classifier, which has many improvements over existing classifiers. (3)
Efficient memory information retrieval and regression using the cached kd-tree technique. (4)
Cross-validation for feature selection and parameter tuning. Although (2) (3) (4) are three inde-

pendent research topics, they act as components in the OMEGA approach.

Chapter 2 introduces the principle and framework of OMEGA to give the readers a birds-eye
view of the whole approach and the relationship of the various components. As a demonstra-
tion, in Chapter 3 we use OMEGA to classify different styles of tennis playing, and compare
OMEGA's performance with those of other methods. From Chapter 4 to Chapter 7, we discuss
the components of OMEGA in details. Chapter 4 explores the new memory-based classifier,
and compares it with other classification methods. In Chapter 5 and 6, we discuss a technique
to re-organize the memory so as to improve the efficiency of information retrieval and regres-
sion. In Chapter 7, we talk about cross-validation, which is useful for feature selection and
parameter tuning for the learning process. After that, we combine all the techniques into the
OMEGA toolkit, and apply it to classify different driving styles, using both simulation data and
real world data, referring to Chapter 8 and 9. Finally, Chapter 10 is a summary of all the

research work, the contributions, and the open questions.

Figure 1-1 illustrates the structure of OMEGA system and the organization of the thesis.
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Preprocessing

Feature selection

(Chapter 7)
OMEGA methodology
(Chapter 2)
T Experiments in Chapter 3 8 9
N~
Kd-tree
information Memory-based
retrieval learning
(Chapter 5 6) A new classifier
(Chapter 4)

Figure 1-1: The structure of OMEGA system and the organization of the thesis.

1.7 *1: Hidden Markov Model (HMM)

HMMs have been widely accepted as a time series analysis tool. They stand between the
parameter comparison approach and the prediction approach. On one hand, it approximates the
parameters of the hidden Markov model; on the other hand, it use a method similar to the pre-
diction approach to evaluate whether or not two hidden Markov models with different param-
eters are in fact identical. There is no doubt HMM is an important and interesting technique,

but it is questionable if it is a robust, general purpose system classification tool.

Before we argue the reasoning of our conclusion, let’s give a brief introduction to HMM. HMM

assume that a system has some internal hidden states. As time passes, the system jumps from

1. This section can be skipped if the reader does not have much interest in HMM.
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Observation Observation
Hidden State A B Hidden State A B
05 05 1 1.0 0.0
05 05 2 00 1.0
0.5
1.0 0.5 05

An observation sequence: AABABABBABABAABB. The above
two models have the same chance to be the generator of the observation seiuence.

Figure 1-2: Two identical HMMs

one internal state to another. Each hidden state generates an observable signal, but it is possible
that one state has several possible signals, and the same signal may be shared by several hidden
states. The observation time series generated by a HMM is stochastic in two aspects: (1) The
jumps are stochastically decided by the transition probabilities among the hidden states. (2)
Even for the same hidden state, we may observe differing signals. Two two-state HMMs are
illustrated in Figure 1-2. The numbers attached to the arc links are the transition probabilities.
Since all the transition probabilities in Figure 1-2 (a) are 1.0, the system definitely switches its
hidden state every time step. The system of Figure 1-2 (b) has a 50% chance to stay in the same
hidden state, but has the other 50% chance to switch. The tables above the diagrams indicate

the probabilities linking the hidden states to the observations, A and B.

If two time series are different, the underlying HMMs’ parameters must be distinguishable. The
HMM parameters include the transition probabilities and the probabilities linking the hidden

states to the observations.
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However, notice that an identical system may have a different structure and parameters. The
system of Figure 1-2 (a) is in fact equivalent to that of Figure 1-2 (b), because both systems
have exactly the same chance to generate the observation sequence written in Figure 1-2.
Therefore, to detect if two HMMs are equivalent, we cannot simply compare their parameters.
Instead, we should use the first HMM to generate a sample observation sequence, then find a

way to measure how well the sample observation sequence fits the second HMM.

HMM were originally explored by the speech recognition community. For speech, there is no
input, all the signals can be regarded as outputs. To extend HMM to systems which have both
inputs and outputs, one solution is to enumerate every possible combination of input and output
as a state. Thus, the number of states explodes as the number of possible input and output values

increases. Therefore, in our opinion, HMMs did not easily fit our tastes.




26

Chapter 1: Introduction




Chapter 2

Memory-based System Classification

In this chapter, we study the methodology of the On-line MEmory-based GenerAl purpose sys-
tem classification technique (OMEGA). OMEGA combines a series of classifications in the
framework of likelihood analysis and hypothesis testing. In this chapter, we will introduce like-
lihood analysis and hypothesis testing first, then discuss efficiency issues. Afterwards, we will
summarize pre-processing method and briefly discuss alternative memory-based classification

and prediction methods.

2.1 Likelihood Analysis

As defined in the last chapter, a system classifier should estimate the underlying generator of a
set of observation signa3,, under the assumption that the generator must be one of a finite
number of candidate systens;, ..., §,. For example, given a time series of a vehicle’s behavior

in traffic, Oy, the task of system classification is to tell the sobriety state of the d8yerssum-

ing that we have sufficient knowledge of the behavior of sober drivers, sleepy drivers and even

intoxicated ones.

Average residuals

If we treat a driver as a system, the outputs are the control actions of the driver: the positions

of the steering wheel and the gas and brake pedals. A driver chooses his control actions accord-

27
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ing to the state of the vehicle, the road condition and the traffic condition, as well as his previous
actions, hence the inputs of the system are the speed of the vehicle, its orientation, its distance
to the center of the road, the road curvature, the distances from the vehicle to the neighboring
ones in traffic, as well as the driver’s previous control of the steering angle and the gas/brake
throttle. Usually an observation sequence consists of a series of input-output datgpgints

Yqi}- Temporarily let's assume that at any time instant, the outgus fully controlled by the

inputXxy;. We will come back to this topic in Section 2.4.

We do not know which candidate system generated the observation seyghuelet’s guess
it is the first systemS;. Assuming somehow we have sufficient knowledge alSuso that
given a specific inpug, we can predict the outpu§/|S, . Sin€, consists of a series of data
points{Xy;, Ygit: I = 1, ..., Ng, if we pick up one inpukg; from them, we can predict the corre-
sponding output, y;i|81. If S, is indeed the real underlying generator ©f, yAqi|S1 is
expected to be close to the observed outypjitin other words, the smaller the residual between
yAqi|Sl andyy;, the more likely the unlabeled data poifxg;, yqi}, i=1, ..., Ny were generated
by S,. If there areN, data points irDg, we will getNy such residuals. We can use the average

of these residuals as a measure of the likelihood.

If there aren candidate systems, we can calculateuch averages of residuals. The smallest
one indicates the particular candidate system which is most likely to be the generator of the

unlabeled data point§;, Y}, i = 1, ..., N, or equivalently, the observation sequeQge

The average residual is a useful metric, but it treats every residual equally. This is not desirable,

because somey,;

SID 's have better quality than the others, and they should therefore have
stronger impact on the likelihood measurement. Hence, we explore the likelihood approach in

next subsection.




Chapter 2: Memory-based System Classification 29
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Figure 2-1: A driving system with one delay and feedback.

Likelihood

From the Bayesian point of view, the system classification problem can be structured as calcu-
lating P(§,| Og), p = 1, ..., N;, which is the probability that given an observation sequénge

the underlying generator is tipgh candidate system. The biggé(S; | Og), pU {1, ..., Ng},
indicates the most likely system which generagd

According to Bayes ruleR(S, | Og) is proportional toP(Og | Sy), when the prior probability
P(S) is fixed. Let's assum@, can be transformed into a set of data poifig;, yqit, i=1, ...,

Ng, so that temporal order is not important. If so, the following equations hold:

N, Ng
P(Oq|Sp) = [ POi YailSp) = [T P(ail Spr %ai) P(%giSp) (2-1)

i=1 i=1
However, temporal order is important for most system because of the system’s delays and feed-
back. Figure 2-1 illustrates a symple driving system with one delay and feedback. For such a
systemP(yyi | Sy %qi) in Equation 2-1 should be changedRyyi | Sy, Xgis Xq,i-1, ¥g,i-1)» because
the current system output is not only determined by the input at the moment, but also the delay
Xq,i-1 @nd the feedbackyy; ;. To be convenient, we usg;; to represent the conjunction g;,
Xq,i-1 andYg,i-1- POgi | Sp) should be changed ©(X;; | S, Xg,i-1)- The reason for the appear-

ance ofXg .1 is that the two components ¥;;: X i-1 andyg i1, may be partially dependent on
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their ancestorsxg ., andyy i.o. Theoretically,P(X;i | Sy) is no bigger thaP(Xy; | S, Xq,i-0):;
however, in practice, we find that in many cases that we can sub&ie S;) for P(X; | S,,
Xq.i-1)» and the classification results are still satisfactory. Therefore, for a system with one delay

and feedback, the following equations hold:

Nq Ng

3(Oq|Sp) = |_| P(yqi|Sp, Xqi)P(Xqi|Sp, Xq, i) = I_l P(yqi|Sp, Xqi)P(Xqi|Sp:
i=1 i=1

(2-2)

Therefore, to calculaté(S, | Og), an approach is to approxima®eX,; | S,) andP(yy;i | Sp, Xg)-

To explain their physical meanings, let’s study the driving domain again. Suppose we want to
distinguish a certain driver’s different driving behaviors under two sobriety conditions: sober
and intoxicated. We notice that corresponding to the same sceKgfithe driver's response
when he is intoxicated tends to be different from that when he is sober; in other words, facing
a certain situatiorXy;, the probability that the driver gives a certain respoygevhile he is
intoxicated, i.eP(Yy; | Sntoxicated Xqi), Mmay be different from the probability when he is sober,

i.€. P(Yqi | Ssoper Xqgi)- Therefore, we believe that the probabilRgy,;i | S, Xq;) is a good metric

of the driver’s sobriety condition.

Besides, we also notice that an intoxicated driver may encounter situations which are not famil-
iar to him when he is sober. For example, an intoxicated driver may let his car be very close to
other vehicles in traffic, but when he is sober, the driver may realize that this situation is so dan-
gerous that he would try to avoid it. In other words, the probability that a sober driver encoun-
ters a certain scenarky;, i.e.P(Xyi | Ssope), may be different from the probability that he faces

the same situation when he is intoxicated, P4 | Sntoxicated- Notice that if a sober driver
intentionally does something new, our system classifier may misunderstand him as being
drunk. But, we do not have to blame our system classifier for that. Tom Hanks’ performance in

Forrest Gump is highly appreciated. Why? Because Tom mimicked the dummy’s behavior
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Driving Performance Detection, the hidden driver is Groucho
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J’MWV\“\“ 1 average of the negative log likelihood. To find
nﬂ 1 the underlying system, one should compare
the tails of the curves. Because Groucho’s tail
is closest to the X-axis, Groucho is most likely
the underlying generator of the observation
sequence.
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seamlessly. Hence, we believe that by combining the two probabil{eg; | ) andP(Yy; |
Sy Xqi)» We can have a good chance to distinguish the different underlying mechafjsms,
=12, ..,N

Let's assume we know how to approximdeXy; | S,) andP(ygi | S, Xgi)- The details will be
covered by Section 4. To make the computation more convenient, usually we calcelaver-
age of the negative log likelihoadstead ofP(Oq | ). The average of the negative log likeli-

hood is defined as:

T EEa—— 1
—I|k(Sp) = —N—Iog(P(Oq|Sp))
q
N
1 q
= ——log [ 1 P(Y,4i| Sy X1 ) P(X,ilS,)
Nq i|:|l ql| pr Aqi q|| p (2-3)
1 N 1 s
= N z IogP(Xqi|Sp)—N— Z IogP(yqi|Sp, Xqi)
ql =1 q| =1

Notice —Iik(Sp) is a positive real number, because b, | S) andP(yyi | S, Xyi) are
betweerD andl.

For the example in Figure 2-2, we were given a sequence of unlabeled observations of the driv-

ing behavior. The driver is unknown, but he must be one of five candidates: Tony, Larry, Curly,
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Moe and Groucho. Using all the 3,150 unlabeled data points, we calculated five averages of the
negative log IikelihoodT(Sp) p=1, ..., 5. Since OMEGA is an on-line approach, the 3,150
data points were not available at the early stage, we also studsylitdésp) with fewer data
points. Therefore, we have five curves in the picture, Xkexis is the number of data points
involved in the calculation oflik (S,) , th¥axis is—ik (S,) . At the very beginning, the val-

ues of-lik (Sp) are not reliable, because they were calculated using only a few data points; but
with more and more data points involved, thkiak(Sp) curves become more consistent. The
tails of the curves (to the right extreme) are tHé((Sp) based on all the 3,150 data points.
Among the five tails, the one closest to the horizontal axis indicates the generator of the obser-
vation sequences. In Figure 2-2, Groucho’s tail is closest tXthris, thus Groucho seems to

be the unknown driver.

2.2 Hypothesis Testing

Closely looking at the picture,—lik(Sp) of Groucho at the tail is 0.53, while that of Tony is
about 1.40. Since 0.53 looks significantly smaller than 1.40, we claim that Groucho, not any

other operator, seems to be the unknown driver.

However, we are not always lucky enough to be able to assign a unique candidate system to be
the generator 0@, It is possible that more than one candidate’s curves so close to each other
thatitis hard to tell which one is more likely to be the underlying generator. In Figure 2-3, Larry
and Tony'’s tails are very close to each other. LarFWSp) is 1.19, while Tony’s is 1.21.
Although Larry is a bit closer to the horizontal axis than Tony, we do not want to stake too much
on Larry to be the only probable operator. Instead we say that the observation seQyésice
confusing. Itis important to distinguish the confusing situation from the exclusive one; because
if the situation is confusing and we appoint a unique operator, we may end up with a severe

mistake.
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Driving Performance Detection, the hidden driver is Larry
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To strictly define a confusing situation, we need a threshold. If the gap between the lowest tail
and the second lowest one is beyond the threshold, the unique generator is easy to decide; oth-
erwise, the situation is confusing. A difficulty arises in that there does not exist a fixed threshold
applicable to any domain. For different domahW(Sp) are of differing scales, resulting in
different thresholds. Therefore, we resort to the statistisal sample hypothesis testing
method [Devore, 91]. For two candidate syst&psandS,,:

1. We calculate th&-test value from statistié's,

, . CK(S)ATK(S,))

2 2
JO2 /Ny + 02/ N

(2-4)

where op12 and 0p22 are the sample variance elfik(S,7) and 4ik(S,,) respectively,

defined as,

N
1 p _ 2
o) = N_pi;{ [—logP(Xyi| Sp) = 10gP(Yyi| Spr X ~ [k (S} . (2-5)

1.P(ygi | Sp: Xqi) are independently identifically distributed (iid). Although theoreticB(¥;; | S,) is not iid,
in practice, we roughly regard it as iid, and the hypothesis testing result is satisfactory.
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Np1 andNy, are the numbers of data points involved in the calculation of the likelihoods
of systemS,; andS,,. SometimesN,; andN,,, are equal. However, this is not a require-
ment. The biggeN,; and/orN,, the larger the absolute value of tHestatistic tends to

be.

2. The beauty of statistiZ is that its distribution is close to standard normal distribution if

Np1 and Ny, are big enough, due to Central Limit Theorem. In this way, we can find a

standard threshold for any domain and any observation sequence. We define this domain-

independent threshold &g. If Z < -Z,, S,1 has more potential tha®,, to be the genera-
tor of the unlabeled observation seque@gelf Z > Z; S,, has more potential tha®,;.
Otherwise, the observation sequence is confusing be&ysaadS,, are closely likely to

be its generator.

The value ofZ, depends on the significance lewelReferring to Figure 2-4, the smaller
the significance levek, the remoter the threshok, deviates from zero, then it is harder
for Zto be bigger thaZ, or smaller thanZ,, so that maybe no candidate system is found
to be more competitive than all others to be the underlying genera@y. dtherefore, the

smallera is, the “pickier” we are.
P

Zy a

| |

Figure 2-4: The physical meaning of  Z;

In practice, the significance levelis pre-defined by the user of OMEGA, a#g can be

found by consulting the standard normal distribution table.

3. With more data points, the absolute value ofZtstatistic tends to be bigger, and it is eas-
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ler to distinguish the competitiveness of the various candidate systems. Therefore, in Fig-
ure 2-2 and 2-3, with more data points, the five curves become more separated. But the
redundant data points do not help to distinguidik (Sp) p =1, ..., 5any further; hence,

the curves become smooth and consistent afterwards.

2.3 Efficiency Issues

The efficiency of OMEGA is important for two reasons: (1) OMEGA is an on-line technique.
(2) Because OMEGA calculatedik (Sp) for every possible candidate system, suppose there

are one hundred candidate systeBjsS,, ..., S;00 OMEGA will repeat the likelihood calcu-

lation for one hundred times to gelik (S;) , Hik(S;o0) - When there are numerous candi-

date systems, the computational cost may be prohibitively high even if the task is off-line.

There are three ways to improve the efficiency,

1. Eliminate non-promising candidate systems from consideration:

Recall that the crucial steps of system classification are to calcalliat(esp) , then com-
pare the—lik(Sp) of the variant candidate systems to eliminate the non-promising candi-
dates, and finally select the most likely one. T*I'Hx(Sp) Is calculated according to the

following equation:

N

1 q
0gP(Xqil Sp) N, > 10gP(Ygi|Sp Xqi)
i=1

Nq
Ak (S,) = - |
=1

1
Nqi
In fact, it is unnecessary to consume all thg unlabeled observation data points to
approximateT(Sp) . With fewer data points, even only a single data point, we can still
do it. The problem is that with fewer data points, it is more difficult to distinguish a candi-
date from the others, referring to Section 2.2. But if some systems are far less promising

than the others, even with a limited number of data points,—lits(Sp) value is signifi-

cantly larger than the others’, so that they can be neglected afterwards.
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2. Speed up the calculation of the likelihoods:

Since -lik (S,) is decided bP(Xyi | Sp) and P(ygi | S, Xg), @ quick calculation or
approximation folP (X | $,) andP(yg;i | $,, Xgi) would improve the efficiency.

3. Focus on the promising candidates:

Even though we can eliminate unpromising candidate systems after a limited number of
observations, at the early stage there may still be a large number of candidate systems
involved in the processing. For example, if there are 10,000 candidate systems, perhaps
after 100 observation data points, we can decide 9,999 candidates are irrelevant. Suppose
that with fewer than 100 data points, no elimination can be performed and we have to cal-
culate—lik—(Sp) 10,000 times. To enhance the computational efficiency, it may be worth-

while to take a risk and focus on the more promising candidates from the beginning.

Compared withP(yyi | S, Xg), the computational cost d?(Xi | S,) is much cheaper.
Therefore, at the early stage with a limited numbe@f, y;), i =1, 2, ...,we can elimi-

nate those candidate systems whBg¥;; | Sy)'s are far lower than the others’. Of course

this selection may make mistakes, but in case there are too many candidate systems, the

risk is worthy of taking.

To implement the second and the third solutions, we neeldtieeetechnique, which will be
described in Chapter 5 and 6. A kd-tree re-organizes the memory of the training data points in
a tree structure and caches some useful information in the nodes. A kd-tree is useful in two
respects: (1) We can implement alternative memory-based learning methods with dramatically
less cost. Thus we can greatly enhance the efficiency of calcuRiggl S, Xy)- (2) When a
specific queryXy; is given, we can quickly retrieve all its neighboring training data points, so
as to approximatB (X, | S,) rapidly. Based on these two aspects, we can improve the efficiency

of approximating-lik (Sp) , as well as focus on the promising candidates from the beginning.
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Figure 2-5: An one-input-one-output system with feedbacks and
delays. The time order is important.

2.4 Pre-processing

In Subsection 2.1.2, we expand the input to include the delays and feedback so that the output
at a certain moment is fully determined by the expanded input at that moment. More generally,
for an one-input-one-output system illustrated in Figure 2-5, at time instdgt output is sim-

ply ¥, while the input consists o, X;_1, .., X.p, andyt.1, ..., f.q- Thus, the input space dimen-

sionality isp + q + 1.

If the time delay$ andq are not known via prior knowledge; we have to figure them out based
on empirical analysis of the observation data. Cross-validation, which is discussed in Chapter

7, is a useful technique to select the proper time delays.

It is straightforward to extend this method to transform time series with multiple input and/or
output variables. Itis not necessary for different input variables to have the same delay, nor like-
wise for the output variables. In the case where thereiamput variables, whose time delays
arepy, ..., Q,, and there are output variables witlg, ..., q, feedback variables, then the dimen-

sionality of the transformed data point’s inpup{st+ ... + p,+u+0d; + ... + g,
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The transformation of the time series data is not always necessary. Imagining a set of data
points { (x1, y1), (x2, y2), ..., (XT, yT) } are generated by a system which has no time delays
and feedback, the output yt is fully determined by xt, and xt is independent from the previous
ones, xt-1, xt-2, .... In this case, although the data points are collected as time passes, the order

of time is not important and we can shuffle the data points randomly.

However, a high dimensionality of the data points is always a concern. Especially those trans-
formed time series data points with expanded input tend to have a dimensionality which is pro-
hibitively high for the further OMEGA steps. This motivates the pre-processing: decreasing the

dimensionality of the input space.

Other alternatives may exist, but we choose two approaches: feature selection and Principal

Component Analysis (PCA).

Feature selection

In the driving domain, many variables affect our driving performance. While the distance
between our vehicle to the vehicle immediately in front of us is probably important, the dis-
tance from our vehicle to that one behind us may not be very important in most cases. There-

fore, we should consider eliminating the latter distance from the input vector.

To perform feature selection, we follogvoss-validatiorapproach again. The biggest concern

of cross-validation is the computational cost. Therefore, in Chapter 7, we explore ways to
improve its efficiency. Feature selection may not be very crucial in the driving domain due to
the large amount of prior knowledge. Feature selection is an important component of OMEGA,

as a general purpose toolkit.
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Principal component analysis

In the driving domain, although we have eliminated those irrelevant input variables based on
prior knowledge, the input dimension of the transformed data points may still be as high as 50,
(referring to Chapter 8 and Chapter 9). To reduce the dimensionality, we resort to Principal
Component Analysis (PCA) [Jolliffe, 86].

Each data point consists of two parts: input and output. Assume the input ¥estdtdimen-
sional. Without loss of generalitys can be represented as a linear combination of a sét of

orthonormal vectorb)y,

d

X= % zUy

k=1
With fixed orthonormal vectornd,, k = 1, ..., d different data points’ inputs have differing coef-
ficientsz, k=1,..., d If we carefully choos&J,, it is sometimes possible that the fiMtcoef-

ficients contains the most information, i.e.

d M d M
X = Z zU, = Z z U, + Z zU, = z z U,
k=1 k=1 k=M+1 k=1

If so, we can shrink the dimensionality ®ffrom d down toM. Notice that only when all the
data points satisfy the above equation, is PCA useful for compressing the dimensionality, as
illustrated in Figure 2-6 (a). In the two cases illustrated in Figure 2-6 (b) and (c), PCA does not

help.

In one of our experiments, PCA compressed the input dimensionality of the independent data
points from 50 dimensions to 3; and in another case, it helped to reduce from 36 dimensions to
8.l
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Figure 2-6: PCA can be used to compress the dimensionality of a set of data points. In (a),
after the transformation of the coordinates, the information along U, axis is no more
significant, so that the dimension is reduced from two to one. However, PCA may not be
useful for all cases. Although there obviously exist submanifolds in (b) and (c), the
conventional PCA does not help to reduce the dimensionality.

2.5 Memory-based learning

In this section, we discuss how to use memory-based learning methods to apprdX{rgdte

S) andP(yy | Sy, %g)- To do so, we need some knowledge of sysg&nMemory-based learning
methods assume that the knowledge about a sy§terames from a memory which consists

of the observation data points of this system’s previous behd{igf, Yp1), (X2, Yp2): - }

Again, these data points have been pre-processed so that temporal order is no longer important.

When there ara candidate systems, we will have at leasets of observation data points. The
memory contains all of them together. To distinguish the data points generated by different sys-
tems, each data is labeled by its generator. Suppogettheystem ha$l, memory data points

and there ara candidate systems, the size of memory wilNge+r N, + ... + N,

1. In first case, the loss of information is 14%. The second case loses 17%.
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Figure 2-7: Memory-based learning methods to approximate
P(xq [ Sp)and P(yq [ Sp, Xq)

A naive method

In Figure 2-7 theX-axis is the input of a system, theaxis is the output. Each dot represents a

data point of systerfy,. There should exist data points generated by other systems in the mem-
ory, too. For example, the triangles are the data points of another system. The cross represents
the unlabeled data poi(ty, yg), which is a component of the observation sequedgehose

underlying generator is unknown.

To approximateP(xy | S,), we can simply count the number of the memory data point, of

(the dots) in the stripe shown in Figure 2-7. The stripe defines the neighboring regigritof

is a big concern to decide the boundaries of the stripe, but let's temporarily assume that the
boundaries can be easily decided. Suppose the number of dots in the shijp@\is= 27 in

this case), while the total number of dots in the whole memory spddg thenP(x, | ;) can

be approximated &s / N,

To approximatd>(y, | S, Xg), we can simply count the number of dots in the square around the
unlabeled data poir{kg, Yg); in this case, the number is B(yy | Sy, X;) can be approximated

as the ratio 06 to Ny, the number of dots in the stripe.
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There is one question here: why do not we simply approxirRg(g, y,) | ), instead of
approximating two probabilitieB(x; | S,) andP(yy | Sy, Xg)? In fact, P((xy, ¥g) | S) can be
approximated as the ratio of the number of dots in the square to the total number of dots in the

whole memory space; in this case, the rat'ﬁ)ﬂ%.

Recall Equation 2-2 and 2-3, which are

Ng

P(Oq|Sp) = ['] P(¥ai| Spr Xai) P(Xqi| Sp)
i=1

and

Ng Ng
Tk (S,) = —Nl— >3 IogP(xqi|Sp)—N1— S 109P (Y| Sy Xgi)
9i=1 9i=1
There are three advantages of decompo8i({8y, Yo) | ) into P(xy | ) andP(yy | S, Xg)-
First of all, we can try any machine learning methods to approxigig] S, X), for example
neural networks and Bayes networks. HerRgy | S, Xg) is a socket for alternative methods
to plug in. Second, the approximation B{(xy, Yg) | Sy) is an interpolation problem, but the
approximation oP(yy | Sy, X;) can be extrapolation as well. Finally, the probabiffy, | S,,
Xq) is about the function relationship between the system input and output. If we have some

domain knowledge of the syste®j, we can use them to improve the approximatiofPQf; |

S %)

The goodness of the naive method is its simplicity. However, it is difficult to define the bound-
aries of the stripe and the square. If the stripe is too narrow and the square is too small, the
approximation of the probabilities will be too sensitive to the noise of the limited number of the
memory data points in the stripe and the square. Otherwise, if the stripe is too wide and the
square is too big, it is hard to tell the difference betwBex, | S,) andP((x;+ 9) | S), as well
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as the difference betwed(y, | S, Xg) andP((y;+€) | Sy, (Xt 0)). Besides, the inconsistency

of the distribution of the memory data points brings more troubles. In the case of Figure 2-7, if
we expand the stripe to be wider, the valudP@fy | S, Xq) will chance greatly. In fact, it will

become larger, because there are numerous memory data points residing just outside the bound-

aries.
Therefore, we consider Kernel density estimation, because it does not require any boundaries.

Kernel density estimation

Kernel density estimation does not neglect any data points in memory, so that every memory
data point is involved in the approximation B{x, | ;) andP(yq | S, Xg). However, higher
weights are assigned to those memory data points neighboring to the unlabeled dategpoint
Yg), SO that the neighboring memory data points have stronger impact on the approximation of
P(xq | Sp) and P(yq | S xq). Conversely, remote memory data points have smaller weights,
therefore any single remote data points hardly has any influence on the approximation, but if
many remote memory data points express the same preference, the approximation will be

biased in their favor.

Using Kernel density estimatioR(x, | &) can be approximated as,

NP
P(xq|Sp) = Z W(X;, Xq)/ N (2-6)
i=1
in whichN, is the total number of data points in memory generateg,by; is the weight asso-
ciated with the’th one among them, usually defined as a Gaussian function of the Euclidean

distance fromx, to the concerned memory data point,

2
W(X;, Xq) = Const x expg—wg (2-7)
' g 2 o
Il 2K, W
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Figure 2-8: Kernel regression does not extrapolate.

Therefore, with respect to differery’s, the weights associated with an identical memory data
point may be different. The higher the Euclidean distdpge x|, the smaller the weighk,,
is thekernel width The higher the kernel width, the less the weights change with respect to dif-

ferent distances. There are many other possible definitions of the weight [Atkeson et al., 97].

P(Yq | S %) can be approximated as,

Ot 0 o 0
P(yq|5p, Xq) = DZ WX, X)V(Y; Y)Y Dz W(X;, X)O (2-8)
Ei| =1 D |:i»| =1 |:|

V(Y. Yg) is also a weighting function but with respect to the Euclidean distanfje/ofy||. If
y's value is continuous, it is fine to defivgy;, y;) as a Gaussian function in a way similar to
Equation 2-7. However, whens discrete or categorical, we should be more careful. For exam-

ple, whery is boolean, the weighting functimy;, y,) can be defined as,

RO
red o Otherwise '

Kernel density estimation is useful in many cases, its drawback is that it is only good for inter-

polation, it does not extrapolate. This is not desirable for the approximatiBfygl S,. Xg)-
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Referring to Figure 2-8(a), suppose we want to approxim@ig| S, Xq), while (xg, yg) locates

at the position of the cross, intuitively it should be fairly large because it is on the “trend” of
the memory data points. However, Kernel density estimation’s results will be smaller than they
should be. Kernel density estimation does not extrapolate in both continuous case and categor-

ical one. Figure 2-8(b) shows the similar problem in a categorical case.

Locally weighted linear and logistic regressions

Locally weighted linear regression is applicable for both interpolation and extrapolation.
Although in many cases, the relationship between the input and the output is more complicated
than linear, in any local region, sometimes the relationship can still be approximated as a linear
one, illustrated in Figure 2-9. Locally weighted linear regression is a popular memory-based

learning method. But it works only when the outpig continuous.

The counterpart of locally weighted linear regression for cases when the gugpdiscrete or
categorical is locally weighteldgisticregression. Logistic regression has been explored by the
statistical community since 1970’s. We improve this technique by following a locally weighted
paradigm, so that in the toolkit of memory-based learning method, we have a more reliable

classifier.

v

Query 1 Query 2 Query 3 /

-

Figure 2-9: Locally weighted linear regression can approximate non-linear functional
relationship. It works for both interpolation and extrapolation. The pairs of horizontal
bars indicate the variance.
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Similar to the principle of locally weighted linear regression, locally weiglhbgdstic regres-

sion assumes the relationship between the input and output in any local region can be approx-
imated in a form of a simple function. But unlike locally weighted linear regression, which
assumes the local relationshipliisear, locally weighted logistic regression approximates the
local relationship in the form of gistic function of a linear combination of inputs. Logistic
functions are also referred to sigmoidfunctions, which are monotonic continuous functions

between zero and one. The details will be discussed in Chapter 4.

Approximate P(yy | S, Xg) using regression methods

Kernel regression is good enough to approxinf(g, | S,). In this subsection, we focus on
how to use the regression methods to approxirR{yg | S, Xq). We discuss this issue in three

cases according to the different distribution typeg,of

1. Suppose the conditional distributionygfgiven a specifigy is Gaussian, i.e.,

2
(yq_ E(yq|Sp: Xq)) E

P(y,|S, X,) =
q| P g 205 C

O
exp
O

1
Jﬁoq

in which E(yy | Sy, %) can be predicted using locally weighted linear regression tech-

nique, the varianceq2 can be approximated as,
2=V S = E(yYs E%(y,|S
oq = Var (yq| " xq) = (yq| o xq)— (yq| " xq).

When the conditional distribution of; is continuous andni-modal we will always treat

it as a Gaussian distribution. Therefore, the above method is applicable for many cases.

2. When outpuyy is discrete or categorical, we can approxim(g, | S,, xg) using locally

weighted logistic regression.
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3. When outpuy is continuous, but with multiple modes, there are two approaches. First,
we can use the techniques like [King et al., 96] to perform the distribution approximation.
But this approach still relies on some prior knowledge of the distribution. Second, as a
general purpose approach, we can discretizes the output so as to employ the logistic

regression approach described in last paragraph.

For example, suppose the outpytis continuous within [0, 10). Regardless of whether
y's distribution is uni-modal or multi-modal, we discretize it into five equal-sized bins; so
that wheny,'s value is between [0, 2), we transform it into a categorical value, (1, 0, 0, O,
O)T. Whiley is between [2, 4), the corresponding categorical value is (0, 1, O,T.(],\IG)N

we can use locally weighted logistic regression to approxiP@te S, xg)-

However, the discretization approach has two problems. First, in the example Bigpyve,
=2.9 S, %) andP(yg = 3.5| §,, Xy) will be identical, becausg, = 2.5 andyy = 3.5 are in
the same bin. Therefore, the varianc®@f | S, %) increases with fewer bins.

Second, increasing the discretization resolution causes increased loss of information. For
example, as categorical values, both (0, 1, 0, 0, 0) and (0, 0O, 1, 0, 0) are differing from (1,
0, 0, 0, 0), but one cannot tell that (0, 1, 0, 0, 0) is closer to (1, O, 0, 0, 0) than (0, 0, 1, O,
0). Thus, we retain the information tHa€y, = 1.0| S, X;) andP(yg = 3.9] S, X;) are both
different fromP(yg = 4.0] S, Xg), but lose the information tha(y, = 3.9 S,, Xy) and

P(yg = 4.0] S, X) are closely related to each other

Overall, we still suggest the discretizing method as a general purpose approach. In our experi-
ments in Chapters 3, 8 and 9, we discretized the outputs into 8 or 10 categories, and found the

results to be satisfactory.
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2.6 Summary

In this chapter, we introduce the main steps for system classification: pre-processing, predic-
tion, likelihood calculation, and hypothesis testing. In addition, we discuss three ways to

improve the efficiency.

This chapter is the framework of OMEGA technique, although we mention other relevant top-
ics, i.e. feature selection, logistic regression-based classifier and kd-tree technique. We will dis-

cuss these topics in depth in later chapters.

The next chapter discusses an experiment, demonstrating the usefulness of OMEGA system.
More complicated experiments will be discussed in Chapter 8 and 9, after we have finished the

discussion on feature selection, logistic regression, and kd-tree.




Chapter 3

Tennis Style Detection

3.1 Experimental Design

In this experiment, we designed a simple simulator of tennis, to study different people’s playing
styles. The ball is served automatically from a random position in the upper half field with a
random speed within a certain range and a random direction towards the bottom line. A human
player can control the racket by moving the mouse. The speed of the racket is proportional to

the speed of the mouse, and its orientation is perpendicular to the recent trajectory of the mouse.

Figure 3-1: Tennis simulator interface.

49
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Input Output
p| Player s

Input: serve positiorx, yg), serve speed/f and orientationdy).
Output: contact positiorx, y,), the ball's speed and orientation
after the contactyf 6;).

Figure 3-2: The tennis simulation system is not dynamic because
there is no feedback from the outputs and no delays for the inputs.

The short line segments in Figure 3-1 illustrate the recent movement of the racket. When the
racket hits the ball, the ball is bounced back as a light beam is reflected by a mirror. Thus, the
direction of the ball after contact is decided by both the orientation of the racket and the inci-
dent direction of the ball. Concerning the ball's emitted speed, it is decided by three factors:
speed of the racket, the incident speed of the ball and the ball’'s incident angle with respect to

the orientation of the racket.

This simulation system is not dynamic. Referring to Figure 3-2, if we regard the human player
as a system, the input consists of four variables: the position where the ball is served by the
computer, Xs, o), the ball's speedw) and orientationf) after the serve. The output includes

the position where the contact between the racket and the ball hapgegys, (he speed and
orientation of the ball after the contact, @nd®,). We only took records of those shots when

the racket hits the ball. If the player was so careless that the racket missed the ball, we did not
record that shot. We did not consider the ball's movement after the contact, because we were
only interested in distinguishing the different playing styles, instead of evaluating the goodness
and drawback of each style. lllustrated in Figure 3-2, there is no time delay in the input, and
there is no feedback from the outputs, hence the system is not dynamic. In other words, the time
order of the sequence of the data poi(ts,ys, Vs, 05, X, Vi, Vis 6p)1, t =1, ..., T, IS not important;

we can shuffle the order of the data points randomly.
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Six people were invited to do the experiment. Each of them played twenty runs; and during
each run, they gave one hundred shots. We did not use the data sets of the first three runs
because the human players needed some time to learn how to play this game. We did not use
the data set of the twentieth run, because when the players realized that they were close to the
end, they did not pay enough attention to their performance, instead, they only wanted to finish

the experiments as soon as possible. Thus, for each player, we have sixteen valid data sets.

We did not evaluate the merit of the performance, we only want to distinguish the different
styles. However, it is an interesting but open question that if we evaluate the performance,
whether or not people will adjust their styles so as to pursue higher scores; also, after a long
time, whether or not different people will converge to the same style which is preferred by the

evaluator.

The style is relevant to the distribution of the eight variables. Some people tended to hit the ball
when the ball was close to the bottom line; the others gave a quick response once the ball came
across the net. Some people wanted the ball to go in a direction as far as possible from the serv-
ing direction; others preferred the ball going back along the way it came, because this action is
safer and easier. However, we cannot distinguish the styles only relying on the distribution of
any one variable, because it is influenced by the other variables. As a matter of fact, we found
that the speed of rackat, was the best single feature to distinguish different players. But com-

paring with OMEGA, the single-feature-based classifier’s accuracy is very low (Section 3.3).

Since there are six players, and each player has sixteen data sets, totally there are ninety-six
data sets. Randomly we picked out one from the ninety-six datasets, and asked OMEGA to
detect who was the underlying player by using the other ninety-five datasets as the training
datasets. By comparing OMEGA's result with the real underlying player, we could tell for this
data set, whether or not OMEGA's detection is correct. Similarly, we selected another data set
to do this test, thus, we repeated the experiment for ninety-six times. The number of times that

OMEGA succeeded to detect the correct underlying players can be used as a measurement of
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OMEGA's accuracy. In the same way, we can measure the accuracy of the other methods, like

the single-feature-based classifier.

3.2 OMEGA Result Analysis

This subsection discussed the experiment, which was to test if OMEGA could detect the under-
lying player correctly. We picked out one data set from each player’s sixteen data sets as the
testing set, and used the other fifteen data sets as the memory data sets. To detect who was the
underlying player of the testing data set, OMEGA compared the testing data set with the six
players’ memory data sets one by one. Hence, we got six average negative log likelihoods,
—lik (S,)'s. In Figure 3-3, 3-4, 3-5, the six curves correspond to the six playeils(S,) 'S
with respect to different numbers of data points involved in the calculation. The horizontal axis

is the number of data points in the unlabeled data set. Thus, the taiIsdeSp) curves tell

who were most likely to be the underlying players.

Shown in Figure 3-3 (a) and (b), OMEGA detected Marianne and Colonel were the underlying
players of the concerned data sets. These results are correct. For the ninety-six data sets,
OMEGA did correct jobs for eighty-five times. It made mistakes for four times and was con-
fused for seven timésFigure 3-4 (a) shows a confused case, while Figure 3-4 (b) is a wrong
one. Even in the wrong cases and the confused ones, OMEGA always found that the tails of the

real players’ likelihood curves were closer to the horizontal axis than most of the others.

Sometimes the likelihood curves are bumpy. This is because the player performed in an unusual
way that hasn't been observed in memory. If a performance was so strange that it rarely hap-
pened to all the players, including the underlying player himself, then all the likelihood curves
are bumpy, and roughly paralleling each other. In the case illustrated by Figure 3-4 (a), the ninth
ball was served from a position very close to the right edge and also close to the net, with a

sharp angle towards the left edge of the opposite field. Although the speed was not too fast, it

1. The definition of confusion refers to Chapter 2.2., Hypothesis testing, with significanae +e5&4.
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Real Player: Marianne, No. 5

Real Player: Colonel, No. 17
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Figure 3-3: Likelihood curves of six human players. Two sample of the correct cases.

Real Player: Edward, No. 12

Real Player: Colonel, No. 11
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Figure 3-4: A confused case and a wrong case. (a) Confused: OMEGA can hardly
distinguish Edward from Marianne. (b) Wrong: The real play should be Colonel, but
OMEGA decided it was Robert. However, OMEGA did figure out Colonel was also very

likely to be the player.
left Edward little time to react. Because Edward is right-handed, any ball coming from the right
made him uncomfortable. Therefore, Edward’s action for the ninth hit was totally a failure: the
ball did not go across the net before it went out of the tennis court. Not only that, it seemed
Edward did not recover from this shock until the twelfth hit. In the eleventh hit, he hardly
touched the ball, because the ball’s direction did not change too much after the contact. Hence,

the likelihood curves in Figure 3-4 (a) rose to a peak at the eleventh hit. Fortunately, the twelfth
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Real Player: Margaret, No. 12 Real Player: Willoughby, No. 17
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Figure 3-5: Willoughby and Margaret behaved similarly all the time. But they are different

from others. Willoughby played more consistently, referring to his likelihood curve in (b)

which is smoother than others.
ball was served in a manner Edward preferred: from the top left corner of the court towards the
lower-right one, with a slow speed. This gave Edward a break to rebuild his confidence. He
played in normal way again. Therefore, the likelihood curves start to go downhill. The twenty-
second ball was another triumph. It started not far from center of the upper field, slowly and
straightly downward. This was a great chance for Edward to exaggerate all his unique charac-
teristics: he moved his racket rapidly to hit the ball when it arrived the center of the lower half
field; after the contact, the ball rushed towards to the top right corner. Therefore, in Figure 3-4

(a), we see a great peak around the eleventh data point and a deep valley at the twenty-second.

The bumpiness implies the consistency of the players. Willoughby was the most consistent
players among the six, because comparing Figure 3-5 (b) with other figures, Willoughby’s

curves are smoother than the others’.

The distances among the likelihood curves imply whose performances are similar. In this
experiment, Margaret and Willoughby behaved similarly, referring to Figure 3-5 (a) and (b).
But they are quite different from the others. As in Figure 3-3, 3-4, their curves were so much

higher than the others that they are off the graphs.
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Figure 3-6: Bayes classifier assumes the distributions of the
candidate system’s data points are all of Gaussian distributions.

The likelihood curves tend to be more bumpy or chaotic at the beginning phase than afterwards.
Recall that with limited testing data points, OMEGA is still able to start the classification job;
but with more data points, OMEGA may improve its precision. Therefore, OMEGA is an ideal

on-line classification technique.

3.3 Comparison with Other Methods

In this section we compare OMEGA's performance with those of other methods, like Bayes
classifier and linear regression, because Bayes classifier is a popular statistical classifier while
linear regression represents the linear control system approach. We also used the best single
feature to do the classification. The purpose was to show that it is not easy to distinguish dif-

ferent tennis playing styles.

Bayes classifier

Bayes classifier assumes the memory data points of each candidate system are of Gaussian dis-
tribution, in plain words, each candidate system’s memory data points cluster in a shape more

or less like an ellipse. In Figure 3-6, there are two candidate sys@®nasdS,, whose data
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points are represented by the circles and the triangles respectively. The horizontal axis may be
the input, the vertical one may be the output; but this is not a requirement. As a matter of fact,
Bayes classifier does not distinguish the input and output, instead, it treats all the input and out-
put as features. By adjusting the scales of the axes, Bayes classifier can discriminate the impor-
tance of different features. In Figure 3-6, if the scales of the axes are changed, the elliptical
shape of the clusters will be different. To classify an unlabeled data point, like the cross in Fig-
ure 3-6, we can measure the distances from the unlabeled data point to the centroids of the ellip-
tical clusters. The shortest distance indicates to which candidate system (represented by the
ellipse) the unlabeled data point belong to. Given a set of unlabeled data points, we can do the

classification one by one, then make an overall judgement.

The Gaussian assumption of Bayes classifier is too restrictive for the tennis style domain.
Therefore, Bayes classifier's performance as shown in Table 3-1 is very poor compared with
OMEGA.

Linear regression approach

Linear regression assumes the function relationship between the inputs and the outputs are lin-
ear. Furthermoreglobal linear regression assumes the function relationship (the parameters of
the function) is fixed anywhere around the input space. If the function parameters of a certain
system is distinguishable from the others, the classification job is feasible. In this experiment,
we did the global linear regression of each candidate system based on its memory data points.
In other words, we determined the parametfis, in the following linear equations for every

candidate system,

X
I

= Brot BraXs+ B1oYs t B1gVs P48 +&5
Boo * BaiXs + BooYs t BogVs +B2485 +&5
Bao* BaiXs + BaoYs + BagVs + B340 +&3

Bao+ BaaXs+ BaoYs + BagVs +BagBs +€4

-

(3-1)

© < <
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in which the definitions of the input variables, y, vs, 65, and the output variables, y;, v;, 6,

refer to Section 3.1. When a unlabeled data set came, to detect its underlying player, we tem-
porarily assume the unlabeled set was generated by the first player. Since we have already esti-
mated the first player’s function parameters (s, we picked out a data poilitg, Ys, Vs, s,

Xr Y Vs 61)¢ from the unlabeled data set, we could predict the outputg, v, 6,); correspond-

ing to the inpui(Xg, ¥s, Vs, 09). If the residual between the predicted outputs and “real” observed
output is small, the first player is likely to be the underlying player. We repeated this test with

respect to all the six players, the smallest residual responds to the most likely player.

We used the estimatdiks to predict the outputs, then compare the predicted outputs with the
real outputs. Usually there is a residual between the predictions and the real outputs. The sys-
tem with the least residuals is most likely to be the underlying system which generates the test-

ing dataset.

Referring to Table 3-1, global linear regression can hardly distinguish the variant human play-
ers, because in most cases, global linear regression is “confused”. To improve it, we can do two
things: (1) We can extend the linear equations in Equation 3-1 to polynomials with higher
degrees. In this way, the function is capable of describing more complicated relationship
between the input and output. (2) Instead of assuming there is one fixed global linear function,
we can assume in any local region, the input and output relationship is linear, but the linear

parameters may vary with different inputs.

In Table 3-1, we notice that quadratic model does not do any better than the linear models, but
local paradigm does help. However, the local approach, even the local models with quadratic
items, is still worse than OMEGA by a large margin. The reason is that in this tennis playing
style domain, even for the identical serves, the same player may react in different ways. That
means, the conditional distribution of the output with respect to a certain input may be of multi-
modal, instead of uni-modal as the linear model assumes. Therefore, the linear models are not

proper for the tennis playing style domain, either.
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Table 3-1: Comparison experiment for tennis domain

Correct Wrong Confused
One Feature 21 57 18
Bayes 34 40 22
k-Nearest Neighbof's 17 14 67
Global Linear 9 12 75
Global Quadratic 9 12 75
Local Linear 17 8 71
Local Quadratic 20 5 71
OMEGA 85 4 7

a. We used 9 nearest neighbors here. Also, we tried 3 nearest neighbors as well as 6,
the results do not deviate from those values in the table significantly.

3.4 Summary

In this chapter, we used OMEGA to classify different human operators’ behavior in a game
mimicking tennis. Although the simulation system is not dynamic, the classification job is not
easy, especially because the distribution of the input and output is complicated. OMEGA per-
forms very well in this domain, which demonstrates that OMEGA is a good classification tech-
nigue. Although originally it was explored to classify time series, OMEGA is also a general

purpose classification tool, which is capable of handling both time series and non-time series.

Experiments have been done to compare OMEGA with other methods. Although we have
tuned up those methods to perform as well as possible, they still are not competitive with
OMEGA.




Chapter 4

Logistic Regression as a Classifier

In this chapter, we discuss how to approximate the probalﬁ(m“ So Xg), i.€e., the probability
that if the underlying system 1, corresponding to a certain inpxy, the system’s output is
Yq- We explore a new memory-based methodally weighted logistic regressiomhich aims

at approximatind®(yy | $,, %) when the outpuy is categorical.

Figure 4-1 illustrates the task of this chapter. Suppose there is a s\&fenmose input space

is 2-dimensional, and the output is boolean. Suppose a unlabeled data poityg,(to
approximateP(yy | S, %), we need some knowledge of syst&n Memory-based methods
assume that the knowledge comes from the previous observations of the system’s behavior, i.e.
the memory data points or the training data points, as the circles and crosses in Figure 4-1. The
circles correspond to those memory data point§afith outputs equal t@, the crosses cor-
respond to the other memory data points with outputs equalfmow, if there come two que-

ries, residing at the positions of the dark triangles, if both of the queries’ outputs are “cross”,
then intuitivelyP((yq = “cross”) | S, = (2.0, 3.0)") should be close th.0because the major-

ity of its neighbors are crosses, whit(yy = “cross’) | §,, xq= (4.5, 1.0)T ) should be near

0.0, based on the similar reasoning.
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Figure 4-1: An illustration of the classification task.

4.1 Classification methods

Since the outpuy is categorical, the approximation By, | S,, Xg) is a classification problem

by itself. System classification is to summarize a sequence of such classifications. There are
many classification methods. The simplest one is nearest neighbor [Duda et al, 73; Aha et al,
89]. Its derivative k-nearest neighbors, is more popular. Kernel regression, as mentioned in
Chapter 2, is another important method. These methods are referrednenasry-basedr
instance-basedlassification methods [Atkeson et al, 97], while non-memory-based classifica-
tion methods include neural network [Bishop, 95], decision-tree [Quinlan, 93], hierarchical
mixtures of experts (HME) [Jordan, et al, 93], Bayes classifier [James, 85], etc. Both memory-
based classifiers and non-memory-based ones assume the knowledge of theSsysteres

from the training data points. The distinguishing characteristic of memory-based classification
methods is that they defer most of the processing of the training data points until after a query
is made. This characteristic is desirable for processing continuous streams of training data and
gueries in real-time systems. In addition, the memory-based classifiers are capable of self-tun-
ing according to the distribution and noise level of the training data points. Non-memory-based
methods try to learn the underlying function model of the sys¥gimefore any query comes.

For example, neural networks have been proved capable of approximating any functions, if
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there is no restriction of the numbers of its hidden layers and its hidden nodes. Given a suffi-
cient number of training data points, neural network uses them to approximate the underlying
function relationship of the input and output. Once the training is done, the training data points
are tossed away. Then, we wholly rely only on the trained neural network to process any que-

ries.

Let's pick up some popular classification methods, and discuss them in a little depth.

1. Nearest neighborhood @rnearest neighborhood doesn’t perform satisfactorily in most
cases, because it is too sensitive to the noise of the single nearest neighboring data point.
k-nearest neighborhood performs quite well in many domains. But notice that it does not
recognize the “boundary” of the different patterns. Besi#tesearest neighborhood may
be influenced by the density of the neighboring data points along the border. In the follow-

ing diagram, intuitively the output of the query (the dark triangle) should be a cross,

because it is on the cross side. Howekengarest neighborhood’s conclusion tends to be a

circle, because among tkeearest neighboring data points, the majority are circles.

2. Kernel regression is a good method for interpolation. However, it is not ideal for extrapo-
lation. Suppose a query resides at a location remote from the centroid of other memory
data points, like the reversed triangles in the above diagram, Kernel regression can not
clearly decide if the category of the reversed triangle. Instead, it tends to assign 50% to the

probability for the query’s output to be “cross” (or “circle”).

3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on the

distribution of the data points. The conventional Bayes classifier assumes that if the out-
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puts are boolean, the memory data points distribute in two clusters, one for the memory
data points with output equal to 0, the other cluster for the data points with output equal to

1. Furthermore, the points are Gaussian-distributed in the input space so that the shapes of
the clusters are ellipses. Referring to Figure 4-1, these restrictions are too strong for most
classification problems. Even if we extend Bayes classifier to consider multiple clusters, it

is still too hard to meet the requirement that the shapes of these clusters must be ellipses.
Another concern about Bayes classifier is that it needs a large number of parameters to
decide the centroids and the shapes of the Gaussian ellipses, this problem becomes more

severe when we employ multiple ellipses.

4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small seg-
ments, and label these small segments with one of the various output categories. However,
conventional decision tree only does the partitioning to the coordinate axes. It is plausible
that with the growth of the tree, the input space can be partitioned into tiny segments so as
to recognize subtle patterns. However, overgrown trees lead to overfitting. More flexible
than the conventional decision tree, CART [Breiman et al, 84] and Linear Machine Deci-
sion Tree [Utgoff et al, 91] can divide the input space using oblique lines. However, any
nonlinear boundary may either make the tree overgrown or reduce the accuracy of the

classification.

In this thesis, we explore a locally weighted version of logistic regression which can be used as
a new memory-based classification method. Our method shares the properties of other mem-
ory-based classification methods. Besides, our method has some other good properties, includ-
ing simplicity, capability of extrapolating, and a known confidence interval. Concerning the

accuracy, our new method is competitive with others, supported by the experimental results.
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4.2 Global logistic regression

Locally weighted logistic regression can be used to approxifgte] S, X;). Let's begin with

a very simple case with boolean output, shown in the following figure.

The straightforward way to approximate this function is to use two line segments to fit the dots,
which are also referred to as training data points. However, to be learnable, we want to use a
differentiable function to do the fitting instead of using two line segmemdgistic function,

which is also referred to asigmoidfunction, can be employed here. Logistic function is a
monotonic, continuous function betwe@rand1, whose shape is shown as the grey curve in

the above figure. Mathematically, it is defined as,

_ 1
T e x2)B)

(4-1)

where Xq is the input vector of the query, afid  is the parameter vegfor.  as the probability

for Yq 10 bel, i.e.
= P(yq = 1|Sp, xq) Or, equivalently,
~ M with probability u”
Ya Ep with probability 1-T,

Therefore, deciding the output of a query is now equivalent to finding the val@eGibbal
logistic regression assumes that all data points share the same parameter vector with the query,

i.e.
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[31:[32:--- :BN:B

While local logistic regression allow§,  vary cross the input space, but it changes smoothly.
For example, ifx; and, are neighboring to each other, then we asyme f(,and  must be
close to each other, too. Back to global logistic regression, a good estimfite of  should fit, or
in plain words, “go through”, all the training data points as well as possible. Mathematically,

the estimate of3  can be derived by maximizing the likelihood as following,

N N

[TPOIS %) = [/ (a-m)

i=1 i=1

N { 1 H exp(—(L, X/ )B) T‘Vi

il:ll 1+ exp(—(1 ¥ )B)] [ 1+ exp(~(1 % )B)

Lik
(4-2)

Global logistic regression is a well-established algorithm in statistical literature [McCullagh et
al, 89]. Although we discuss only the binary output case here, global logistic regression is ready

to be extended to multiple categorical output cases. We will talk about this later.

The simplest classification problem is illustrated as Figure 4-2. The input is one-dimensional,
which is represented by the horizontal axis; the output is boolean, represeried bpn the
vertical axis. The small circles in the pictures are the data points in memory. Global logistic
regression works perfectly in the noise free case illustrated by Figure 4-2 (a), because the logis-
tic function curve goes through most of the data points in memory. Global logistic regression
also works in the noisy case shown as Figure 4-2 (b). Although the function curve moves mid-
way between the data points, the curve is close to most of the data points. In summary, global

logistic regression can be used as a noise tolerant classification method.
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Figure 4-2: (Global) logistic regression for classification.

The fatal weakness of global logistic regression is shown in Figure 4-2 (c). Since it contains
more than two segments, global logistic regression does not work. Recalling logistic function
is a monotonic function, that is the reason global logistic regression fails whenever there are
more than two segments. There are two approaches to solve this problem. One way to think is
that although one logistic function does not work, we can combine several logistic functions.
In fact, neural networks, especially feed-forward multi-layer perceptrons, can be regarded as

an implementation of this idea.

The second approach resorts to the localization paradigm. The idea of local logistic regression
is that although no single logistic function works well globally, in any local region a single

function should be capable of doing the classification.

There are several versions of local logistic regression that can be investigatedrest neigh-
bor local regression would only select those neighboring data points, and ignores all others.
Locally weighted version of logistic regression does not ignore any data points in memory,

instead, it discriminates the data points by assigning weights to them.
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4.3 Locally Weighted Logistic Regression

4.3.1 Maximum Likelihood Estimation

Locally weighted logistic regression is very similar to the global logistic regression, except that
the locally weighted version assign a weighPt(yi|Sp, x;) . Differing from Equation 4-2, the

locally weighted version of likelihood is,

. N W, _ _ [ distancéx;, xq)2D
Lik, = |_| P(¥;|Sp X)) in whichw; = expQ3 > O (4-3)
i=1 O Ky O

The weight is a function of the Euclidean distance fromittiienemory data point to the query.

Other metrics of distance are also possible depending on the specific domains, The in the
weighting function definition is referred to &&rnel width The influence of Kernel width will

be discussed shortly. Due to the weights, those data points remote from the query have smaller

weights, while the neighboring memory data points have bigger weights.

Using Newton-Raphson algorithm, and through some algebraic manipulations, the maximum

likelihood estimate o can be simplified as,

~ ~ -1
Brr+1) = By + (XTWX) X' We (4-4)

Suppose there amd data points in the memory, each data point consists @flanensional
input vector and a boolean outpdtis then aN x (1 +d) matrix. Th&th row of X matrix is
(1,%). And W is a Nx N diagonal matrix, whoséh diagonals element is\V, = w,Tt,

wherett; is the derivative af, ~ with respectfio , i.e.,

_exp(<(Lx)B) g
(1+ exp(—(L X )B))" "

Tg

(4-5)
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Figure 4-3: Locally weighted logistic regression as a classification technique
works robustly.

w, is the weight defined in Equation 4-3. The lastiteen, isaratiopfm, ~ mto . Newton-
Raphson algorithm starts from a random vectofof , usually we a@@gn to be zero vector.
The recursive process converges very quickly, usually no more than 10 loops. Once we get the

maximum likelihood estimate ¢f , we can estimate the quety’s
Also notice that,(XtWX)_1 is the asymptotic variance matrif of

Now let us go back to the case of Figure 4-2 (c) and see if locally weighted logistic regression
classifier is capable of solving the problem where global logic regression fails. The result is
shown in Figure 4-3 (a). The circles are the memory data points. And each dot on the solid
curve, which ian , is plotted by doing its own locally weighted regression at that local region.
Locally weighted logistic regression works well in this case. Also, in the harder case of Figure
4-3 (b), it still works. Notice,nq is influenced by the noise but not the distribution of the data

points.
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Figure 4-4: Kernel width adjusts the weighting function.

4.3.2 Weighting Function and Kernel Width

Referring to Equation 4-3y; , the weight can be adjusted by the Kernel width.When the Kernel
width is big, more data points have high weights. Therefore, &} usually preferred when

the noise level in memory is high. Extremely, wh€g goes to infinity, locally weighted logis-

tic regression is equivalent to the global one. WHgpis small, only those close neighbors can
effect the regression. Hence, a smg)) is good at recognizing the details of the memory. The

influence ofK,, is demonstrated by Figure 4-4.

4.3.3 Confidence Interval

Our estimateT, is a point estimate, which is our best guess for the true vaije of . Reporting
only the point estimate is often unsatisfactory. Some measure of how close the point estimate

is likely to be the true value is required. Tdanfidence intervak such a metric.

The confidence interval of, is an interval of plausible valuesrfpr[m, 1] ; the probabil-
ity or the confidence for the true value ug falling into this interval 8 1- a)% , iInwhich

a is theconfidence levelUsually we pre-define a confidence level, then decide the lower and
upper boundsiy andry, which are also effected by the density and consistency (noise level)

of the data points in the neighborhoodkgf
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The upper curve and the The Cl is influenced by
lower one are the two the distribution of the
boundaries of the confi- memory data and the noise.

dence interval.
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Figure 4-5: Confidence intervals for classification.

Referring to Equation 4-Ifis a monotonic function of1, xT)Q ; hence, to calculate the lower
and upper bounds, we need know the lower and upper bounds mb[} . Referring to Sub-
section 4.3.1, we can calculate the asymptotic variancf&qof whiaﬁixlTsWX)_l , Where

is decided by the memory data points &d is effected by the distances from the query to the
memory data points. Notice that the asymptotic variancécpf is likely to be small when there
are more data points in the memory, especially in the neighborhood of the query. It is straight-

forward to calculate the confidence interval fof based on the upper and lower bounds of

Xqu.

The confidence intervals of the cases of Figure 4-3 (a) and (b) are plotted in Figure 4-5 (a) and
(b). When the data points distribute uniformly as Figure 4-5 (a), the confidence interval is quite

consistent. Otherwise, the confidence interval varies cross the input space.

According tor,' ’s definition, referring to Equation 4-5, Whe”ag is closd 1@ we tend to
predict that the query’s outpy is likely to bel. However, if at the same tinﬁﬁ 's confidence
interval is too big, we should be conservative about our prediction. Figure 4-5 (b) shows such
a situation:f[q is almost zero, therefore, if we only relyf]@ , we should predict the output
will be 0. But since the confidence interval is very wide, we should be aware that there is still

a lot of chance for the outpy to bel.
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Confidence interval is helpful for active learning and/or experimental designs. Wherever the

confidence interval is wide, we need more data points in that region.

4.3.4 Multi-categorical classification inference

Up to now, we focus on boolean classification. In case the output has more than two output cat-
egories, locally weighted logistic regression method is still useful. But we should do some

modifications.

1. Suppose there arma output categories, we can represent the output bycdamensional
vector. If a data point falls into the first category, its outpyt, [is0, ..., qT pifitisin

T

the second categoryy [, 1, ..., Q . In general, the distribution of output is multino-

mial, in the form of,
Yo Y, m

—_ q q —_
P(yq|Sp, gq) =M. T = | |

where T; the probability for the data point falling into jltle category.

2. We assume; is decided by a function similar to logistic function,

5 = (exp((L%4)B,))/ Y exp((L x)B))
j=1

Notice that the sum oﬁj 1,=1, ...,m,is 1.0. And for each output category, there is a uni-

fying Qj; totally, there aren of them.

3. The likelihood can be constructed following the descriptions in Section 4.2 and section
4.3. For example, the global likelihood, which assumes all data points share thelsame , is

defined by Equation 4-6,




Chapter 4: Logistic Regression as a Classifier 71

N N m
Lika(B) = T P4[So) = [T ™ (4-6)

=1 I=1j=1

Now it is straightforward to follow the same inferences described in Sections 4.3 to figure out

the locally weighted regression @1:J and the confidence inter\naa(! of

4.4 Comparison Experiment

Artificial Experiments

We artificially generate three data sets, each data consists of two input attribdiep(it) and
a boolean output. In Figure 4-6, we represent those data points with output values €rmal to

circles, and represent the other data points, whose outpuistgrerosses.

Figure 4-6 (a-c) are the contours of tfig  values corresponding to three different memory data
sets. Figure 4-6 (a) shows a simple case, in which locally weighted logistic regression does a
perfect job. Figure 4-6 (b) is similar to Figure 4-6 (a) except that, the “boundary” of the two
regions is messier, and there is noise involved as well. In this ¢gse,  value increas@s from
to 1, starting from the bottom left corner to the top right one; hence, locally weighted logistic
regression works well, too. The small gradient of the contoutpf  shows the influence of the
inconsistency (noise) of the data points in memory. Figure 4-6 (c) is the hardest case, in which
locally weighted logistic regression still works well. Figure 4-6 (d) is the contoapaofidence
interval for the same memory as Figure 4-6 (c). It is apparent that the memory data points’

noise level, as well as their distribution and density, influence the confidence interval.
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Figure 4-6: Three artificially generated data sets as the testbeds of locally
weighted logistic regression classifier.

Real World Datasets

We use four binary output data sets from UCI’'s machine learning dataset repository, lonos.,
Pima., Breast., and Bupa. We try six different classifiers, including nearest neighbor method (
Neares}), k-nearest neighborsk{Nearest, Kernel regression (Kernel), conventional Bayes
classifier with two clusters (Bayes), C4.5 decision trBedjsion, feedforward perceptron
(Neural), global logistic regressior3lobal Logistiq and our locally weighted logistic regres-

sion methodl(ocal Logistig. The dimensionalities of the inputs vary fr@ad to 34-d

We split each data set into two parts, the first part contains two thirds of the data points, which
are used as the memory or the training dataset. The remaining one third of the data points are

used as the test set. We can approximate the accuracy of a certain method for a certain dataset
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by theerror rate, which is the ratio of the number of the failures to the number of the testing
data points. For the same dataset, the lower the error rate, the better the classification method

performs.

With different Kernel width, locally weighted logistic regression may have different accuracies.
We split the range of the Kernel width into ten equal-length steps, and tried the logistic regres-
sions using these ten different Kernel widths, so as to find the optimal Kernel width. Similarly,
for k-nearest neighbor method and kernel regression, we enumerated patamated O to
100with stepl0; for perceptron, we tried one-hidden layer feedforward perceptrontioh

10 hidden nodes. In this way, we found the best parameters for the various machine learning

methods.

For each dataset, we shuffled it five times; each time we split it into training set and testing set.
Hence, for each dataset by each method, we got five error-rates which were the best perfor-
mances of the method with the tuned-up parameter(s). We recorded the mean values of these

error-rates in Table 4-1, along with the standard deviations in parentheses.

Table 4-1: Comparison of logistic classifier with other methods

Error rate (%) lonos. (34-d) Pima (8-d Breast (9-d)  Bupa (6-d)
1-Nearest 12.7 (2.5) 33.9(1.8) 4.9 (0.6 40.0 (2.4)
k-Nearnest 13.9 (2.9) 31.5 (4.7 3.3(0.5 37.5(5.8)

Kernel 12.7 (3.3) 30.9 (3.2) 3.3(0.6) 37.3 (2.0)
Bayes 12.9 (1.2) 25.3 (2.3) 3.4 (1.2) 34.2 (3.6)
Decision 9.2 (2.1) 28.6 (3.0) 4.2 (1.1) 35.8 (3.2)
Neural 10.5 (3.2) 33.4 (2.0) 3.2 (0.6) 32.1 (4.5)
Global Logistic 12.4 (0.7) 24.9 (3.0) 3.9(1.4) 34.4 (3.4)

Local Logistic 13.0 (0.4) 22.5 (2.8) 3.1(0.7) 31.0 (2.7)
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The experiments show that the accuracy of the locally weighted logistic regression method
(Local Logistic) is competitive compared with other classification method. Some remarks are

listed as following,

1. Itis not surprising that locally weighted logistic regression is more accurate in most cases
than 1-nearest neighborhood:nearest neighborhood, Kernel regression, conventional
Bayes classifier, C4.5 decision tree, and global logistic regression according to our discus-

sion in Section 4.1.

2. Global logistic regression’s performance is similar to that of the conventional Bayes clas-
sifier with two clusters. But global logistic regression is computationally cheaper than the
conventional Bayes classifier. Suppose the input space’s dimensionalindthe mem-
ory size is N, the computation cost of locally weighted logistic regression is
O(d3 +d x N), while that of the conventional Bayes classifier with improved efficiency

by some tricks i@(d3 xN+dx Nx K , wheteis the number of clusters.

3. Concerning neural networks, locally weighted logistic regression does not outperform it
in accuracy. Instead, an advantage comes from the general good properties of the memory-
based approach over non-memory-based ones. As mentioned in the beginning of this
chapter, Section 4.1, as well as [Atkeson et al., 97], because memory-based learning does
not process data until the query arrives, the parameters of the logistic regression are not
fixed in advance. When we update the memory, unlike neural network, less interference
will happen, because the previous arrived memory data points are treated equally as the
new comers. And by adjusting the parameters, we can shift the logistic regression continu-

ously along the global-local spectrum.

4. Locally weighted logistic regression performs poorly on the lonos dataset. The reason is
that the dimensionality of the input is very high (34-d). Maybe many input attributes are

irrelevant to the classification but only confuse the classifiers. When we selected the first,
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the fourth and the fifth attributes to be input, the mean value of error-rate of the local logis-
tic classifier dropped frorh3.0%to 10.7% with standard deviatiof.7%

To eliminate those less important input variables, recall that locally weighted logistic
regression estimates the parameter ve@or . In fact, each elem@nt of indicates the sig-
nificance of the corresponding input attribute for classification. If one elemeit of is
close to zero, it implies that the corresponding input attribute is not very relevant to the
classification job. We can get rid of the irrelevant input attributes using this heuristic.
Some preliminary experiments showed that the selection result was quite consistent with

the nodes of decision tree.

4.5 Summary

In this thesis, we explore a locally weighted version of logistic regression which can be used as
a new memory-based classification method. Our method shares the properties of other mem-
ory-based classification methods. Besides, our method has some other desirable properties,

including simplicity, competitive accuracy, capability of extrapolating, and confidence interval.

In Chapter 5 and Chapter 6, we will discuss the issue about how to improve the efficiency of

locally weighted logistic regression as well as other memory-based methods.
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Chapter 5

Efficient Memory Information Retrieval

In this chapter, we will talk about two topics: (1) What is a kd-tree? (2) How can we use kd-
trees to speed up the memory-based learning algorithms? Since there are many details in the
second topic, we only discuss how to improve the efficiency of Kernel regression in this chap-
ter, to demonstrate the approach in principle. In next chapter, we will explain the details of
applying kd-tree techniques to improve the efficiency of locally linear regression and locally

weighted logistic regression.

5.1 Efficient information retrieval

Suppose there are a set of memory data points whose input space is 2-dimensional, shown in
Figure 5-1. Given a querfxy, Yg), a task of information retrieval is to find this query’s neigh-
boring memory data points. The brute force approach is to measure the distances from this
guery to each of the memory data points. Then based on these distances, it is straightforward
to decide which memory data points are the query’s neighbors. The distance may be Euclidean
or another metric depending on the specific domain. The drawback of the brute force method
is obvious: since its computational cost@( N x d) , Whins the memory size andlis the
dimensionality of the input space. When the memory Bizmcomes very large, its costs will

increase, too.

77
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Figure 5-1: Grid for efficiency information retrieval.

To improve the efficiency of finding the neighbors, we can partition the input space of the mem-
ory data points into many cells by means of a grid. When a query arrives, we can consult the
cell where the query locates and its neighboring cells, instead of visiting all the memory data
points individually. In this way, the computational cost shrink frédiN x d)  CQn x dz) ,
wheren is the number of memory data points in the concerned cell(s). (If we neglect the cost
of finding the cell where the query resides.) The grid method performs the best when the mem-
ory data points distribute uniformly, so thatends to beN / G, in which G is the number of

grids in the whole input space. However, there is no guarantee that the memory data points dis-
tribute uniformly forever and wherever. Sometimes most of the memory data points are packed
in only a limited number of cells, while the other cells are almost vacant. Therefore, the contri-

bution of the grid method to the efficiency is not reliable.

The kd-tree technique [Preparata et al, 85] is similar to the grid method in the sense that it also
partitions the input space into many cells. However, the partition is flexible with respect to the
density of the data points in the input space. Wherever, the density is high in the input space,

the resolution of the kd-tree’s partition at that region is also high, so that the cells tend to be
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small. Otherwise, for those regions where there are only a limited number of memory data

points, the partition resolutions are low, and the cells are large.

5.2 Kd-tree Construction and Information Retrieval

A kd-tree is a binary tree that recursively splits the whole input space into partitions, in a man-
ner similar to a decision tree [Quinlan, 93] acting on real-valued inputs. Each node in the kd-
tree represents a certain hyper-rectangular partition of the input space; the children of this node
denote subsets of the partition. Hence, the root of the kd-tree is the whole input space, while
the leaves are the smallest possible partitions this kd-tree offers. And each leaf explicitly
records the data points that reside in the leaf. The tree is built in a manner that adapts to the
local density of input points and so the sizes of partitions at the same level are not necessarily

equal to each other.

In our formulation of the kd-tree structure, each node records the hyper-rectangle covered by
it. This is defined as the smallest bounding box that contains all the data points owned by this
node of the tree. Each non-leaf node has two children representing two disjoint subregions of
the parent node. The break between the children is defined by two vaplgégsd is the
splitting dimension, which determines which component of input space the children will be
split upon;split v determines the numerical value at which each split occurs. The data
points owned by the left child of a node are those data points owned by the node which are less
than valuesplit_v in input componensplit_d . The right child contains the other data

points. A sample kd-tree is shown in Figure 5-2.

To construct a tree from a batch of training data points in memory, we use a top-down recursive
procedure. This is the most standard way of constructing kd-trees, described, for example, in
[Preparata et al., 85] [Omohundro, 91]. In our work, we use the common variation of splitting

a hypercube in the center of the widest dimension instead of at the median point. This method

of splitting does not guarantee a balanced tree, but leads to generally more cubic hyper-rectan-
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hQueries

Figure 5-2: To implement the grouping idea, we use hyper-rectangles with

kd-tree. To find the neighborhood of a certain query (triangle), we can

recursively search the tree from the root towards to the leave where the query

resides. For different query (reversed triangle), we can use the same kd-tree

but choose different nodes.
gles, which has empirically proved better than other schemes (pathologically imbalances are
conceivable, but trivial modifications to the algorithm prevent that.) The cost of making a tree

from N data points i©(Nd logN)

The base case of the recursion occurs when a node is createNyyitor fewer data points.

Then those data points are explicitly stored in the leaf node. In our experiMghts,2.
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To incrementally add a new data point to the tree, the leaf node containing the point is deter-
mined O(logN)cost). The data point is inserted there (and a new subtree is recursively built if

the number of nodes excedds;,).

Given a query(Xy, Yg), to find those memory data points whose input vectors are cloggwe

can recursively search the tree from the root towards to leaves, referring to Figure 5-2, with the
triangle query. According to the pre-defined range of “neighborhood”, it is straightforward to
find those branches of the kd-tree, which are close to the branches where the query resides. Two

issues to be noticed:

1.With different ranges of the “neighborhood”, the “neighboring” branches can be different.
The neighboring branches with respect to a strict defined neighborhood is a subset of those
neighboring branches corresponding to a loose definition. This characteristic is desirable,
because it allows us to find those neighboring data points corresponding to any definition of

the neighborhood along the local-global spectrum.

2.Although we will use the kd-tree to finds@tof neighboring data points, it is also possible to
find the “exact” nearest neighboring data point. For the example in Figure 5-2 with the
reversed triangle query, to find its nearest neighbor data point, we wish we could search
from the root of the tree down towards to the leaf where the query locates, so that the cost is
O(logN), whereN is the memory size. Unfortunately, it is possible that its nearest neigh-
boring data point is in another leaf of a remote branch of the kd-tree, marked with “*” in the
diagram. More theoretical analysis refers to [Kleinberg, 97]. The standard nearest neighbor
algorithm, [Preparata et al, 85] [Moore, 90], avoids this problem while still only requiring
O(logN) time.
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5.3 Cached Kd-tree for Memory-based Learning

The goal of our exploring kd-trees is not to find the nearest neighbor, and not only to find a set
of nearest neighbors, but mainly to enhance the efficiency of the memory-based learning meth-
ods. The basic principle is to cache useful statistical information into the kd-tree nodes, so that
when we do the memory-based learning process, instead of visiting every relevant memory data
point, we mainly rely on the statistical information in the tree nodes. In this chapter, we focus
on using this cached kd-tree to speed up Kernel regression, to demonstrate the approach in gen-

eral.

Kernel regression

In Chapter 2, we discussed using Kernel regression’s idea to approXfygles;,, xy), i.e. the
probability that a given query data poifx;, y,) belongs to a systerg,, where the knowledge

of §, comes from a set of memory data poifx, y1) ..., (Xn, Yn), which is the observations of

Sy's previous behavior. Cached kd-trees can improve the efficiency of Kernel regression (for
example, [Franke, 82]), not only for the approximatiorPgy, | S,, %), but also for the general
purpose use. As a popular machine learning method, Kernel regression is often used to do pre-
diction: given an input vectaxy, which is called query, Kernel regression predicts its output,
ﬁq(xq) , based on the memory data poiftsg, y,), ..., 0% Y- We assume all the memory data

points were generated by an identical system.
Kernel regression use the weighted average of the outputs of all the memory data points to pre-
dict yq(xq) X

. oN ooN O
Yq(Xg) = Dz WiyiD/Dz w0 (5-1)
0= 00T O
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Figure 5-3: For the noiseless data in the top example, a small K gives the best

regression (in terms of future predictive accuracy). For the noisy data in the bottom
example, a large K is preferable.

wherew; is the weight assigned to tén datapoint in our memory, and is large for points close
to the query and almost zero for points far from the query. It is usually calculated as a decreas-

ing function of Euclidean distance, for example by Gaussian:

2
w, = Const x exD X X0
i = O

O 2K2 0O

As we have mentioned previouskj,, is the Kernel width. The bigger the parameigyis, the
flatter the weight function curve is, which means that many memory points contribute quite
evenly to the regression. A§,, tends to infinity the predictions approach the global average of
all points in the database. If th&, is very small, only closely neighboring data points make a
significant contributionK,, is an important smoothing parameter for kernel regression. If the
data is noise free then a smél}, will avoid smearing away fine details in the function. If the
data is relatively noisy, we expect to obtain smaller prediction errors with a relativelydgrge
This is illustrated in Figure 5-3.

The drawback of kernel regression is the expense of enumerating all the distances and weights
from the memory points to the query. This expense is incurred every time a prediction is

required. Several methods have been proposed to address this problem, reviewed as following:
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1.[Preparatet al, 85] proposed a range-search solution. Similar to our cached kd-tree method,
the range-search solution finds all points in the kd-tree that have significant weights, and
then only sum together the weighted components of those points. This is only practical if the
kernel widthK, is small. If it is large, all the memory data points may have significant
weights, but with only small local variations, thus range searching would sum all the points
individually. Even in cases of small kernel widths, but if there are many data points in the
neighborhood, the range search method will need to search all the data points individually

and may still end up with a large computational cost.

2.Another solution to the cost of conventional Kernel regressioedisng (or prototypes:

most data points are forgotten and only particularly representative ones are used (e.g.
[Kibler and Aha, 88] [Skalak, 94]). Kibler and Aha extended this idea further by allowing
data points to represent local averages of sets of previously-observed data points. This can
be effective, and unlike range-searching can be applicable even for wide kernel widths.
However, the degree of local averaging must be decided in advance, and queries cannot
occur with different kernel widths without rebuilding the prototypes. A second occasional
problem is that if we require very local predictions, the prototypes must either lose local

details by averaging, or else all the data points are stored as prototypes.

3.Decision trees ankid-trees have been previously used to cache local mappings in the tree
leaves [Grosse, 89], [Moore, 90], [Omohundro, 91], [Quinlan, 93]. These algorithms pro-
vide fast access once the tree is built, but a new structure needs to be built each time new
learning parameters, such as Kernel width, are required. Furthermore, the resulting predic-
tions from the tree have substantial discontinuities between boundaries. Only in [Grosse, 89]
is continuity enforced, but at the cost of tree-size, tree-building-cost and prediction-cost all

being exponential in the number of input variables.
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Computing the kernel regression sums

Now it is time for us to use the cached kd-tree to improve the efficiency of Kernel regression,

and at the same time avoid the drawbacks of the other competing methods.

Recall that each kd-tree node represents a hyper-rectangle sub-region of the input space, which
covers a set of memory data points. Assume in one node theredat points, and corre-
sponding to a certain query, thesalata points’ weights are all close to a valegin other

words, the weight of th&th data point in this node is; = w + &;, where all§;’s are small.
Referring to Equation 5-1, when performing Kernel regression, we need to accumulate two

sums over all data points in memory, including thedata points in this node,

Zwiyi and Zwi
Restricting our attention to summations over theéata points in the concerned kd-tree node,

we have,
> wy; = Z(\Tv+ &)Y, :\TVZ yi+ 3 &y, and
Ywo= Y (wg) = nw+ Vg

Providing we known, w andzy; for the current node, we can therefore compute an approxima-
tion to Zw;y; andZw; in constant time without needing to sum individual data points contained
in the node. This approximation to the partial sums is good to the exterigiyais small with

respect tavXy; andZeg; is small with respect tow.

Therefore, we should cache two other pieces of information into each kd-tree node in conjunc-
tion with split_v and split_ d : the number of data points below the current node,
n_below , and the sunky; of all output values of the data points contained in the neds.

These are two of the three values needed to compute the contribution of a kd-tree node to the
partial sums in Kernel regression. The third componentjepends upon the location of the

qguery and is determined dynamically in a manner described shortly.
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With such cached information in each kd-tree node, we can efficiently approxwgteand
>w;, summed over all data points in the kd-tree, so as to speed up the process of Kernel regres-
sion. This is performed by a top-down search over the tree. At each node we make a decision

between:

1.(Cutoff) Treat all the points in this node as one group (a cheap operation) or

2.(Recurse) search the children.

We will use the cutoff option if we are confident that all weights inside the node are similar.
Given the current query, and the hyper-rectangle of the current node it is an easy matter to
computeDy,in, andDy,5 the minimum and maximum possible distances of any datapoint in

this node to the query (computational cost is linear in the number of dimensions). From these

Dmin

values one can then compute the maximum and minimum possible waighigndw,;y, of
any data points owned by this node, since the weight of a point is a decreasing function of dis-
tance to the query. We thus decidenif,;« andwjy, are close enough to warrant the cut-off

option.

The search is thus a recursive procedure which returns two valuesweightandsum-wy If

the cutoff option is taken, then estimate the weight of all data points as (W, + W5,/ 2

in

and return:

sum-weights= n_below xw

SUM-Wy = sumx w
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If the cutoff option is not taken, recursively compsiegm-weightandsum-wyfor the left and

right children, and then return:

sum-weights sum-weights(left} sum-weights(right)

sum-wy= sum-wy(left}r sum-wy(right)
Search cutoffs

Last section described how we can make our approximation arbitrarily accurate by bounding
the maximum deviation we will permit from the true weight estimate with a velyg> 0 and

then makinge,axarbitrarily small. Thus the simplest cutoff rule in the kd-tree search would be
to cutoff if Wi ax- Wmin < €max It iS easy to show that this guarantees that the total sum of abso-
lute deviationgg;| is less tham e ,ox/ 2 WhereNt is the number of points in the tree. There
are, however, other possible cutoff criteria which provide arbitrary accuracy in the limit, but

which, when used as an approximation, have more satisfactory properties.

The simple cutoff rule does not take into account that a larger total error will occur if the node
contains very many points than if the node contains only a few points. It does also not account
for the fact that in a practical case we are less concerned about the absolute value of the sum of
deviationgZg;| but rather the size dkg;| relative to the sum of the weighksy,. Some simple

analysis reveals a cutoff criterion to satisfy both of these intuitions. Cutoff only if

(Wimnax = Wmin) Ng < T Zw;

whereNg is the number of data points below the current node. Simple algebra reveals that this

guarantees

|Z€i | <05Grt ZWi
where G is the number of groups finally used in the search (and thus-hopefully consid-

erably less). Notice that this cutoff rule requires us to krkaw in advance, which of course




88 Chapter 5: Efficient Memory Information Retrieval

we do not. Fortunately the sum of weights obtained so far in the search can be used as a valid

lower bound, and so the real algorithm makes a cutoff if

(Wmax_ Wmin) N B
weight so far in search

wheret is a system constant.

5.4 Experiments and Results

Let us review the performance of the Kernel regression with the help of cached kd-tree in com-
parison to the conventional Kernel regression. In the first experiment we use a trigonometric
function of two inputs with added noisg:= uniformly generated random vector with all com-
ponents between 0 and 100 ape a function ofx; (which ranges between 0 and 100 in height),

with gaussian noise of standard deviation 10.

10,000 data points were generated. Experiments were run for different values of kernel width
Ky In all experiments, the cutoff threshaladvas 0.005. Figure 5-4 (al) shows the test-set error
on 1000 test points for both regular kernel regression (“Regular KR”) and cached kd-tree’s ker-
nel regression (“Tree KR”) graphed for different valuesqf The values are very close, indi-
cating that Tree KR is providing, for a wide range of kernel widths, a very close approximation
to Regular KR. Figure 5-4 (a2) shows the computational cost (in terms of the summations that
dominate the cost of KR) of the two methods. Regular KR sums all points, and so is a constant
10,000 in cost. Tree KR is substantially cheaper for all valudg,pbut particularly so for very

small and very large values.

Figures 5-4 (b1) and (b2) show corresponding figures for a similar trigonometric function of
five inputs. This still shows similar prediction performance as Regular KR. The cost of kd-
tree’s Kernel regression is still always less than Regular KR, but in the worst case the compu-

tational saving is only a factor of three (whiy, = 40, Tree KR cost = 3,200). This is not an
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Figure 5-4. Comparison between the errors (*1) and the costs (*2) between regular
kernel regression versus cached kd-tree’s one. In the cases of (a*), the dataset is of 2-
d inputs, of size 10,000. In (b*), 5-d inputs, dataset size 10,000. In (*c), 5-d inputs,
100,000 data points.

especially impressive result. However, for any fixed dimensionality and kernel width, costs rise
sub-linearly (in principle logarithmically) with the number of data points. To check this, we ran
the same set of experiments for a dataset of ten times the size: 100,000 points. The results, in
Figure 5-4 (c1) and (c2), show that with this large increase in data, the effectiveness of cached
kd-tree’s KR becomes more apparent. For example, considé{,j#e40 case. With 100,000

data points instead of 10,000, the cost is only increased from 3,200 to 5,700 while the cost of

Regular KR (of course) increased from 10,000 to 100,000.
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Figure 5-5: (Upper) the relative accuracy and (lower) the computational
cost of kd-tree’s KR against 1 --- the cutoff threshold.

Investigating the 1 threshold parameter

Next, we will examine the effect of theparameter on the behavior of the algorithm.#is
increased we expect the computational cost to be reduced, but at the expense of the accuracy
of the predictions in comparison to the regular KR. The results in Figure 5-5 agree with this
expectation: the left hand graph shows that for 2-d, 3-d, 4-d and 5-d datasets (each with 10,000
points) the proportional error between cached kd-tree’s and regular regression increases with

1. The right hand graph shows a corresponding decrease in computational cost.

Real datasets

In another experiment, we ran cached kd-tree’s KR on data from several real-world and robot-

learning datasets. Further details of the datasets can be found in [Maron et al, 94]. They include
an industrial packaging process for which the slowness of prediction had been a reasonable
cause for concern. Encouragingly, cached kd-tree’s KR speeds up prediction by a factor of 100
with no discernible difference in prediction quality between cached kd-tree’s and regular KR.

This and other results are tabulated below. The costs and error values given are averages taken
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over an independent test set. Notably, the datasets with the least savingmwlerehich had

few data points, anabot, which was high dimensional.

Table 5-1: Real dataset test of cached kd-tree’s kernel regression

Domain Dat_aset Dim of | Regular | Tree'sKR | Regular| Tree’s KR
Size Input KR Cost Cost KR Err. Error

Energy 2144 5-d 2144 232.9 1.687 1.690

Package 32000 3-d 32000 289.0 6.07 6.09

Pool 213 3-d 213 50.7 2.125 2.123

Protein 4664 3-d 4664 383.8 1.036 1.106

Robot 871 14-d 871 225 6.354 6.976

High dimensional, non-uniform data

Our final experiment concerned the question of how well the method performs if the number
of input variables is relatively large, but if the attributes are not independent. For example, a
common scenario in robot learning is for the input vectors to be embedded on a lower-dimen-

sional manifold. We performed two experiments, each with 9 inputs and 10,000 data points. In

the first experiment, the components of the input vectors were distributed uniformly randomly.

In the second experiment the input vectors were distributed on a non-linear 2-d manifold of the

9-d input space. The results were:

Table 5-2: Cached kd-tree’s kernel regression for sub-manifold cases

9-d uniform 9-d inputs on 2-d manifold
Regular KR cost 10,000 10,000
Cached kd-tree’s KR cost 3,100 430
Regular KR mean testset error 13.07 1.06
Cached kd-tree’s KR mean testset error 13.08 1.15
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The results indicate that, as would be expected, the cost advantage of cached kd-tree’s KR is
not large (a factor of 3) for 9-d uniform inputs, but is far better if the inputs are distributed

within a lower-dimensional space.

5.5 Summary

Kernel regression with the help of the cached kd-tree is preferable in case the application needs

the following properties:

*Flexibility to work throughout the local/global spectrum.

*The ability to make predictions with different parameters without needing a retraining

phase.

In addition, cached kd-tree’s Kernel regression has a number of additional flexibilities. Once
the kd-tree structure is built, it is possible to make different queries with not only different ker-
nel widthskK,,, but also different Euclidean distance metrics, with subsets of attributes ignored,
or with some other distance metrics such as Manhattan. It is also possible to apply the same

technique with different weight functions and for classification instead of regression.

Dimensionality is a weakness of cached kd-tree’s Kernel regression. Diminishing returns setin
above approximately 10 dimensions if the data points are distributed uniformly. This is an
inherent problem for which no solution seems likely because uniform data points in high
dimensions will have almost all data points almost exactly the same distance apart, and a useful

notion of locality breaks down.

This chapter discussed an efficient implementation of kernel regression. In next chapter, we
will apply exactly the same algorithm to locally weighted linear regression and locally
weighted logistic regression, in which a prediction fits a local polynomial or a local logistic
function to minimize the locally weighted sum squared error. The only difference is that each

node of the kd-tree stores the regression design matrices of all points below it in the tree. This
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permits fast prediction and also fast computation of confidence intervals and analysis of vari-

ance information.
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Chapter 6

Using Kd-trees for Various Regressions

In last chapter, we discussed how to use kd-tree to make kernel regression more efficient. In
fact, kd-tree can be used for other regressions, too. In this chapter, we will introduce how to

apply it to speed up locally weighted linear regression and locally weighted logistic regression.

6.1 Locally Weighted Linear Regression

Linear regression can be used as a function approximator. Given a set of memory data points,
known adraining data points, globallinear regression finds a line with parameters such that
the sum of the residual squares from the training data points to the line is minimized. In the
example of Figure 6-1(a), each data point has one input and one output. A global linear regres-

sion finds a line,
Y(x) = Bo+ByX
with By andp,, so that the sum of the residual squares is minimized, i.e.,

N N
(Bo By) = argmin 3 (y;=90x))° = argmin 5 (y; —B,—Byx)°
i=1 i=1

95
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Figure 6-1: (a) A global linear regression (b) A locally weighted linear regression.

By global, we mear}; and 3, are fixed for any possiblg. Obviously, this linear function
approximator would not work for any non-linear functions. That is the reason we have more

interest inlocally weightedinear regression.

Locally weighted regression assumes for any local region around a queryxgpihg relation-
ship between the input and output is linear. To construct the local function approximator, the
local linear parameters can be approximated by minimizingwbehtedsum of residual

squares. For the example as shown in Figure 6-1(b), the weighted sum of residual squares is
N , )
z Wi (Y; —Bo—B1Xi)
i=1

The weightw;, is usually a function of the Euclidean distance fromittietraining data points

to the query|| x4 - % [|. A popular form of the function is Gaussian.

After some algebra which requires no gradient descent, the linear parameters can be obtained

directly by,
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~ -1 6-1

B = (X'WX) (X'WY) (6-1)
whereX is aN-row M-column matrix,N is the number of the training data points in memory,
M is the dimensionality of the input space plldf the input vector of th&'th data point in
memory isx,, thek'th row of X is (1, x1). Y is a vector consisting of the training data points’
outputsWis a diagonal matrix, whodéth element is the square of the weight of & train-

ing data pointw, .

6.2 Efficient locally weighted linear regression

As we have known in last section, the crucial thing to improve the efficiency of locally
weighted linear regression is to speed up the calculatioti\@fXandX"WY SinceWis a diag-

onal matrix X"WXandX"WYcan be transformed as,

N N

X'WX = 5 wxx and X'WY =S wxy,

i=1 i=1

in which vectorx; corresponds to théh row of X, andy; is thei’th element ofY vector.

Recall that the kd-tree is a binary tree, the root of the tree covers the whole input space, hence
contains all the training data points in memory. The root can be split into two nodes: the left
node and the right node, each of them covers a partition of the input space. Furthermore, the
left node can be split into another pair of nodes, so does the right node. Hence, in the second
layer there are four nodes at most. Therefore, to calcBéX of all the memory data points,

we can follow a recursion process,
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T N ) T Neft . NRight _
i=1 i=1 i=1

T T

= (X" WX)Left+ (X WX)Right
NLeflLeft 5 T NLeflRighl 5 T NRightLefl 5 T NRightRight 2 T
= Z WX X, + Z WX X + Z Wi X X + Z W, X X;

i=1 i=1 i=1 i=1

(XTWX)LeftLeft"' (XTWX)LeftRight+ (XTWX)RightLeft+ (XTWX)RightRigh

in which N is the total number of training data points in memory, the suN,@f andNgjgny

as well as the sum o ety efs N eftright NRightLeft @NANRightright are equal tv.

Hence, to calculat¥"WXof the root, or any other node of the kd-tree, we can recursively sum
its two children’sx"WXs. A leaf's X"'WXcan be calculated according to the definition:
T NLeaf 5 1
i=1
However, this recursion process does not bring us any gain in computational efficiency, because
it still visits every training data point in memory. But sometimes we may be able to cutoff the
computation at a node, if all the memory data points within this node have near-identical

weights. In other words,

T NNode 5 T 5 d\lNode TD ) T
X WX)Node = 5 W XX, :V_VNod%Z X% 0= WNoad X X)Nod  (6-2)
i=1 =1
If w,,i=1,..., Ny,qe @re near identical.
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This scenario happens for three reasons:

* All data points within the node are so far from the query veotgrthat their weights are
near zeroes.

» All the data points are close together, providing no room for weight variation.

* The weight function varies negligibly over the partition of the input space covered by the
current node.

Given a certain queryg, and a certain node, to judge if any of these situations happens, we can
rely on the comparison of the lower bound and the upper bound of the weights of the memory
data points within this node. Roughly speaking, if the difference between the upper bound and
the lower bound is smaller than a threshold, then Equation 6-2 holds and the cutoff is permitted.
Further discussion on the threshold will come latter in this section. To calculate the lower
bound and the upper bound of the weights, recall that each node of the kd-tree corresponds to
a hyper-rectangular partition of the input space, thus, given a geiyis straightforward to
calculate the longest and the shortest distances from the query to the concerned hyper-rectan-
gle. Because the weight function is a monotonic function of the distance, it is not difficult to
calculate the lower bound and the upper bound of the weights based on the range of the dis-

tance.

Therefore, to calculat®"WX for all the data points in memory, we can follow the recursive

algorithm listed in Figure 6-2.

Similarly, we can efficiently calculats"WY But be aware that we need to cactieX andX'Y
into each node of kd-tree. When we build a kd-tree, we calciBxeandX"Y for each node,
from the leaves in the bottom, upward to the root. Once this is done, the kd-tree is ready to han-

dle any queries. When a query occurs, we follow the recursion algorithm in Figure 6-2, from
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calc_linear_XtWX(Node, Query)

1. Compute Wmin(Node, Query) and Wmax(Node, Query);
2. If (Wmax - Wmin ) < Threshold
Then
Node->XtWX = 0.25 * (Wmax + Wmin) 2 Node->XtX;
Else
(Node->Left)->XtWX = calc_XtWX(Node->left, Query);
(Node->Right)->XtWX = calc_XtWX(Node->right, Query);
Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;
3. Return result;

}

Figure 6-2: Using divide-and-conquer algorithm to calculate XtWX of a node.

the root downward to the leaves, to calculatEWX)oq as well as XTWY koo, then we can

do the locally weighted linear regression.

Concerning the threshold in Figure 6-2, a simple way is to assign a fixed,cre] see it 5«

- Whhin < €. However, this is dangerous. Suppose a query is far away from all the memory data
points, then even the root node of the kd-tree may satisfy,- Wnmin < €, SO that all the memory

data points have the same weiglis x (W, .+ Wrin) - This means that the prediction of the

output of the query will be equal to the mean value of all the memory data points’ outputs, i.e.,

oM g
yq=DZyiD/N.
0= O

This may be wildly different from the non-approximate linear regression without kd-tree,
which takes the prediction as an extrapolation of the linear function fitting those memory data

points, referring to Figure 6-3,
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Figure 6-3: The danger of a wrong threshold of the cutoff condition.

This problem can be solved by settiagp be a fraction of the total sum of weights involved in
the regressione = 1 x Z ‘ ': W for some small fractionSo we would then like to cutoff

if and only if, W4 — Wi <T X Zk ': Wi - But we do not know the value OZk ';' Wi
before we begin the prediction, and computing it would not be desirable @{b§}. Instead,

we estimate a lower bound OE ‘ ': Wi If, during the computation so far, we have accumu-
lated sum-of-weightsygy,, and if currently we are visiting thodéth node in the kd-tree

and there ardlyoqeWithin this node, then,

N
Wsorar T |\INodeWminS ZK = 1Wk'

Therefore, the improved cutoff condition is to judge if,

Wmax_Wmin<T(WSoFar+ NNodeWmin)' (6'3)

6.3 Technical details

There are several details which we summarize briefly here,
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» To ensure numerical stability of this algorithm, all attributes must be pre-scaled to a hyper-

cube centered around the origin.

* The cost of building the tree @(MZN + NlogN) , whekéis the input space’s dimension-
ality plus 1, andN is the number of data points in memory. It can be built lazily, (growing
on-demand as queries occur) and data points can be adc@(er% x Tree depth time,
though occasional rebalancing may be needed. The tree occﬁ)pM%N) space. Huge
memory savings are possible if nodes with fewer tilbdata points are not split, but instead

retain the data points in a linked list.

* Instead of always searching the left child first it is advantageous to search the node closest to

Xq first. This strengthens thves 5, bound.

« Ball trees [Omohundro, 91] plays a similar role to kd-trees used for range searching, but it is
possible that a hierarchy of balls, each containing the sufficient statistics of data points they

contain, could be used beneficially in place of the bounding boxes we used.

* The algorithms can be modified to permit theearest neighbors &, to receive a weight of

1 each no matter how far they are from the query. This can make the regression more robust.

6.4 Empirical Evaluation

We evaluated five algorithms for comparison.

First of all, we examined prediction on a dataset ABALONE from UCI repository, with 10
inputs and 4177 data points; the task was to predict the number of rings in a shellfish. In these
experiments we removed a hundred data points at random as a testset, and examined each algo-
rithm performing a hundred predictions; all variables were scaled to [0..1], and a kernel width

of 0.03 was used. As Table 6-2 shows, Regular method took almost a second per prediction.
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Table 6-1: Five linear regression algorithms

Regular Direct computation oK"WX asz ‘ ': 1WiXkX-|I(—

Direct computation oKX with an obvious and useful tweak. Whenever

Regzero . 5 _ ) T
w, = 0, do not bother witld(M) operation of addingx X -
Tree The near-exact tree based algorithm. (wa sel0”).
Approx. The approximate tree-based algorithm weith 0.05.
Fast A wildly approximate tree-based algorithm witls 0.5. This gives an

extremely rough approximation to the weight function.

Regzerosaved 20% of thaflree reducedregular’s time by 50%, producing identical predic-

tions (shown by the identical mean absolute error®kefjular, Regzerq and Tree). The
Approx. algorithm gives an eighty-fold saving compared witiee, and theFast algorithm is

about three times faster still. What price Approx. andFastpay in terms of predictive accu-

racy? Compare the standard error of the dataset (2.65 if the mean value of the training data
points’ outputs was always given as the predicted value) agbest error of 1.65Approx.’s

error of 1.67, andrasts error of 1.71. We notice a small but not insignificant penalty relative

to the percentage variance explained.

Table 6-2: Costs and errors predicting the ABALONE dataset

Regular Regzero Tree Approx. Fast
Millisecs per prediction 980 800 460 5.7 1.7
Mean absolute error 1.65 1.65 1.65 1.67 1.71

The above results are from one run on a testset of size 100. Are they representative? Table 6-3
should reassure that reader, containing averages and confidence intervals from 20 runs with dif-
ferent randomly chosen testsets. The bottom row shows that the eAppaix. andFastrel-

ative to theRegular algorithm is confidently estimated as being small.
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Table 6-3: Millisecs to do the predictions, errors of the predictions, and
errors relative to Regular.

Algorithms: Regular Regzero Tree Approx. Fast

Millisecs 982.0+ 2.5 | 814+3.3 468+ 0.8 6.00£0.2 | 1.70+0.04

Abs. Error Mean | 1.534t 0.062 1.534+ 0.062 1.534+ 0.062 1.536+ 0.061 1.556+ 0.063

Excess error

compared whoguiar | 0£0 0£0 0+0 | 0.023 0.0340.032+ 0.032

Table 6-4: Performance on 5 UCI datasets and one robot dataset. All use
locally weighted linear regression with kernel width 0.03

Regular Regzero Tree Approx. Fast
Heart, 3-d, Cost 42.16 32.95 21.23 18.93 14.12
170 datapnts.
StdErr. 0.43 | Error 0.27 0.28 0.28 0.28 0.28
Pool, 3-d, Cost 34.65 33.45 22.33 4.41 0.80
153 datapnts.
StdErr. 2.21 | Error 0.63 0.63 0.63 0.63 0.62
Energy, 5-d, Cost 535.87 484.30 323.37 511 1.10
2344 datapnts,
StdErr. 286.07| Error 11.93 11.93 11.93 15.15 21.60
Abalone,10-d, | Cost 964.00 806.00 469.00 5.80 1.70
4077 datapnts.
StdErr. 2.66 | Error 1.65 1.65 1.65 1.67 1.71
MPG, 9-d, Cost 70.10 55.18 34.35 11.61 2.00
292 datapnts.
StdErr. 6.82 | Error 1.92 1.92 1.92 1.92 1.93
Breast, 9-d, Cost 143.40 126.18 59.88 13.82 6.21
599 datapnts.
StdErr. 0.3 Error 0.03 0.03 0.03 0.03 0.02

We also examined the algorithms applied to a collection of five UCI-repository datasets and one
robot dataset (described in [Atkeson et al., 97]). Table 6-4 shows results in which all datasets
had the same local model: locally weighted linear regression with a kernel width of 0.03 on the

unit-scaled input attributes. Table 6-5 shows the results on a variety of different local polyno-
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Table 6-5: Same experiments, but with a variety of models. The models
were selected by cross-validation depending on the specific domains.

Regular Regzero Tree Approx. Fast
Heart, Kemelregress, Co%t | 37.86 25.84 14.32 13.42 0.50
kw = 0.015 Error 0.22 0.22 0.22 0.22 0.24
Pool,Loc. wgted quad, oSt | 36.05 35.95 25.43 8.12 1.20
regress., kw =0.06 | £ 0.63 0.63 0.63 0.63 0.62
Energy, LW Quad. Cost 546.48 356.12 202.29 25.53 1.60
regress. without cross
terms Error 6.12 6.12 6.12 6.03 7.50
Abalone, LW Linear | CoSt | 958.90 | 717.34 | 203.91 2.35 1.40
regress. ignore Linput, oo 1.33 1.33 1.33 1.33 1.34
MPG, Using all inputs | Cost 66.79 54.18 8.41 1.70 1.20
but only has three in
the dist. metrics Error 1.95 1.95 1.95 1.94 1.92
Breast, Only use five | oSt | 44.06 43.96 2.20 2.20 0.50
outofteninputs. | g 0.01 0.01 0.01 0.01 0.02

mial models. The pattern of computational savings without serious accuracy penalties is con-

sistent with our earlier experiment.

The above examples all have fixed kernel widths. There are datasets for which an adaptive ker-
nel-width (dependent on the curreq) are desirable. At this point, two issues arise: the statis-
tical issue of how to evaluate different kernel widths (for example, by the confidence interval
width on the resulting prediction, or by an estimate of local variance, or by an estimate of local
data density) and the computational cost of searching for the best kernel width for our chosen
criterion. Here we are interested in the computational issue and so we resort to a very simple

criterion: the local Weighti W,
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Table 6-6: Prediction-time optimization of kernel width.

Using fixed Kernel Using variable Using variable Kernel width
width Kernel width Goal weight is 8.0

Ke_rnel Mean Gc_)al Mean Algorithm Mean Millise_cs_ per
width error weight error error prediction
0.25000 0.41 64 0.19 || Regular 0.104 2000
0.12500 0.24 32 0.13 || Regzero 0.104 1400
0.06250 0.24 16 0.11 Tree 0.104 395
0.03125 0.22 8 0.10 || Approx. 0.103 181
0.01562 0.29 4 0.10 Fast 0.107 165
0.00781 0.37 2 0.11

0.00391 0.41 1 0.15

0.00195 0.51 0.5 0.51

We artificially generated a dataset with 2-dimensional inputs, for which a variable kernel width
is desirable. When evaluated on a testset of 100 data points we saw that no fixed kernel width
did better than a mean error of 0.20 (Table 6-6, first two columns). We chose the simplest imag-
inable adaptive kernel-width prediction algorithm: on each top level prediction make eight
inner-loop predictions make eight inner-loop predictions, with the kernel widt‘r?rs?{?,

2'9}; then choose to predict with the kernel width that produces a local WeEimri closest to
some fixed goal weight. For dense data a small kernel width will thus be chosen, and for sparse
data the kernel will be wide. The results are striking: The middle two columns of Table 6-6
reveal that for a wide range of goal-weights a testset error of 0.10 is achieved. At the same time,
as the rightmost three columns show, the approximate methods continue to win computation-

ally.
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6.5 Kd-tree for logistic regression

Recall in Chapter 5, locally weighted logistic regression is to approximate the parameter vector

B in the following formula,

1

P(y, = 1|S,, X,) = = (6-4)
e R AT
To do so, we should follow the Newton-Raphson recursion:
~ - -1
Br+1) = By + (XTWX) X We (6-5)

Suppose there af training data points in memory, each training data point consistsdef a
dimensional input vector and a boolean outputs a N x (1 +d) matrix. Tha’th row of X
matrix is (1, x'). And W is a N x N diagonal matrix, whoséh element iISW; = wizn’i :
whereTt; is a scalar, which is the derivative valugpf  with respect to the current estimate of

B at the queryg:

L et X 1B)
{ 1+ exp(—[ 1, X;r] B)} i B= f”(f)

(6-6)

For example, when a training data point’s inpukiis- [2], while the current estimate ¢ is

[0.5, 1], thenty' is equal t00.07. As mentioned above, théh element ofW diagonal matrix

is also decided by the weight;, , which is a function of the distance fronitthieaining data
pointto the query,. The lastiteme istheratioofy —m to; ,ie. = (y-1)/m .New-
ton-Raphson starts from a random estimateffof , usually we a@ign to be zero vector.
Although it is not strictly proved, usually with no more than 10 loops, the recursive process

comes to a satisfactory estimate [df
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Now, our task is that what information we should cache into the nodes of kd-tree, so that we
can approximate(TWX and X"We quickly without any significant loss of the accuracy. The
most important characteristic of the cached information is that it must be independent from any
specific query, because we want to exploit the same cached information to handle various que-

ries.

Our solution is to cache % Xi % xixiT and y;X, , which are expresset! s
ode i 0 Node

XX, andX"Y, too. ‘o | [ Node

To calculate(XTWX),\,odeof a particular kd-tree node, we can either do it precisely following

its definition:
(X"WX)Node = Wizrri'xi xiT (6-7)
i O Node
whereTt' is the derivative value of the logistic function defined in Equation &:6, is the

weight of the'th data point with respect to the query.

When all the weightsw;, i [0 Node, are near identical, and so are the derivative valugs,

i ONode, we can approximai&X"WX)\,qeas,

(XTWX)Node= W2Tt xx = WX X (6-8)
i ONode
There are three scenarios that the weighitsyithin a kd-tree node, are near identical, referring
to Section 6-2. Hence, the cutoff condition and the threshold discussed in Section 6-2 should
be employed for logistic regression, too. In other words, to make Equation 6-8 hold, the con-

cerned kd-tree node should satisfy:

Wmax_Wmin< T(WSoFar"' NNodeWmin) (6-9)




Chapter 6: Using Kd-trees for Various Regressions 109

y=1/(1+exp(-x)
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Figure 6-4: (a) The derivative function of logistic, which has symmetric two
tails close to zero and a peak in the center. (b) The logistic function which is

monotonic between 0 and 1.

To tell if the derivative valuesy’, i 0 Node, do not differ too much, it looks that we can use

a simple fixed thresholdy:
T['max_ T['min <£€

However, it is not easy to find the upper bound and lower bourg oReferring to Figure 6-

4 (a) and (b), if Equation 6-10 holds,
Tmax™ Mmin < €1 (6-10)

must be small, too. Since logistic function is monotonic, usu-

the gap betweert ., amd;,
ally we can rely on the calculation of the logistic function values at the corners of the hyper-
rectangle region in the input space represented by the kd-tree node,mg find 1,;and :

Therefore, given a specific query in conjunction with a certain estimate pf to calculate
(XTWX ) otefficiently, we can recursively sum the ti@WXs of the child nodes from the root

on the top of the kd-tree downward to the leaves, in a way similar to that of locally weighted
linear regression described in Figure 6-2. Sometimes the recursion can be cut off if both the two
conditions in Equation 6-9 and 6-10 are satisfied, therxfhw/X of that node can be approxi-
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mated asv’TtX X . Thus, we need to cadtieX into each node of the kd-tree before any query

OCcCurs.

More interestingly, notice that in Figure 6-4(a), the derivative of logistic function with respect
to the scalar|1, xT]B , has a pair of long tails close to zero. That means, when the scalar
[1, xg] B deviates from the origin, the derivative valug,approaches zero quickly; and when
theTt,,,,4 Value of a kd-tree’s node is near zero, it is unnecessary to calculaXe ¥ matrix

of that node, because it must be a zero matrix accordifg 't/ X) node< Wzﬁ'ma)g X" X)Nok

Now, let's consideiX"Weof the training data points within a kd-tree’s node, according to its

definition,

(XTWe)noge = XTWLE x w1
ode = %( DT['Dq\lode i IIT[IDT[i b
5 (6-11)
= Wi YiXi — W; TG X;
ONode i ONode
In case the following two conditions are satisfied: (1) all the individual weights,[] Node,
are near identical, (2) all the predictioms, i L Node, are near identicaX "Wecan be approx-

imated as,

T __2 __2 —
(X We)Node~ WNode YiXi =WnodeINode g X
i ONode i ode

(6-12)
= V_VilodeXY_ v\42\Iode1_-[Node]'TX

Concerning the first cutoff condition related to the weights, we can use Equation 6-9 again to
tell if the situation happens. Concerning the second cutoff condition about the predictin

can pre-define a fixed threshotd, to see if the following relationship is satisfied,

Tthax™ Min <€

2 (6-13)
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This cutoff condition is the same as Equation 6-10; furthermore, usually threshoth be
assigned to be equal to threshalgd Referring to Figure 6-4(b), the function curve of
becomes flat whef, x;] B deviates from the origin. Hence, there should be many chances for
Equation 6-13 to hold. To find,,, andT,,;,, we can calculate tha values at the corners of

the hyper-rectangular partition of the input space which the kd-tree node corresponds to.

In summary, to quickly approximaté" WX and X"We first of all, we should calculat&"X,

XTX, andXTY for each kd-tree node respectively, and cache them into each node in conjunction
with the number of data points within the noaeym, split._ d  andsplit_ v . When a query
occurs, we follow a recursive algorithm similar to that of Figure 6-2, except that the cutoff con-
ditions are different. The pseudo-code of the recursive algorithm for logistic regression is listed

as Figure 6-5.

6.6 Empirical evaluation

In this section, we want to evaluate the performance of cached kd-tree’s locally weighted logis-
tic regression in two aspects: (1) how fast is it in comparison with the non-approximate locally

weighted logistic regression? (2) how much does it lose in the accuracy?

We used again the four datasets from the UCI data repository which have been used in Section
4.4. Similar to the experiments we have done in Section 4.4, we shuffled the datasets five times
each. Every time, we selected one third of the data points as the testing dataset, used the remain-
ing two-thirds of the dataset as the training dataset. For every data point in the testing dataset,
we assigned the input as a query, used locally weighted logistic regression based on the training
dataset to predict its output, and compared the prediction with the real output of the data point
to see if locally weighted logistic regression did correct job. We defined the error rate as the

ratio of the number of wrong predictions to the number of total testing data points. Hence, the
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calc_logistic_XtWX(Node, Query, est_Beta, W_SoFar)

1. Compute Wmin(Node, Query) and Wmax(Node, Query);
2. Computer dev_Pi_min(Node, est_Beta), dev_Pi_max(Node, est_Beta);
3. If (Wmax - Wmin ) < T * (W_SoFar + Node->num * Wmin)
and ( Pi_max - Pi_min ) < €
Then Node->XtWX = 0.125 * (Wmax + Wmin)

* (dev_Pi_max + dev_Pi_min) * Node->XtX;

2

Else
(Node->Left)->XtWX =
calc_logistic_XtWX(Node->left, Query, est_Beta, W_SoFar);
(Node->Right)->XtWX = calc_logistic_XtWX(Node->right, ...);
Node->XtWX = (Node->Left)->XtWX + (Node->Right)->XtWX;
Update W_SoFar to include 0.25 * (Wmax + Wmin) 2

4, Return Node->XtWX;

calc_logistic_XtWe(Node, Query, est_Beta, W_SoFar)

1. Compute Wmin(Node, Query) and Wmax(Node, Query);

2. Computer Pi_min(Node, est_Beta), Pi_max(Node, est_Beta);

3. If (Wmax - Wmin ) < T * (W_SoFar + Node->num * Wmin)
and ( Pi_max - Pi_min ) < €
Then Node->XtWe = 0.25 * (Wmax + Wmin) 2% ( Node->XtY

- 0.5 * (Pi_max + Pi_min) * Node->1tX );
Else

(Node->Left)->XtWe =

calc_logistic_XtWe(Node->left, Query, est_Beta, W_SoFar);
(Node->Right)->XtWe = calc_logistic_XtWX(Node->right, ...);
Node->XtWX = (Node->Left)->XtWe + (Node->Right)->XtWe;
Update W_SoFar to include 0.25 * (Wmax + Wmin) ;

4. Return Node->XtWe;

Figure 6-5: Using the cached information of kd-tree to quickly approximate the
XtwWX and XtWe for locally weighted logistic regression.
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lower the error rate, the more accurate the locally weighted logistic regression algorithms are.
Since for every raw UCI dataset, we shuffled it for five times, thus we got five error rates. In
Table 6-7, we listed the mean values of the error rates in conjunction with their standard devi-

ations. In this way, we want to reassure the readers the representativeness of our results.

The first two rows of Table 6-7 are the performance of the regular locally weighted logistic

regression without the help of cached kd-tree. As we expected, the error rates (in the second
row) are exactly the same as those in Table 4-1. The first row recorded the milliseconds it took
the regular locally weighted logistic regression to do one prediction for each datasets. As we
have noticed, the computational cost varies a lot from 119.20 to 880.20. That is because the
datasets have various dimensionalities of the input space which range from 6 to 34, also

because the sizes of the training datasets differ a lot from 230 to 512.

Table 6-7: Performance on 4 UCI datasets

lonos. Pima Breast Bupa
234 datapnts| 512 datapnts| 191 datapnts| 230 datapnts
34 dim 8 dim 9dim 6 dim
Non- Cost 880.2Gt 5.63 | 263.2G: 1.48 | 119.2Gt 7.85 | 548.1G 4.47
apPpProX-| Error (%) | 13.0£ 0.4 22.5:2.8 3.1+0.7 31.0£ 2.7
Cost 906.2Gt 11.19| 5.40+0.13 8.28+ 1.09 5.03+ 0.04
Kd-tree
Error (%) 7.9£2.8 23.4+ 3.0 3.1£1.2 31.7+2.2
Cost gain 0.971 48.75 36.36 103.22
Accuracy loss -38.93% 4.00% 0.0% 2.26%

The third and the fourth rows show the performance of the cached kd-tree’s locally weighted
logistic regressio% We expected that the improved logistic regression was much faster than
the regular one while it did not lose too much in the accuracy. To make the comparison easier

to follow, in the fifth row we calculated the multiplications of the costs of the regular logistic




114 Chapter 6: Using Kd-trees for Various Regressions

regression to those of the kd-tree’s. As we see in the table, “Bupa” dataset, which is of low
dimensionality with fairly small number of data points, benefited the most from the cached kd-
tree: the efficiency improved more than 100 times. “Breast” dataset has a medium dimension-
ality and the number of data points is small. But still, the cached kd-tree improved the efficiency

of locally weighted logistic regression 36 times. “Pima” consists of more data points, so it is
not surprising that its multiplication is higher than that of “Breast™s. “lonos.” is a special
dataset because its dimensionality is high. In this case, cached kd-tree does not help to save the

computational cost, instead it slightly enlarges the cost.

However, an interesting thing is that cached kd-tree improved the accuracy of locally weighted
logistic regression applied to the “lonos.” dataset: the error rate dropped from 13.0% to 7.9%,
in other words, the accuracy improved 38.93%, as shown in the last row in the table. Other

datasets like “Pima” and “Bupa” did lose some accuracy, but not significantly.

6.7 Summary

In Chapter 5, we explored the use of kd-trees with some cached information, and we found
improvements in the efficiency of kernel regression. In this chapter, we discussed how to cache
different information into the kd-tree’s node so as to improve the efficiency of locally weighted
linear regression and locally weighted logistic regression. We found that for different memory-
based learning, the cached information is different. Consequently, the cutoff thresholds should
also be modified. Cached kd-trees can help both locally weighted linear regression and locally
weighted logistic regression improve their computational efficiency, and at the same time not
sacrifice their accuracy too much. This contribution is more significant when the size of the

training dataset becomes larger. The limitation of cached kd-tree is that when the input space’s

1. There are several control knobs for cached kd-tree’s locally weighted logistic regression: Kernel width
(kw), the fraction parameter for the weight’s cutoff),(the fixed thresholds for the derivative and the
prediction €1 ande2). We found that the prediction accuracy is not very sensitivel tande2, so we set
both of them as 0.01.is also assigned to be 0.01. But Kernel widkiw) varies from dataset to dataset,
tuned up by cross-validation.
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dimensionality is higher than 10, a kd-tree cannot help to improve the efficiency too much. Fur-

ther research needs to be done combat the curse of dimensionality.
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Chapter 7

Feature Selection

Feature selection is not used in the system classification experiments, which will be discussed
in Chapter 8 and 9. However, as an autonomous system, OMEGA includes feature selection as

an important module.

7.1 Introduction

A fundamental problem of machine learning is to approximate the functional relatici@ghip
between an inpuk = { Xy, X5, ... Xy} and an outpygtbased on a memory of data points,
{X;,Y;},i=1, ..., N, usually theXj’s are vectors of reals and th¢s are real numbers. Some-
times the outpuY is not determined by the complete set of the input feat{isgsx,, ... Xy} ,
instead, it is decided only by a subset of th{avql), X(2) e x(m)} , Whare M . With suf-
ficient data and time, it is fine to use all the input features, including those irrelevant features,
to approximate the underlying function between the input and the output. But in practice, there
are two problems which may be evoked by the irrelevant features involved in the learning pro-

cess.

1. The irrelevant input features will induce greater computational cost. For example, using
cachedkd-trees as we discussed in last chapter, locally weighted linear regression’s com-

putational expense B(n? + m? log N)for doing a single prediction, wheteis the num-

117
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ber of data points in memory amdis the number of features used. Apparently, with more
features, the computational cost for predictions will increase polynomially; especially
when there are a large number of such predictions, the computational cost will increase

immensely.

2. The irrelevant input features may lead to overfitting. For example, in the domain of med-
ical diagnosis, our purpose is to infer the relationship between the symptoms and their cor-
responding diagnosis. If by mistake we include the patient ID number as one input feature,
an over-tuned machine learning process may come to the conclusion that the iliness is

determined by the ID number.

Another motivation for feature selection is that, since our goal is to approximate the underlying
function between the input and the output, it is reasonable and important to ignore those input
features with little effect on the output, so as to keep the size of the approximator model small.
For example, [Akaike, 73] proposed several versions of model selection criteria, which basi-

cally are the trade-offs between high accuracy and small model size.

The feature selection problem has been studied by the statistics and machine learning commu-
nities for many years. It has received more attention recently because of enthusiastic research
in data mining. According to [John et al., 94]'s definition, [Kira et al, 92] [Almuallim et al., 91]
[Moore et al, 94] [Skalak, 94] [Koller et al, 96] can be labelled as “filter” models, while [Caru-
ana et al., 94] [Langley et al, 94]'s research is classified as “wrapped around” methods. In the
statistics community, feature selection is also known as “subset selection”, which is surveyed
thoroughly in [Miller, 90].

The brute-force feature selection method is to exhaustively evaluate all possible combinations
of the input features, and then find the best subset. Obviously, the exhaustive search’s compu-

tational cost is prohibitively high, with considerable danger of overfitting. Hence, people resort
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1. Shuffle the data set and split into a training set of 70% of the
data and a testset of the remaining 30%.

2. Letjvary among feature-set sizes: j=(0,1,2,...,m)

a. Let fs;= best feature set of size j, where “best” is mea-
sured as the minimizer of the leave-one-out cross-valida-
tion error over the training set.

b. Let Testscore;=the RMS prediction error of feature set fs;
on the test set.

End of loop of (j).

3. Select the feature set fs/-for which the test-set score is min-
imized.

Figure 7-1: Cascaded cross-validation procedure for finding

the best set of up to m features.
to greedy methods, such as forward selection. In this paper, we propose three greedier selection
algorithms in order to further enhance the efficiency. We use real-world data sets from over ten

different domains to compare the accuracy and efficiency of the various algorithms.

7.2 Cross Validation vs. Overfitting

The goal of feature selection is to choose a subget of the complete set of input features
X = { X, Xy, ... » X} SO thatthe subset; can predict the outpulith accuracy comparable
to the performance of the complete input Xeaind with great reduction of the computational

cost.

First, let us clarify how to evaluate the performance of a set of input features. In this chapter we
use a very conservative form of feature set evaluation in order to avoid overfitting. This is
important. Even if feature sets are evaluated by testset cross-validation or leave-one-out cross
validation, an exhaustive search of possible feature-sets is likely to find a misleadingly well-
scoring feature-set by chance. To prevent this, we useabeaded cross-validatiggrocedure

in Figure 7-1, which selects from increasingly large sets of features (and thus from increasingly
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large model classes). The score for the best feature set of a given size is computed by an inde-

pendent cross-validation from the score for the best size of feature set.

Two notes about the procedure in Figure 7-1: First, the choice of 70/30 split for training and
testing is somewhat arbitrary, but is empirically a good practical ratio according to more
detailed experiments. Second, note that Figure 7-1 does not describe how we search for the best

feature set of sizein Step 2a. This is the subject of Section 7-3.

To evaluate the performance a feature selection algorithm is more complicated than to evaluate
a feature set. This is because in order to evaluate an algorithm, we must first ask the algorithm
to find the best feature subset. Second, to give a fair estimate of how well the feature selection
algorithm performs, we should try the first step on different datasets. Therefore, the full proce-
dure of evaluating the performance of a feature selection algorithm, which is described in Fig-
ure 7-2, has two layers of loops. The inner loop is to use an algorithm to find the best subset of

features. The outer loop is to evaluate the performance of the algorithm using different datasets.

7.3 Feature selection algorithms

In this section, we introduce the conventional feature selection algorithm: forward feature
selection algorithm; then we explore three greedy variants of the forward algorithm, in order to

improve the computational efficiency without sacrificing too much accuracy.

7.3.1 Forward feature selection

The forward feature selection procedure begins by evaluating all feature subsets which consist
of only one input attribute. In other words, we start by measuring the Leave-One-Out Cross
Validation (LOOCYV) error of the one-component subs@ts}, {X5}, ..., {Xu}, whereM is the

input dimensionality; so that we can find the best individual feaXyfg,
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Collect a training data set from the specific domain.
Shuffle the data set.
Break it into P partitions, (say P = 20)
For each partition (/=0, 1, ..., P-1)
a. Let OuterTrainset(i) = all partitions except .
b. Let OuterTestset(i) = the rth partition
c. Let InnerTrain(i) = randomly chosen 70% of the Outer-
Trainset(i).
d. Let InnerTest(i) = the remaining 30% of the OuterTrain-
set(i).
e. Forj=01,... m
Search for the best feature set with j components,
fsj.using leave-one-out on InnerTrain(i)
Let InnerTestScorej; = RMS score of fs;; on InnerT-
est(i).
End loop of ().
f. Select the fs; with the best inner test score.
g. Let OuterScorej= RMS score of the selected feature set
on OuterTestset(i)
End of loop of  (i).
5. Return the mean Outer Score.

PonNE

Figure 7-2: Full procedure for evaluating feature
selection of up to  m attributes.

Next, forward selection finds the best subset consisting of two compoeqjtand one other
feature from the remaininiyl - 1 input attributes. Hence, there are a totaM# 1 pairs. Let’s

assumeXy) is the other attribute in the best pair besgg

Afterwards, the input subsets with three, four, and more features are evaluated. According to
forward selection, the best subset wittfieatures is then-tuple consisting 0Ky, X(2), .-, Xm),

while overall the best feature set is the winner out of allltheteps. Assuming the cost of a
LOOCYV evaluation withi features iC(i), then the computational cost of forward selection

searching for a feature subset of sizeut of M total input attributes will be
MC(1)+(M-1)C(2)+...+ (M—=m+1)C(m).
For example, the cost of one prediction with one-nearest-neighbor as the function approxima-

tor, using a kd-tree witlinputs, isO(j log N) whereN is the number of datapoints. Thus, the
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cost of computing the mean leave-one-out error, which invdiWpeedictions, i<O(j N log N).

And so the full cost of feature selection using the above formﬁ)éni% M N log N)

To find the overall best input feature set, we can also employ exhaustive search. Exhaustive
search begins with searching the best one-component subset of the input features, which is the
same in the forward selection algorithm; then it goes to find the best two-component feature
subset which may consist ahy pairs of the input features. Afterwards, it moves to find the
best triple out of all the combinations of any three input features, etc. It is straightforward to

see that the cost of exhaustive search is the following:

MC(1) + EI\Z/IEb(Z) - %qu)

Compared with the exhaustive search, forward selection is much cheaper.

However, forward selection may suffer because of its greediness. For exarXp¢isithe best
individual feature, it does not guarantee that eifxyy, X2} or {X(1), X3)} must be better than
{X(2) X3)}- Therefore, a forward selection algorithm may select a feature set different from that
selected by exhaustive searching. With a bad selection of the input features, the pré&giction

of a querqu = {X3, X5 ... Xyt may be significantly different from the tm@

7.3.2 Three Variants of Forward Selection

In this subsection, we will investigate the following two questions based on empirical analysis

using real world datasets mixed with artificially designed features.

1. How severely does the greediness of forward selection lead to a bad selection of the input

features?

2. If the greediness of forward selection does not have a significantly negative effect on

accuracy, how can we modify forward selection algorithm to be greedier in order to
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improve the efficiency even further?

We postpone the first question until the next section. In this chapter, we propose three greedier
feature selection algorithms whose goal is to select no morentfaatures from a total d¥A

input attributes, and with tolerable loss of prediction accuracy.

Super Greedy Algorithm

Do all the 1-attribute LOOCV calculations, sort the individual features according to their
LOOCYV mean error, then take tinebest features as the selected subset. We thivs clampu-
tations involving one feature and one computation involnimfgatures. If nearest neighbor is

the function approximator, the cost of super greedy algoritldg(l& + m) N log N)

Greedy Algorithm

Do all the 1-attribute LOOCVs and sort them, take the best two individual features and evaluate
their LOOCYV error, then take the best three individual features, and so onnfetkures have

been evaluated. Compared with the super greedy algorithm, this algorithm may conclude at a
subset whose size is smaller tharbut whose inner testset error is smaller than that ohthe
component feature set. Hence, the greedy algorithm may end up with a better feature set than
the super-greedy one does. The cost of the greedy algorithm for nearest neigb§ivt ilsmz)

N log N)

Restricted Forward Selection (RFS)

1. Calculate all the 1-feature set LOOCYV errors, and sort the features according to the cor-
responding LOOCYV errors. Suppose the features ranking from the most important to the

least important are X

@ %@y X(m)

2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first rm@jd,

along with another feature, eith&y), or X3), or any other one untKyy , 5 There are
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M/ 2 of these pairs. The winner of this round will be the best 2-component feature subset
chosen by RFS.

3. Calculate the LOOCYV errors dfl/3  subsets which consist of the winner of the second
round, along with the otheM/3 features at the top of the remaining rank. In this way,
RFS will select its best feature triple.

4. Continue this procedure, until RFS has found therbestmponent feature set.

5. From Step 1 to Step 4, RFS has foundeature sets whose sizes range frbmo m. By

comparing their LOOCYV errors, RFS can find the best overall feature set.

The difference between RFS and conventional Forward Selection (FS) is that at each step to
insert an additional feature into the subset, FS considers all the remaining features, while RFS
only tries a part of them which seem more promising. The cost of RFS for nearest neighbor is

O(M m N log N)

For all these varieties of forward selection, we want to know how cheap and how accurate they
are compared with the conventional forward selection method. To answer these questions, we

resort to experiments using real world datasets.

7.4 Experiments

In this section, we compare the greedy algorithms with the conventional methods empirically.
We run ten experiments; for each experiment, we try two datasets with different input dimen-

sionalities; and for each dataset, we use three different function approximators.

To evaluate the influence of the greediness on the accuracy and efficiency of the feature selec-
tion process, we use twelve real world datasets from StatLib/CMU and UCI's machine learning
data repository. These datasets come from different domains, such as biology, sociology, robot-

ics, etc. The datasets each contain 62 to 1601 points, and each point consists of an input vector
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and a scalar output. The dimensionality of the input varies from 3 to 13. In all of these examples

we setm (the maximum feature set size) to be 10.

Table 7-1: Preliminary comparison of ES vs. FS

Domain 20Fold Mean Errors Time Cost Selected Featufres

(dim)

ES FS ES/F$S ES F§ ES/ES E N

U)
1“8}

Crab (7) || 0.415 0.469 0.885 35644 522 68.28 ARG Al
Halibut (7)|| 57.972 52.26}f 1.109 61759 713 86.42 B,G,G ADEG
Irish (5) 0.863 | 0.905 0.954|| 138088 1142 12091 ACE A,D
Litter (3) || 0.780 | 0.868 0.899 4982 11y 4258 AB|C AB,C

Our first experiment demonstrates that Exhaustive Search (ES) is prohibitively time-consum-
ing. We choose four domains with not-too-large datasets and limited input dimensionality for
this test. Referring to Table 7-1, even for these easy cases, ES is far more expensive than the
Forward Selection algorithm (FS), while it is not significantly more accurate than FS. However,
the features selected by FS may differ from the result of ES. That is because some of the input

features are not mutually independent.

Our second experiment investigates the influence of greediness. We compare the three greedier
algorithms, Super Greedy, Greedy and Restricted Forward Selection (RFS), with the conven-
tional FS in three aspects:(1) The probabilities for these algorithms to select any useless fea-
tures, (2) The prediction errors using the feature set selected by these algorithms, and (3) The

time cost for these algorithms to find their feature sets.

For example, if a raw data file consists of three input attributed/ W and an outpuy, we
generate a new dataset consisting of more input featured, W, cU, cV cW Ry, Ry,..., Ry,

and the output, in which cU, cV andcW are copies ofJ, V andW but corrupted with 20%
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noise, whileR; to R, are independent random numbers. The chance that any of these useless

features is selected can be treated as an estimation of the probability for the certain feature

selection algorithm to make a mistake.

Table 7-2: Greediness comparison

Domain | Funct. # Corrupt / Total Corrupts # Noise / Total Noise
(dim) Apprx. Super| Greedy RFS FS Super Greedy RFS |FS
Nearest| 023 0.12| 010 012 010 005 005 0.06
B‘(’f%’;at LocLin || 031 | 008 | 017 018 000 0.0 0.05 0.0
GlbLin || 031 = 023 | 0.15 000 000 000 0.00 040
Nearest | 023  019| 021 017 020 020 023 0.35
Bflssf;’” LocLin | 015 | 015 | 012/ 015 030 0.30 0.30 033
GlbLin || 015 012 | 0.15 023 040 030 0.30 040
Nearest | 0.29 ~ 029| 029 029 030 013 017 0.20
C(r%b LocLin | 029 | 0.14°| 021 021 040 040 020 0.15
GlbLin || 029 = 014 | 029 024 040 030 0.15 0417
Nearest| 057  057| 0.14 043 010 0.10 010 0.10
H"’(‘gl))“t LocLin || 0.43 021 | 004 024 020 010 0.10 020
GlbLin || 036 029 | 000 014 025 010 0.20 0.10
Nearest| 0.60  0.60| 0.00 000 020 020 010 0.10
'”g)‘ LocLin || 0.40 = 040 | 0.38 038 030 030 0.15 025
GlbLin || 060 = 060 | 0.30 040 030 030 0.40 025
Nearest| 0067 0.33| 033 033 030 000 005 0.07
Li(t;r LocLin || 0.67 | 033 | 033 033 030 000 005 007
GlbLin || 033 = 033 | 000 043 050 020 0.35 050
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Table 7-2: Greediness comparison

Domain | FEunct. # Corrupt / Total Corrupts # Noise / Total Noise
(dim) ApprX. Super | Greedy RFS FS Super Greedy RFS |FS
Nearest 0.44 0.44 041 0.44 0.00 0.00 0.07 Q.05
M(gg)’ LocLin || 0.44 033 | 022 030 000 000 0.10 023
GlbLin || 033 028 | 022 017 000 000 0.20 0.20
Nearest | 0.33 ~ 0.00| 025 025 030 0.10 015 0.15
N“(%S)ing LocLin || 0.33 = 008 | 0.33 022 040 025 0.20 0.20
GlbLin || 033 = 025 | 0.33 025 040 0.35 0.20 0.30
Nearest| 031 000/ 0.0 000 015 0.0 0.0 0.00
P'(aS‘):eS LocLin || 0.38 024 | 0.16 040 020 010 0.00 0.10
GlbLin || 025 025 | 023 031 035 015 0.15 025
Nearest 0.29 0.00 0.04 0.04 0.25 0.10 013 Q.17
S'(e7§’p LocLin || 0.43 = 011 | 0.03 000 020 003 0.08 0.0
GlbLin || 026 = 021 | 026 029 040 015 0.18 040
Nearest 0.33 0.17 0.17 0.1 0.30 0.00 0.03 Q.03
Szgre LocLin || 058 = 0.00 | 0.00 000 015 0.00 0.00 0.05
GlbLin || 050 @ 033 | 022 033 015 0.00 0.08 0.8
Nearest| 0.15  0.15 0.08 023 040 020 015 0.25
C\Q’Hhi(tleé) LocLin || 0.15  0.04 | 0.2 002 004 010 0.27 027
GlbLin || 012 = 014 | 0.08 004 040 035 025 025
Mean | Nearest| 0.37| 027 017 021 023 010 011 0.13
overall ™= o in | 038 | 048 | 017] 020 024 013 013 048
twelve
datasets GloLin || 0.30 | 0.26 | 0.19| 023 029 018 021 028
TOTAL i 035 024 | 018 021 025 014 015 0.20
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As we observe in Table 7-2, FS does not eliminate more useless features than the greedier com-
petitors except the Super Greedy one. However, the greedier an algorithm is, the more easily it

is confused by the relevant but corrupted features.

Since the input features may be mutually dependent, the different algorithms may find different
feature sets. To measure the goodness of these selected feature sets, we calculate the mean 20-
fold score. As described in Section 7-2, our scoring is carefully designed to avoid overfitting,
so that the smaller the score, the better the corresponding feature set is. To confirm the consis-
tency, we test the four algorithms in all the twelve domains from StatLib and UCI. For each
domain, we apply the algorithms to two datasets. Both of the datasets are generated based on
the same raw data file, but with different numbers of corrupted features and independent noise.
And for each dataset, we try three function approximators, nearest neighbor (Nearest), locally
weighted linear regression (LocLin) and global linear regression (GlbLin). For the sake of con-
ciseness, we only list the ratios. If a ratio is close to 1.0, the corresponding algorithm’s perfor-
mance is not significantly different from that of FS. The experimental results are shown in
Table 7-3. In addition, we also list the ratios of the number of seconds consumed by the greedier

algorithms to that of FS.

First, we observe in Table 7-3 that the three greedier feature selection algorithms do not suffer
great loss in accuracy, since the average ratios of the 20-fold scores to those of FS are very close
to 1.0. In fact, RFS performs almost as well as FS. Second, as we expected, the greedier algo-
rithms improve the efficiency. Super greedy algorithm (Super) is ten times faster than forward
selection (FS), while greedy algorithm (Greedy) seven times, and the restricted forward selec-
tion (RFS) three times. Finally, restricted forward selection (RFS) performs better than the con-

ventional FS in all aspects.

To further confirm our conclusion, we do the third experiment. This time, we insert more inde-

pendent random noise and corrupted features to the datasets. For example, if the original data
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Table 7-3: Greediness comparison

Domain | Eunct. 20Fold() / 20Fold(FS) Cost() / Cost(FS)
(dim) Apprx. Super Greedy RFS Super Greedy RAS
Nearest| 0.975| 0.969| 00918 0095  0.126  0.380
B‘(’f%’;at LocLin || 1.080 | 1.015 @ 0.973| 0062  0.092  0.287
GlbLin || 0.984 | 00981 | 00966 0084  0.109  0.247
Nearest| 0.876] 0.872| 0881 0.105 0.145  0.3B9
Bas;;)” LocLin || 1.091 | 1.091 @ 0.969| 0.058  0.080  0.270
GlbLin || 1.059 | 1.052 | 1.068| 0.084 0127  0.287
Nearest 1.107 1.039 0.973 0.123 0.149 0.3b8
Cr(a;)’ LocLin || 1.121 | 1.093 @ 1.024| 0.095  0.128  0.349
GlbLin || 1.123 | 1.101 | 0.957 0.079 0116  0.319
Nearest| 1.089| 1.108| 1.051 0.133  0.163  0.376
H"’(‘%)”t LocLin || 1.395 | 1.322 @ 1.198] 0079  0.130  0.312
GlbLin || 1.073 | 1.018 | 1.022] 0079  0.137  0.273
Nearest| 1.132| 1.072| 00954 0127 0.171  0.343
'”?Sh) LocLin || 1.039 | 0.979 @ 0984 008  0.137  0.316
GlbLin || 0.981 | 00981 | 00992 0096 0.180  0.373
Nearest| 1.370| 1.014| 1.000 0.145 0222  0.419
Lit(t,o?)r LocLin || 1.301 | 0.960 @ 0989 0.099  0.179  0.361
GlbLin || 0.886 | 0902 | 0930 0111 0179  0.410
Nearest| 1.384| 1.250 | 1.084 0112 0.165  0.308
M?g) LocLin || 1.550 | 1.524 @ 1.081 0.074  0.093  0.271
GlbLin || 1.295 | 1.317 | 1.014 0086  0.142  0.298
Nearest| 1.315| 1.128| 0998 0102 0.172  0.327
N”(rﬁs)ing LocLin || 1.171 | 1.106 @ 1.063] 0.072  0.121  0.260
GlbLin || 1.044 | 1.043 | 1.002 0.092  0.137  0.267
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Table 7-3: Greediness comparison
bomain | Eunct. 20Fold() / 20Fold(FS) Cost() / Cost(FS)
(dim) ApprX. Super Greedy RFS Super Greedy RAS
Nearest| 1.367| 1.000| 1.000 0.118  0.154  0.364
P'(ages LocLin || 0.998 | 1.017 @ 0993 0071  0.112  0.316
GlbLin || 1.041 | 1.044 | 1.064 0.091 0130  0.265
Nearest| 1.098] 0.883| 00981 0.143 0.165  0.361
S'?f)p LocLin || 1.170 | 0.852 @ 0922 0.090  0.113  0.273
GlbLin || 0.918 | 0925 | 1.026| 0.096  0.122  0.276
Nearest || 1.142| 00952| 1.000 0.161 0178  0.424
St(rg;e LocLin || 1.172 | 0.987 @ 1.003] 0.068  0.108  0.293
GlbLin || 1.004 | 00992 | 00993 0093 0.166  0.310
Nearest| 0.854| 0.718| 0906 0.100  0.138  0.288
Cvglri(tle?;) LocLin || 1.259 = 0.821 | 0.931 0077 0.088  0.254
GlbLin || 0.940 | 00942 | 00910, 0.098  0.109  0.291
Mean Nearest 1.142 1.001 0.974 0.122 0.163 0.3pb5
overall ™ ooiin || 1.196 | 1064 | 1011 0077 0115 029
twelve
datasets| GlbLin | 1.029 = 1.025 = 0.995| 0.091  0.138  0.301
TOTAL i 1122 | 1.030 | 0995 0097 0.138 0.321

set consists of three input featur@d,V,W}, the new artificial data file contaidq¥), cU, V, cV,
cU *cV, W, cW, cV * cW, R.., Rig}. The results are listed in Table 7-4 and Table 7-5.

Comparing Table 7-2 with Table 7-4, we notice that with more input features, the probability
for any corrupted feature to be selected remains almost the same, while that of independent
noise reduces greatly. Comparing Table 7-3 with Table 7-5, with more input features, (1) the

prediction accuracies of the feature sets selected by the variety of the algorithms are roughly
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Table 7-4: Greediness comparison with more inputs

# Corrupt / Total Corrupts # Noise / Total Noise
Funct.

Apprx. Super| Greedy RFS FS| Sup

elreed| pes | Es

Nearest|| 0.29 0.33 030 038 004 004 0.03 0J04

Mean I oolin || 038 | 038 | 025 041 005 003 002 003
Values
GlbLin 0.38 0.25 0.29 0.16 0.05 0.05 0.08 0.07
TOTAL - 0.35 0.32 0.28| 0.32| 0.05 0.04 0.04 0.05
Table 7-5: Greediness comparison with more inputs
Funct. 20Fold( ) / 20Fold(FS) Cost() / Cost(FS)
Apprx. Super| Greedyy RFS| Super Greedy RES
Nearest 1.197 1.056 1.00L 0.080 0.080 0.282
Mean [ octin || 1.202 | 1.0s9 | 1.04d 0071 0084 0281
Values
GlbLin 1.032 1.026 | 0.998| 0.079 0.104 0.294
TOTAL - 1.144 1.047 1.013| 0.077 0.088 0.286

consistent, because the 20fold scores in the two tables are almost the same; (2) the efficiency

ratio of the greedier alternatives to FS is a little higher.

In summary, in theory the greediness of feature selection algorithms may lead to great reduc-
tion in the accuracy of function approximating, but in practice it does not happen quite often.
The three greedier algorithms we propose in this paper improve the efficiency of the forward
selection algorithm, especially for larger datasets with high input dimensionalities, without sig-
nificant loss in accuracy. Even in the case the accuracy is more crucial than the efficiency,

restricted forward selection is more competitive than the conventional forward selection.
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7.5 Summary

In this chapter, we explore three greedier variants of the forward selection method. Our inves-
tigation shows that the greediness of the feature selection algorithms greatly improves the effi-
ciency, while does not corrupt the correctness of the selected feature set so that the prediction
accuracy using the selected features remains satisfactory. As an application, we apply feature

selection to a prototype system of Chinese and Japanese handwriting recognition.
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Driving Simulation

The goal of this experiment is to distinguish different people’s driving styles. The data was col-
lected from five people using a simulator. The simulator, shown in Figure 8-1, was designed by
M.C.Nechyba.

Figure 8-1: Driving simulator interface. (Courtesy M.C.Nechyba)

133
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Figure 8-2: The simulator’s road trajectory is generated in a way illustrated by (a), in
which the curvature of the road changes abruptly. However, a high way in the real world
is actually designed in the style of (b), in which the curvature changes smoothly.

8.1 Experimental data

The human operator has the full control over steering (horizontal mouse position), the brake
(left mouse button) and the accelerator (right mouse button). Although the dynamics of the sim-
ulator strictly follows the form of some real vehicles [Nechyba et al, 98, (a) and (b)], the human
drivers’ behavior is quite different from the real one on the real roads. One reason is that the
road trajectory of the simulator is generated as a sequence of straight-line segments and circular

arcs, which differs from the real roads in the real world, illustrated by Figure 8-2.

We generated three road trajectories, each of them is around 20km. Five people were invited to
operate on these three different roads after they had warmed up. The simulator took the record
of the state of the vehicle and the environmental variables (described in details later) five times

per second, while the simulator itself runs 50 Hz. Thus, we collected fifteen da@gets;
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1,2,..,5]=1, 2, 3i represents the operators, grabrresponds to the different road trajec-

tories.

The state and environmental variables are listed in the following table:

Table 8-1: State of vehicle and the environmental variables

Description Time Delay
b (0.42 Seconds)
Vg The lateral velocity 6
Vi The longitudinal velocity 6
() The angular velocity 6
(X, ¥) | The car-body-relative coordinates of the road median 10
o The user-applied steering angle 6
a The user-applied longitudinal force on the front tires 6

If a human driver is viewed as a system, the input consists of the following information: (1) the
current and recent vehicle stat@g(t-ng), ..., %(t-1), (O}, {vy(t-ny), ..., \(t-1), v, (O}, {ooft-

Ny, -, W(t-1), (1)}, whereng, n,, n,, are the time delays. (2) previous control actiofes(t-

Ng), ..., a(t-1), a(t)}, {d(t-ng), ..., 0(t-1), &(t)}. (3) The visible view of the road aheag(t+1),
y(t+1), ..., X(t+n), y(t+n,)}. The outputs should lBt+1) anda(t+1).

Notice that even for the same human driver, very similar inputs may lead to radically different
outputsd(t+1) anda(t+1), referring to [Nechyba, 98 (b)].

The time delays of the inputs (includimgy of the road median ahead) were decided based on
our empirical experiments. Because of the time delays, the input dimensionality of a dynamic
system tends to be very high, in this case, it is 50. The high dimensionality may have strong

negative impact on the efficiency of both the information retrieval from memory and the clas-
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sification process afterwards. For kernel regression, the computational €gdtdy whereN
is the memory size andis the input space dimensionality. Even though we used kd-trees to
re-organize the memory in order to speed up the information retrieval process, kd-tree perfor-

mance is not satisfactory when the input dimensionality is too high.

Principal Component Analysis (PCA) [Jolliffe, 86] can be used to compress the input space if
some of the inputs are linearly correlated. Notice that, theoretically there is no guarantee that
PCA can shrink the dimensionality of the dataset in all cases especially when the input
attributes are not linearly correlated; however in practice, PCA is a very popular method. In the
simulation driving experiment, we used PCA to compress the input space from 50 dimensions

to 3 dimensions, with only 7.2% loss of information.

8.2 Experimental results

As mentioned above, we collected fifteen datasets from five people driving on three road tra-
jectories. We assigned one dataset to be a testing datasé€,sayhich is actually the dataset
generated by the second driver along the first road. We did not tell OMEGA who was the real
driver, and asked OMEGA to figure it out. To do so, OMEGA needed Satmeedtraining
datasets. In our experiments, we let those datasets collected from the other roads be the training
datasets, i.€0y,1=1, ..., 5 k=2, 3. By “labeled” we mean for each training dataset, OMEGA

knew exactly who was the operator.

Using the OMEGA technique described in Chapter 2, we calculated the average of the negative
log likelihood of each testing dataset with respect to all five human operators. Hence, for each
testing dataset, we got five likelihood curves corresponding to the five possible drivers.
OMEGA detected the hidden driver according to the tails of the likelihood curves: the lowest

one indicates the most likely operator.
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Driving Performance Detection, the driver is in fact Tony Driving Performance Detection, the hidden driver is Larry
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Figure 8-3: Simulation driving style OMEGA detection. (a) A correct case. (b) A
sample of the confused cases. There are two confused cases out of the fifteen
experiments, all others are correct.

There are in total fifteen testing datasets, OMEGA succeeded in detecting the hidden drivers
correctly thirteen times. A typical correct case is demonstrated in Figure 8-3(a), which shows
how OMEGA detected the underlying operator of a testing dat@get,The horizontal axis is

the number of data points in the testing dataset OMEGA has processed. The vertical axis is the
average of the negative log likelihood. Tony’s negative log likelihood curve is closest to the
horizon, and it is remote from all other drivers’ curves. Hence, Tony is the most likely operator
of the testing dataseD; ;. At the early stage when only a few testing data points have been pro-

cessed, the curves are not stable, but afterwards they become smoother and more stable.

Although OMEGA did not make any mistakes in the fifteen experiments, it was confused in
two case One of them is shown in Figure 8-3(b), in which the lowest curve does correspond
the real driver, Larry; however, Tony’s curve is too close to Larry’s, so that OMEGA can hardly

tell who is more likely to be the hidden driver between Larry and Tony.

1. To distinguish the confusing cases, we assign the significance levbke 5%, referring to Chapter 2.
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Figure 8-4: When some data points in the testing dataset are not consistent with a
certain training dataset, the corresponding likelihood curve may look bumpy. If the

data points are so unusual that there is no similar scenario in all the training datasets,
then all the curves are bumpy, and roughly paralleling to each other, referring to (b).

As an on-line detection tool, OMEGA is capable of starting its job with very few data points.
As expected, the precisionis very bad. Thus, the likelihood curves look chaotic at first. But with

more and more data come, the curves converge to be stable.

Sometimes the likelihood curves are bumpy, because the driver did something unusual com-
pared with his behavior in the training datasets. After studying the datasets carefully, we notice
that the abnormal behavior usually occurs when the curvatures of the road change rapidly,
referring to Figure 8-2(a). If the human operator does not pay sufficient attention, he may drive
off the road when the abrupt change of the curvature happens. Therefore, a careful driver’'s
curve is smoother and more stable than others, illustrated by Figure 8-4(a). However, sometime
the curvature changes so much and so suddenly that no one was able to keep his operation in a
consistent manner. In those cases, all the curves are bumpy and roughly parallel to each other,
referring to Figure 8-4(b).

Another interesting observation is that some people’s curves tend to be close to each other, for

example, Moe’s and Groucho’s. The short distances between their curves implies that their
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driving behaviors are close to each other in the experiments. But does it give any hint to the
similarity of their personalities? This is an open question, but it is interesting to observe that

Moe and Groucho do spend a lot of time together during weekends.

8.3 Comparison with other methods

Although OMEGA works well for detecting the hidden drivers in these simulation experi-
ments, some legitimate questions are still opened, such as: is there any simpler method which

can work as well or better?

8.3.1 Bayes classifier

Bayes classifier is a simple method which compares the features. Referring to Table 8-1, the
state of the vehicle and the driver’s action are the instantaneous velocity (incligcangvy,),

angular velocityw, user applied steering angdend acceleration or brake forae We treated

the vehicle’s state variables, the environmental variables, in conjunction with the control
actions as the feature and applied Bayes classifier, with tuned-up parameters, to distinguish the

five human operators. The result is shown in the first row of Table 8-2 :

Table 8-2: Comparison of OMEGA with other alternatives

Correct Wrong Confused
Bayes classifier 6 6 10
HMM 13 0 2
Global linear 12 1 2
OMEGA 13 0 2

Obviously, feature-based Bayes classifier did not perform well. The reason are that: (1) fea-

tures-based approach does not consider the mapping between the inputs and the outputs. (2)
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some features are also influenced by the road conditions, besides the different human driving
styles. (3) different human operators’ feature values have a large overlapping region, exhibited

in Table 8-3.

Table 8-3: Aggregate features of human simulation data (based on
Nechyba’s data)

Velocity Angularvelocity| Steering angle| Longitudinal
(v) (w) (9) force (a)
Tony 67.2 (12.6) (0.205) (0.097) 2.03 (3.86)
Larry 72.2 (7.8) (0.193) (0.072) 1.85 (2.37)
Moe 70.5 (7.9) (0.198) (0.074) 1.91 (3.25)
Curly 63.3 (10.1) (0.175) (0.056) 1.33 (1.88)
Groucho 73.2 (9.3) (0.259) (0.100) 2.33 (2.68)

The numbers in parentheses are the standard deviations. Since the mean values of angular
velocities and steering angles depend on the specific road trajectories, only their standard devi-

ations are listed in the table.

8.3.2 Hidden Markov Model

With rich mathematical fundamentals, the Hidden Markov Model [Rabiner, 89] is very useful

in speech recognition. When we hear the sentence “I love you”, in fact, our perception system
recognizes the states [ai] [la] [v] [ju:] in sequence. The order is also important. However, due
to the difference in emphasis, skipping, and pausing, the transitions among the states are not
deterministic. Some states may last longer, others may be skipped. For the same example, it can
be expressed in a different way: [ai] [pause] [la] [la] [v] [ju:], or “I, lo-ve you”, which sounds
more romantic than the plain tone. Therefore, HMM assumes the transitions among the differ-
ent states are probabilistic instead of deterministic. To recognize a piece of speech, HMM relies

on the approximation of those state transition probabilities.
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Due to accents and/or personal styles, few people can precisely pronounce every word. Thus,
the states (i.e. [ai], [la], [v], and [ju:]) are hidden underneath the stream of the sound signals.
The mapping between the sound signals and the hidden states is not so simple as one-to-one;
instead their relationship is also probabilistic. HMM is capable of approximating the probabi-

listic mapping between the sound signal and the states, as well as the transition probabilities.

Although HMM is very successful for speech recognition, one should be careful before using
HMM as a general purpose time series recognizer. The reason is that HMM assumes the state
transition probabilities are the most fundamental characteristic of a time series. And usually,

the transition probabilities are assumed to be time-invariant.

[Nechyba, 98 (a)] applied HMM to distinguish different simulation driving styles. He did not
separate the inputs and outputs, instead, he treated the states of the vehicle and the environmen-
tal variables equally as parts of observations. He assumed that the observations were stochas-
tically decided by some hidden states. Although the physical meanings of those states were not
clear, he conjectured that their transitions probabilities differed with different drivers. There-
fore, given a unlabeled driving time series, Nechyba approximated a HMM which fit the time
series well. Then he compared the new HMM with those in memory whose underlying drivers
were known. Usually one HMM in memory is closer to the new one than the others are. The
closest HMM in memory indicated the driver who is most likely to be generator of the unla-

beled driving time series.

As Table 8-2 shows, the experimental performance of HMM is as good as that of OMEGA.

Why does HMM approach work in this domain? In our point of view, a hidden state is an
abstract scenario of the state of the vehicle in conjunction with the environmental situation, and
the human driver’s control action. Facing a certain scenario, different drivers may give dissim-

ilar control responses which lead to different new scenarios at the next time step. Thus, different
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drivers’ diverse responses make the transition probabilities of his HMM distinguishable from

those of others.

Therefore, we think the fundamental methodology of [Nechyba, 98(a)] is similar to that of
OMEGA. There is no surprise that the accuracies of HMM and OMEGA are close to each
other. While Table 8-2 gives a top-level comparison, Table 8-4 and Table 8-5 view the precision
in depth. Each number in the tables is a probability of a testing dataset being generated by a
certain operator. Each row corresponds to a specific testing data set, and the real operator is in
the leftmost column. The other columns represent the five candidate drivers. The number in the
(2,3)'th cell is the probability that a testing dataset, which was secretly generated by Larry,
would be detected as the performance of Moe. Thus, the sum of the five probability values in
each row is always 1.0. The number on the shaded diagonal is expected to be bigger than the
others. And the bigger the diagonal number is, the better the detection system performs. Oth-

erwise, the detection fails.

Comparing Table 8-4 and Table 8-5, we claim that HMM and OMEGA have similar accuracy

in this simulation domain. No one is significant better than the other.

Table 8-4: Cross validation of OMEGA

Tony Larry Moe Curly Groucho
Tony 0.677 0.139 0.020 0.031 0.133
Larry 0.243 0.441 0.014 0.129 0.173
Moe 0.037 0.001 0.836 0.114 0.012
Curly 0.060 0.030 0.272 0.570 0.068
Groucho 0.130 0.070 0.199 0.156 0.445

However, OMEGA outperforms HMM in other aspects, such as efficiency, data consumption,

flexibility, robustness, etc., referring to Chapter 2.
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Table 8-5: Cross validation of HMM (based on Nechyba’s data)

Tony Larry Moe Curly Groucho
Tony 0.425 0.157 0.217 0.154 0.047
Larry 0.202 0.538 0.116 0.101 0.043
Moe 0.212 0.077 0.429 0.172 0.110
Curly 0.154 0.073 0.180 0.413 0.180

Groucho 0.066 0.040 0.163 0.237 0.494

8.3.3 Global linear model

OMEGA is a non-parametric method, which means it does not need any assumption about the
function relationship between the input and output. However, if we do know the function form,
we have more options to detect the system. For example, linear system is simple and very pop-
ular in practice, which assumes the output is a linear function of the inputs. To detect a linear
system, we can either follow the residual approach or compare the parameters of the linear

functions.

» Residual approach:For each training dataset, we approximate the parameters of the lin-
ear function between the inputs and the outputs. Then, given a unlabeled testing dataset,
we temporarily suppose it was generated by the first system. Through the first system’s
linear function, we predict the outputs corresponding to the inputs of the testing data
points. There usually exist some residuals between the predicted outputs and the real out-
puts in the testing dataset. The smaller the residuals, the more likely the first system is the
underlying system of the testing datasets. We enumerate all the candidate systems, the one

with the smallest residuals is most likely to be the underlying system.

» Parameter approach: We can approximate the linear function’s parameters of the testing

dataset, as well as those of each training dataset. By comparing the parameters of the test-
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ing dataset with those of each training dataset, one by one, we can tell which training
dataset is most similar to the testing dataset, hence, we detect the underlying operator of

the unlabeled testing dataset.

It is interesting to find that the simulation driving domdiappendo be linear. Referring to
Table 8-2, the global linear approach performed satisfactorily compared with OMEGA and

HMM. It did the correct detection job in most cases.

In our previous work [Deng et al, 97], we compared the driving behaviors of an identical human
operator, but under two conditions: sober and intoxicated. We found that ARMAM&S)a

good model for the behaviors under both conditions. We approximated the ARMA parameters
of the datasets under different sobriety conditions, and found the parameters of the intoxicated
driving behavior deviated from the sober ones, shown in Figure 8-5. The drunken parameters
were more widely scattered due to the fact that the human operator experienced the varying lev-

els of intoxication.

8.4 Summary

In this chapter, we applied OMEGA to detect the driving style using simulation datasets. This
domain is more complicated than the tennis one because driving is dynamic with feedback, and
there are a large number of variables effecting the driver’s control action. Hence, the pre-pro-

cessing of the datasets is important. We used PCA technique to compress the input space.

OMEGA does very job in this domain, but is not significantly better than the other methods.

However, OMEGA has other good properties: it is simple, it is easy to update the memory, it is

1. Auto Regression Moving Average (ARMA(p,q)) model [Brockwell et al, 91] is a popular linear time series
model. (p,q) refers to the window sizes of its AR part and MA part.
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Figure 8-5: ARMA(4,4) parameters of the sober driving behavior are deviated from
those of the intoxicated ones.

computational efficient, it consumes fewer data, and finally it is an on-line system, with more

data involved in, it becomes more precise.

In next chapter, we will ask OMEGA to handle an even harder problem. We will see OMEGA

performs more accurately than the other competing methods.
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Chapter 9
Real World Driving

9.1 Data collection

The real world driving data were collected using the CMU Navlab 8 test vehicle, shown in Fig-
ure 9-1 [Pomerleau et al, 96]. A CCD camera is mounted on the windshield, underneath the
rear-view mirror. This camera is used for lane tracking and vision based obstacle detection. A
radar obstacle sensor is mounted behind the front license plate, and is used for detecting vehi-
cles directly ahead and to the front-left/right. Two side sensors are mounted on the sides of the
vehicles, near the rear. A single line laser range finder is mounted behind the rear bumper. It
also has a Differential Global Positioning System receiver, which has a resolution of +/- 3-5m.
Finally, a yaw-rate gyro is mounted in the rear, along with a tilt sensor. Hence, this vehicle
allows us to take the time series records of the vehicle’s states, the environmental situation, as
well as the control actions. Notice that currently there is no sensor to measure the throttle of the

engine in NavLab 8.

After eliminating not-important ones using our prior domain knowledge, the variables listed in
Table 9-1 were used for the detection experiments. The shaded variable in the table, steering

angle (o), is the only output variable; the other output variable, the throttle of the gas in con-

147
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Figure 9-1: NavLab’s smart van. (Courtesy of Navlab, CMU).

junction with the brake force, is absent. All others, including the previous recom@swére

used as inputs. All the variables were taken record at a frequency between 14 Hz and 18 Hz.

Seven people were invited to drive the vehicle. They were selected from both genders and over
a range of ages from twenty to fifty. All of them have valid U.S. driver’s licenses, and have at
least four years driving experience in the U.S., with no major traffic violations, accidents, or
DUIs. The subjects were told only that we were interested in learning driving behaviors. Details
were kept sketchy, to help avoid biasing the drivers’ behaviors. They were not told how to drive,

but the only instruction was to drive safely.

The operators were asked to drive from CMU to Grove City, a small town about 50 miles north

of Pittsburgh, then back. “The route is primarily two lane (in each direction) highway driving,
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with short stretches of three lanes.” Each operator drove for over two hours round trip. “One
concern is that the subjects most likely have never driven a Silhouette, or even a mini-van. A
mini-van is large enough that it is hard to get a good feel for the boundaries and available space,
particularly on the right hand side. Due to this, most drivers initially tended to hug the left side

of the road. However, this effect seems to subside within a half hour or so of driving.”

Table 9-1: Real world driving variables

Variables Description Variables Description
Xg The lateral position /s Inv. distance to the front obstacle
Vg The lateral velocity /s Inv. dist. to the front-left obstacle
Vi The longitudinal velocity|| 1/sr Inv. dist. to the front-right obstacle
0 Road Curvature l/s5 Inv. distance to the back obstacle
[0) Vehicle yaw 1/sz. Inv. dist. to the back-left obstacle
w Steering angle 1/s5r Inv. dist. to the back-right obstacle

Unlike the simulation cases discussed in last chapter, it seems to us that linear models are not
appropriate for describing the real world driving behavior, because of the existence of traffic.
For example, most drivers tend to take cut to the inside on a curvy road if there is no traffic, as
illustrated by the dash curve in Figure 9-2. However, in case there is traffic, especially if there
are other vehicles in the shortcut route, the drivers are more likely to stay in the middle of the
lane. We can measure the distance from our vehicle to other vehicles in the curve, sdth as “

in Figure 9-2. If there is no traffic in the curvd,goes to infinity orl/d is equal to zero. To
decide to take the shortcut, the crucial issue isifdshould be zero, however, it does not mat-

ter thatl/dis equal to 0.25 or 0.32. Therefore, it is not proper to model the relationship among

the vehicle’s lateral position, the road curvature Hiddas a linear function.
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Figure 9-2: Driving in traffic may be non-linear. If there is no traffic, a driver

tends to take a shortcut. Otherwise, he may stick to the same lane.
Based on empirical analysis, we found three seconds’ time delay was sufficient for OMEGA to
work properly. Hence, for each variable, we took its previous forty-gight 16( H2)) records
into account, except that for the road curvature, we took its forty-eight records ahead. For each
variable, we used PCA to compress its dimensionality from forty-eight to three. Then we com-
bined the twelve variables together, and used PCA again to reduce the dimensionality from
thirty-six (12 x 3) to eight. The compression of the dimensionality is to make the further clas-

sification process feasible; however, as the price, we lost 17.8% information.

9.2 OMEGA result

Since there were seven drivers, and each one had two datasets, from Pittsburgh to Grove City
and back, so that there were totally fourteen data€ts:=1, ..., 7,j = 1, 2. We can randomly
select one dataset as a testing dataset, hide the real driver to OMEGA, and ask it to detect the

driver to see if OMEGA is capable of detecting correctly.

To do so, OMEGA needs some training datasets. Define the datasets sugj tbatesponds
to journeyj by driveri. If the testing dataset corresponds to a trip from Pittsburgh to Grove City,

sayO34, Wherel refers to the route§ indicates the real driver. We assign the datasets collected
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Figure 9-3: OMEGA detects the real world driving style. Two correct cases. (a)

From Pittsburgh to Grove City, (b) From Grove City back to Pittsburgh.
on the way back from Grove City to Pittsburgh, as the training datasets. Thus, for each testing
dataset, we have seven training datasets. For example, if the testing dafagethe training
datasets will b&©,,, k=1, ..., 7.

Since we can assign any dataset to be the testing dataset, totally we can do fourteen detection

experiments. OMEGA succeeded in ten cases, failed three times and was confused once

Referring to Figure 9-3, at the early stage of the detections, due to the insufficient number of
data points involved in the analysis, the likelihood curves are unstable. With more and more
data, the curves converge eventually. However, overall the curves look bumpier than those of
the simulation experiments discussed in Chapter 8, referring to Figure 8-3. There are four pos-
sible reasons: (1) The real world datasets may be noisier than the simulation datasets because
of the resolutions of the sensors. (2) We lost 17.8% information when we did the PCA pre-pro-

cessing. (3) One of the two output variables, the throttle of the gas/brake is absent. (4) Although

1. Again, we assigned the significance levéb be 5%, referring to Chapter 2.
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the real world driving datasets are large in size, the majority of their contents consist of nothing
but very routine operations which are not helpful for distinguishing different people’s driving

styles.

Both Figure 9-3 (a) and (b) were generated by the same driver, “d1”. Figure 9-3 (a) corresponds
to the trip from Pittsburgh to Grove City, and Figure 9-3(b) corresponds to the way back. Com-
paring the early stages of Figure 9-3 (a) and (b), we notice that the curves in (a) were more cha-
otic than (b)’s. As a matter of fact, we observed the same phenomena happened to almost all
the drivers, in other words, all drivers’ initial performance were not so well-controlled as after-
wards. In Table 9-2, we compare the standard deviations of the log likelihood of each driver’s
performance at the early stages of the trips from Pittsburgh to Grove City, with their counter-
parts on the ways back. Obviously, most operator’s initial performance was significantly more
disordered than the latter one, except that “d5” seems more ready to drive from the very begin-
ning. These phenomena are supported by the observation mentioned in Section 9-1: “One con-
cern is that the subjects most likely have never driven a Silhouette, or even a mini-van. ...

However, this effect seems to subside within a half hour or so of driving.”

Table 9-2: Standard deviations of the likelihood at the early stages.

D1 D2 D3 D4 D5 D6 D7

Pgh - Grove 0.162 0.232 0.21% 0.161 0.175 0.182 0.192
Grove - Pgh 0.120 0.095 0.159 0.118 0.163 0.053 0.047

As usual, the curve whose tail is the lowest indicates who is the real driver. In the correct cases,
as in the examples of Figure 9-3, the lowest curves are underneath the others by large margins.
Figure 9-4 (a) and (b) are examples of the confused cases and the incorrect ones. In fact, all the
wrong cases are similar to Figure 9-4 (b): Although the real driver’s curve is not the lowest one,

it is lower than most others. That is to say, although OMEGA may make mistakes, the correct

one is usually within the attention scope.
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Figure 9-4: (a) A confused case. (b) A wrong case. Even as a wrong case, the real
driver’s curve is close to the lowest one.

9.3 Comparison with other methods

Table 9-3 is the comparison of OMEGA with other methods.

Table 9-3: Comparison of OMEGA with other methods

Correct Wrong Confused
Global linear 4 7 3
HMM?2 4 0 3
OMEGA 10 3 1

a. Nechyba has done only half of the experiments.

As we expected, the linear approach does not work properly due to the reason we discussed at
the end of Section 9.1.

[Nechyba, 98, (a)]'s method did work in this domain. However, unlike OMEGA which sepa-
rated the real driver from the others with a salient margin in log likelihood, [Nechyba, 98, (a)]

could not make a decisive detection between two or more candidates.
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Table 9-4: Cross-validation of OMEGA.

a

D1 D2 D3 D4 D5 D6 D7
D1 0.346 0.142 0.031 0.150 0.169 0.047 0.115
D2 0.213 0.247 0.096 0.155 0.129 0.074 0.086
D3 0.182 0.167 | 0.176 0.144 0.182 0.048 0.102
D4 0.159 0.119 0.059| 0.337 0.126 0.087 0.113
D5 0.156 0.105 0.077 0.098 0.435 0.034 0.094
D6 0.124 0.161 0.123 0.124, 0.185 0.174 0.108
D7 0.154 0.120 0.065| 0.100 0.199 0.050| 0.312

a. Using the datasets collected on the way from Pgh to Grove city as the training dataset, and using the
datasets collected on the way back as the testing datasets.

While Table 9-3 gives a top-level comparison, Table 9-4 and 9-5 view the precision in depth.
Each number in the tables is a probability of a testing dataset being generated by a certain oper-
ator. Each row corresponds to a specific testing data set, and the real operator is in the leftmost
column. The other columns represent the seven candidate drivers. The testing datasets of Table
9-5 were collected on the way from Pittsburgh to Grove City, and the training datasets were
collected on the way back. To be fair, so did those for Table 9-4. The number in the (2,3)’'th cell

is the probability that a testing dataset, which was secretly generated by the second driver,
would be detected as the performance of the third driver. Thus, the sum of the seven probability
values in each row is always 1.0. The number on the shaded diagonal is expected to be bigger
than the others. And the bigger the diagonal number is, the better the detection system per-
forms. Otherwise, the detection fails. We used 0.030 as a threshold to judge if the probabilities
on the diagonal are significantly bigger than all the other six probabilities in the row. We notice

in Table 9-4, OMEGA made wrong decisions twice. But when OMEGA made correct deci-
sions, it was quite decisive. Conversely, HMM did not make any wrong decision, but when it
came to the correct conclusion, for three times, the numbers on the diagonal could not be sep-

arated from the other six numbers in the rows by the 0.030 threshold.
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Table 9-5: Cross-validation of HMM, 2
D1 D2 D3 D4 D5 D6 D7
D1 0.359 0.309 0.066 0.113 0.040 0.037 0.076
D2 0.108 | 0.226 0.123 0.193 0.098 0.09C 0.162
D3 0.055 0.159 | 0.243 0.126 0.202 0.124 0.092
D4 0.106 0.196 0.102 | 0.216 0.097 0.123 0.160
D5 0.180 0.164 0.174 0.089| 0.207 0.134 0.052
D6 0.053 0.127 0.087| 0.208 0.105 | 0.232 0.188
D7 0.041 0.149 0.056 0.244 0.058 0.16/ 0.291

a. The same as the footnote of Table 9-4.

9.4 Summary

This chapter demonstrated that OMEGA is capable of detecting different systems accurately
even in a complicated domain, where the conventional linear system identification approach, is

not functional any more.
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Chapter 10

Conclusion

10.1 Discussion

Question 1:Usually a dynamic system has delays and feedback. Can OMEGA handle systems

with infinite delays, and with elastic delays?

OMEGA handles those systems with finite orders of delays. A system with elastic delays
means that the order of delay varies from time to time. OMEGA is applicable to systems with
elastic delays, if we know the range of the delays. We can assign the maximum order of the
elastic delays to be the order for OMEGA. However, notice that with redundant order of delays,

OMEGA may perform inefficiently.

Question 2:Both OMEGA and Hidden Markov Models can handle time series. When should
we use OMEGA instead of HMM?

Some systems have hidden states, and the observable input and/or output of the systems are the
manifestation of the hidden states. Hidden Markov Models are good at modeling the hidden
states and their transition relationships. Conversely, OMEGA analyzes the complicated distri-
bution of the input and output. To some extent, OMEGA may be capable of handling systems

with hidden states. However, in case there are no hidden states, OMEGA will perform better.
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For example, in the driving domain, because of different road conditions and traffic conditions,
the distribution of the input and output tends to be very complicated. However, it seems to us
that probably there are not too many hidden states standing between the input and output.

Therefore, OMEGA may be better for the driving domain.

Question 3:Neural Networks, especially Recurrent Networks, are often used for forecasting.
Can Neural Networks be used to do system classification? If so, what is the advantage of
OMEGA compared with Neural Networks?

As we mention in Section 2.5., we decomp®%€x; Y;) | S,) into the product oP(x | S,) and
Py | S, %)- We can use any machine learning method to approxifgie S, x). Hence,

Neural Networks can also be used to do system classification.

However, for each candidate systefy we should prepare a Neural Network. If we have
10,000 candidate systems, and the time series to be classified is 40,000 uniis9dng.(,

40,000, then we will have to try all of the candidate system at every time step. The computa-
tional cost will be 4 million units, which is not desirable. However, as a memory-based learning
method, OMEGA can focus on the promising candidate systems from the very beginning. In
this sense, OMEGA is cheaper than any parametric machine learning methods, such as Neural

Networks.

Question 4:What about the computational efficiency of OMEGA compared with HMM, global

linear model ARMA, as well as Neural Networks?

Concerning computational complexity, the training cost of the global linear model, ARMA, is

O( M + T), whereT is the total length of training time series samples, wMles decided by
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the model size of ARMA The training cost of HMM isO(N2 X T2) , WherBl is the number

of hidden states in the HMM. Typically, the training process of a Neural Network is divided
into several epochs. If there aéweights in a Neural Network, each epoch takisV x T)
However, the worst-case number of epochs can be exponentiaWhich is the number of

input attributes. OMEGA does not need any training process, but it re-organizes the memory

of training time series data points in the form of a kd-tree, which té)(ei:z xT+TxlogT)

To evaluate a time series query, the ARMA approach is to estimate the parameters of the
ARMA model. Hence, the computational cost of evaluating a time series query is similar to the
training cost. If the length of a time series quenyt,ishe computation cost of evaluating is
O(M3 +1). The evaluating cost in HMM model (N x t) , while that of a Neural Network

is O(W x t) . The order of computation complexity in OMEGA is also proportiond] but in
addition depends on what machine learning method is used to approXixgieS,) andP(yy;

| S, Xqi)- For example, if OMEGA uses locally weighted logistic regression as the approxima-
tor, the computational cost i@((d3 +dxT)xt) , whefeis the number of training data
points. However, with the help of cached kd-tree, the cost can be greatly reduced if the dimen-

sionality,d, is not too large.

In summary, unlike HMMs and Neural Networks, OMEGA is not expensive to train. However,
evaluating a time series query in OMEGA is not trivial in computation. Based-on our empirical
knowledge, OMEGA is still fast enough to be an on-line system classifier. Also notice that
ARMA, HMMs and Neural Networks have to try all candidate systems at every time step of a
time series query, hence if there &eandidate systems, their computational cost of evaluating
atime series query al@((M3 +1)xS) Q(Nxtx 9 aWxtx g respectively. Onthe

1. An ARMA model consists of two parts: AutoRegression (AR) and Moving Average (MA). If the window
size of AutoRegression 5 and the window size of Moving AveragegisshenM = max (p,q+1)

2. In our experiments, we used locally weighted logistic regression as the approxim&Qf,of S,) and

POgi | S Xai)-
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other hand, OMEGA can quickly focus on the promising candidate systems at the beginning of
the query, so that its cost@;((d3 +dxT)xtxs) ,sometimes S

Question 5:ldeally OMEGA assumes the input and output are fully observable and the output
is fully determined by the input. However, in practice, this assumption is often violated. How

badly will OMEGA perform when the assumption is violated?

OMEGA studies the mapping between the input distribution and the output distribution. If
there are some patterns in the mapping which can be used to distinguish different systems,

OMEGA will work well, no matter whether or not the input and output are fully observable.

Question 6:The principle of OMEGA is to calculate the residuals between the predictions and
the observed results, then summarize the residuals in the form of likelihood. This is similar to
Kalman filter. What is the difference between OMEGA and Kalman filters?

Kalman filters assume that we know the closed-form formula for a system, and its goal is to
estimate the parameters of the formula by minimizing the residuals between the predictions and
the observations. The Kalman filter approach can be modified to do system classification, if we
know the closed-form formula of the system. However in many cases we do not explicitly know
the mechanism of the system, so we cannot go through the mathematical process of Kalman
filters. OMEGA is a non-parametric method, which regards the system as a black box. This is

the main difference between OMEGA and Kalman filters.

Question 7:What makes some people’s tennis styles similar? Is there any way to learn the sim-

ilarity of individual styles directly?

For the tennis experiment, the only instruction that we gave to the participants was: “hit the ball

to make it move across the net.” Based on our observation of the tennis experiment, the right-
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handed people are more likely to hit the ball toward the top-left corner of the court, while some
left-hnanded people tend to make the ball move to the top-middle or top-right. Some people hit
the ball harder than others, some people hit the ball once it comes across the net, etc. All the

above are relevant to individual tennis styles.

Can we use some simple statistical features to do the system classification, such as the mean
values of the contact angle, speed, the position of the contact? It is possible that the simple fea-
tures work in some cases. However, in those cases, the input variables, i.e. the serving variables,
must be uniformly distributed, because the contact angle, speed and the position of the contact,
are also dependent on the input variables. OMEGA is more powerful than the feature approach

since OMEGA studies the mapping between the input distribution and output distribution.

Question 8:Suppose OMEGA is employed to detect several drivers’ sobriety conditions. Each
driver has both “sober” training data sets and “drunk” training data sets. Certainly we can
use each driver’s two kinds of training data sets to detect his sobriety. But is it helpful to put

every driver’s sober training data sets together as a mega sober training data set?

Since all alert drivers share some common behavior, it is helpful to collect all “sober” training
datasets into a big pool. However, for different drivers, the definition of being alert may be dif-
ferent. A cowboy'’s alert action may look very wild to a conservative person. Thus, if possible,

a better idea is to put the training dataset generated Isathe typ®f people together.
Question 9:1s OMEGA good for speech?
Because of accent and emphasis, the same sentence may be pronounced in different ways. In

other words, for the same sentence, the distribution of the signal may be different, but the hid-

den states are always the same. Referring to the answer to Question 2, OMEGA is not good at
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approximating the relationship among the hidden states, but focuses on the distribution pattern

of the signals. Therefore, in our point of view, OMEGA is not good for speech recognition.

10.2 Contributions

In this thesis, we explore a coherent framework to detect the underlying system that produced
a given sequence of data points. This set of data points can be a time series in which the order
of the sequence is important, or it can be a non-time series as well. Our approach is to transform
the time series or non-time series into a set of data points with low input dimensionality, then
use efficient memory information retrieval techniques and machine learning methods to do a
series of classifications, and employ likelihood analysis and hypothesis testing to summarize
the classification results as the final detection conclusion. The framework of our system is illus-

trated in Figure 10-1. The original contributions of this work are:

1. To our best knowledge, our work, for the first time in the literature, employs state-of-art data
mining techniques in conjunction with memory-based learning methods to approach time
series detection problem. Compared with other alternative methods, our method is simple to
understand and easy to implement, it is robust for different types of systems with noisy
training data points, it is adaptive when the density and the noise level of the training data
points vary in different regions, it is flexible because it does not request fixed thresholds to
distinguish various categories, it is efficient not only because it is capable of processing the
classification quickly but also can it focus on the promising categories from the very begin-

ning, and based on our empirical evaluation, it is more accurate than other methods.

2. We combined the locally weighted paradigm with logistic regression to be a new memory-
based classification methods. Unlike the other memory-based classifiers, it is capable of
extrapolating as well as interpolating. It is competent in accuracy, and with some extra use-
ful features, especially, confidence interval. With the help of cached kd-tree, it is a very effi-

cient classification method.
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Preprocessing

Feature selection
(Chapter 7)

OMEGA methodology
(Chapter 2)

T Experiments in Chapter 3 8 9
N

Kd-tree

information Memory-based
retrieval learning
(Chapter 5 6) A new classifier

(Chapter 4)

Figure 10-1: The structure of OMEGA system and the organization of the thesis.

3. As known for many years, kd-tree can be used to re-organize the memory so as to retrieve
the useful information efficiently. By caching well-selected information into the kd-tree’s
node, we found a way to dramatically improve the efficiency of memory-based learning
methods, including Kernel regression, locally weighted linear regression, and locally
weighted logistic regression. Recently, cached kd-trees have also been applied to improve

the efficiency of EM clustering [Moore, 98].

4. Due to the progress in improving the efficiency of the variety of learning methods, intensive
cross-validation becomes feasible. We used intensive cross-validation to do feature selec-
tion, especially we explored several greedy algorithms to perform the selecting even faster
while without severe loss in precision. We tried applying these algorithms to select the use-

ful features so as to recognize Chinese handwriting off-line. Our prototype showed the accu-
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racy could be over 95%.

10.3 Future research

1. Referring to Figure 10-1, the pre-processing module is to transform a time series into a set
of data points in which the time order is no longer important, and to reduce the dimensional-
ity of the dataset. Although in our system, we employ Principal Component Analysis and
Feature Selection to reduce the dimensionality, there is no guarantee that we achieve our
goal in any domain. In case the memory data points distribute in clusters, [Agrawal et al, 98]

may be worth trying. More research should be done to attack the curse of dimensionality.

One promising solution is that we can approximate the relationship among the input attri-
bues using Bayesian network [Pearl, 88] or dynamic Bayesian network [Dean et al, 88]. By
learning the configuration and the transition probabilities of the Bayes net [Heckerman et
al, 95], we can compress each data points from high-dimensional space into a lower one,

even a scalar [Frey, 98] [Davis, 98].

2. In this thesis research, we treated the system as a blackbox, we only study its inputs and out-
puts. This is desirable for many domains, because sometimes we do not have the precise
domain knowledge. However, sometimes eeknow somethings about the internal struc-
ture of the system, then we should exploit this knowledge because it is helpful to enhance
the detection accuracy. [Heckerman, 96] and many other papers suggest that Bayesian net-

work is capable of being a good system approximator with many advantageous properties.

We propose that by using a same Bayes network, we can get double benefits: improving
the accuracy, as well as reducing the dimensionality so as to improve the computational

efficiency.




Chapter 10: Conclusion 165

10.4 Applications

There are many possible applications, listed in Chapter 1. In this section, we discuss three

applications in further depth.

Financial modeling

The importance of financial modeling is obvious: it helps to gain profit from the stock market,
and avoid bad investments, such as the recent failure of Long Term Capital Management
(LTCM) hedge fund. There are many researchers doing financial modeling, including some

Nobel Prize winners. Why should we compete with them?

Most financial models assume the behavior of the financial market is controlled by a unique
mechanism. Most Wall Street researchers want to make this unique model more complicated
in order to fit all possible scenarios in the financial world. In contrary, we believe that although
the stock index, like S&P index, is only an one-dimensional time series, the underlying mech-
anism of the financial market is not unique, instead, there are several different underlying con-
trol systems either working at the same time or switching from time to time. Suppose given the
recent behavior of the stock market, including the various influencing factors like Fed'’s inter-
ests, we can use OMEGA to retrieve the similar historic data clips from the database, figure out
which underlying mechanism is working nowadays. And based on that, we can predict what

will happen to the stock market, with a certain confidence measurement.

Web server monitoring

The rapid growth of internet has greatly increased the pressure on administrators to quickly
detect and resolve service problems. Typically, the detection job is done either by some ad hoc
models to estimate weekly patterns [Maxion, 90], or by specifying threshold testing [Heller-

stein et al, 98].
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Using the techniques explored in this thesis, we are capable of detecting more complicated pat-
terns efficiently, and distinguishing the patterns by specifying thresholds which are adaptable
to datasets with different distribution densities and different noise levels. In other words, our

technigue may be more robust and accurate than the previous approaches.

Embedded detection device

To monitor if an engine works normally, we can embed a chip into the engine so that whenever
it runs, the chip takes records of the engine’s signals. If one day, the operator finds “sometimes”
the engine did not work normally, he can pull out the chip from the engine, insert it into a device
hooked to his home PC. His home PC is linked to a super server somewhere else through the
internet. By comparing this engine’s signal time series with those in the super server’s database,
the server can tell the operator when and how his engine went wrong. Thus, it is more conve-

nient for the operator to decide if the engine needs repairing.

Compared with the conventional methods, which are based on the domain knowledge, our
approach has more advantages: (1) Since there are so many engine nowadays in the world, and
they are updated so quickly, it is not very convenient to update the conventional diagnosis sys-
tem, because usually they are installed in the engines. For our distributed system, we can sim-
ply update the knowledge in our central super server, we do not need to modify the product we
have sold to our customers one by one. (2) The conventional methods are of “we design, you
use” style, our approach can interactively collect new data from the customers, then learn from
them. Hence, with more and more experience, our system can automatically become more

intelligent.




Appendix A

Chinese Handwriting Recognition

As a side experiment, we used the feature selection techniques discussed in Chapter 7 to rec-
ognize Chinese handwriting. Our goals are: (1) to demonstrate feature selection is important
because it is the crucial part for the recognition job. (2) to compare the feature set found by the

feature selection algorithms with a human expert’s selection.

1.1 Feature selection for Chinese handwriting recognition

Although most of the research in handwriting recognition is for on-line systems [Singer et al,
94], there is no doubt that off-line systems are also very important especially in domains such

as automatic tax form processing.

To date, research for Chinese and Japanese character recognition is still prei'irrBeaewse

the number of Kaniji, i.e. Chinese characters, is over fifty thousand, it is hard to rely on any gen-
eral-purpose global model to recognize all Chinese characters. Alternatively, a promising
approach is to separate the Chinese characters into several groups. For each group, a local

model is developed to distinguish the different characters.

1. There are some Chinese and Japanese recognition products on the market. The product introductions claim
that their accuracy is over 90%. However, we do not know what kind of principles they apply. And we
notice some of those products can only recognize rigidly written characters.
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Although it may be possible to build the local models off-line, manually, it is better if we have
an on-line automatic configuration mechanism. Not only does this automatic system save soft-
ware developers from tedious and time-consuming work, but also it is adaptive and can learn

different personal handwriting styles.

In this section, we propose an idea to recognize Chinese and Japanese handwriting off-line,

with automatically configured adaptive local models. We also give a prototype of this system.

Chinese characters are constructed by ten fundamental strokes.

v — | J\—= | =7 L«

The different combinations with different relative positioning determine different characters.
For example, there are eight different Chinese characters plus “F” and the Japanese character

“ki” containing two horizontal lines and one vertical line, illustrated in Figure A-1.

In this prototype system, some features are useful for recognition, while others may not be so
significant, or, can be substituted, referring to Figure A-2. Notice: (1) The human expert's
selection, as shown in Figure A-2(a), is not the only functional set, there exist multiple options.
(2) Among the multiple functional feature sets, some of them may lead to more accurate rec-

ognition than the others.
To find the features including those not-so-significant, we can follow these three steps:

» Figure out the horizontal lines, vertical lines, and other strokes, respectively.
» Sort the lines from top to bottom, or from left to right.
 Calculate all the possible features according to prior knowledge. In the case of Figure A-1,

each stroke has two ends. The features can be the distances from the ends of each stroke to
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Figure A-2: The features used for the Chinese handwriting
recognition prototype system.
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those of others, as well as the distances to all the intersections, illustrated in Figure A-2.

After we have found the candidate features, we can apply the various feature selection algo-
rithms to select the proper features for the recognition job. In the experiment, we try four fea-
ture selection algorithms: Super-greedy (Super), Greedy (Greedy), Restricted Forward
Selection (RFS) and conventional Forward Selection (FS). We request that any selected feature
sets contain no more than eight components. To evaluate the goodness of the selected feature
sets, we calculate their 20-fold scores. Since our procedure is carefully designed to avoid over-
fitting, the smaller a feature set’s score is, the more accurately this feature set is able to recog-
nize any one out of the ten characters. We also count the numbers of seconds consumed by the

four algorithms so as to compare their computational costs.

Table A-1: Chinese character feature selection

m = 8 = Max Number of features m=12
Selection
Methods Selected feature set 20fold Cost 20fold Cost
score score

Super w2, If1, If2, hgl, trl, tr2, tr3, tr4 0.038 53p 0.018 529

Greedy w2, If1, If2, hgl, tr2, tr3, tr4 0.041 76| 0.022 916
RFS hrl, wi, If1, If2, hgl, hg3, cr2, trl 0.018 1414 0.016 1570
FS hrl, hr2, wi, If1, If2, hgl, tr3 0.016 3586 0.018 4829

Human hrl, hr2, wl, w2, If1, If2 0.016 - 0.016 --

In Table A-1, we observe that different selection algorithms may find different sets of features.
When we carefully study these various sets with respect to Figure A-2, we find all of them are
functional. Second, we find that the feature sets selected by RFS and FS are very similar to the
human expert’s preference, but different from the sets found by Super and Greedy. Third,
although all of these feature sets have satisfactory accuracy, those found by the greedier algo-

rithms lead to less accurate recognition performance. However, if we allow more components
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to enter the feature sets, even the greedier algorithms’ selections become more powerful.

Finally, the greedier algorithms are cheaper than the others.

1.2 Future work

The prototype system is sufficient to demonstrate the importance and capability of the feature
selection algorithms. But to pursue a good Chinese handwriting recognition system, some fur-
ther work has to be done. Since this topic is a digression from the discussion of feature selec-

tion, we only give a brief introduction.

For more complicated Chinese character, for exarﬁle which means “hide” and “Tibet”, the
number of possible features will explode. Fortunately, every Chinese character can be split into
some standard particles, and the number of these standard particles is no more than one hun-
dred. Indexed by these particles and their relative positioning, any Chinese character can be
represented by no more than five digits. One example is illustrated in Figure A-3. This tech-
nique is called Wang-coding or Five-stroke coding, which has become one of the national stan-

dard typing methods in China.

O\ 23(0O) 24(\) 1(lefttoright)
= 23(0) 24¢\) 2(upanddown)

J\

Figure A-3: An illustration of Wang-coding of a Chinese character.

Now the remaining difficulty is how to find those standard particles from any Chinese charac-

ters. One promising approachAs search.
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