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Perception plays a dominant role in the development of an intelligent
behavior. Our awareness of the environment relies on the activity of our
sense organs. These outposts of the nervous system translate environmental
changes into activity in sensory nerve fibers. It is then the function of the
central nervous system to interpret this sensory information, integrating it
into an appropriate pattern of behavior. Like biological systems, intelligent
robotic behavior relies heavily on the sensory perception. Especially rich in
information, and fascinating in its capability,vision It is not surprising

that vision research has received equally high interest in neurophysiology,
psychology, computer science and engineering.

In the last 30 years machine vision research advanced along many fronts.
Cameras have improved: their resolution and sensitivity have increased, and
new sensors such as uncooled infrared cameras are now commercially avail-
able. Many recognition algorithms have been developed: from 3D model
matching to artificial neural networks. Yet performance of the existing
machine vision systems still significantly lags that of biological vision. The
two most critical features presently missing from the machine visidavare
latency processingndtop—down sensory adaptation

The main contribution of this thesis is towards overcoming these two defi-
ciencies byimplementing global operations in computational sensors
Additional aims are to produce task—oriented self—-contained machine vision
components that can be used by a machine for a coherent interaction with
the environment.



1 Motivation

The fundamental problem in machine vision comes from the computational
complexity of basic tasks. Examples include the problem of detecting a
target element in an imageigual search and the problem of finding a
correspondence between the image and a set of modaishing. Any
algorithm which solves these problems in a general way, without the help of
assumptions and heuristics, requires exponential execution time as a func-
tion of the image size and the number of stored models. From this observa-
tion it becomes apparent that vision systems have limited capability to scale
up with images of increasing size and complexity.

The consistent paradigm in machine vision has been that a “camera” sees
the world and a computer “algorithm” recognizes the object. Implicit in this
view is the separation between the camera — a sensing device for trans-
ducing spatio—spectral-temporal phenomena to electric signals, and the
computer — a computational device for processing and make sense out of
data. That is, the transduced signal is read out of the sensor and digitized
into the computer for processing. The separation of sensing and processing
has resulted in several deficiencies in the computer vision systems devel-
oped so far. The two most critical features missing from the sequential para-
digm arelow latency processingndtop—down sensory adaptation

Latency, or reaction time, is the time that a system takes to react to an event.
For example, a standard video camera takes 1/30 of a second to transfer an
image. In many robotic applications it is too late by the time the system
receives the image from such a camera. As another example, pipelined dedi-
cated vision hardware can deliver the processing power to update its output
30 times per second, but the latency incurred through the pipeline is typi-
cally several seconds. These examples point to two primary sources of
latency in vision systemghe data transfer bottlenedaused by the need to
transfer an image from the camera to the processotharmbmputational

load bottleneckcaused by the processor’s inability to quickly handle the
large amount of data. The detrimental effects of both bottlenecks scale—up
with the image size.

Another aspect that has been neglected in machine vision is the top—down
sensory adaptation. Many learning algorithms have been developed that
adjust to variations in appearance of an object in sensor images. Neverthe-
less, complex ad—hoc algorithms that try to extract relevant information
from inadequate sensor data are inevitably unreliable. In fact, time and time
again it has been observed that using the most appropriate sensing modality



or setup, allows recognition algorithms to be far simpler and more reliable.
For example, the concept of active vision proposes to control the geometric
parameters of the camera (e.g. pan, tilt, etc.) to improve the reliability of the
perception [4]. It has been shown that initially ill-posed problems can be
solved after the top—down adaptation of the camera’s pose has acquired new
more appropriate image data. However, adjusting geometric parameters is
only one level at which adaptation can take place. A system that can adjust
its operation at all levels, even down to the point of sensing, would be far
more adaptive than the one that tries to cope with the variations at the “algo-
rithmic” or “motoric” level alone.

The lack of fast processing and top—down sensory adaptation in the
sense—then—process paradigm, suggest that an alternative is needed.

Compared to the capabilities of the available machine vision systems and
techniques, the performance of biological vision is astonishing. It has been
estimated that humans can recognize up to 100,000 objects within 200-200
ms [57]. In addition, the recognition has a high degree of invariance with
respect to factors such as the position, scale and orientation, which may
completely change the retinal image of objects.

One of the most important factors which determines these capabilities is the
high number of processing elements (approXx! Xeurons) working in
parallel in the human brain. However, given the relatively slow response of
each neuron and the huge amount of input data (apprbxedéptors), it
becomes apparent that the sheer number of neurons is not sufficient to
explain these performances. In fact, the human visual system is not even
structured to exploit the computational power of a single, fully—connected
network of cells; it is rather organized into a humber of areas analyzing
different aspects of the image.

At the very first stage of the processing hierarchy is the retina [19]. The
retina senses visual information and transmits it to the brain via the optical
nerve (approx. 1.5 x $dibers). While the number of fibers in the optical
nerve is far beyond what we can replicate in an artificial system at the
moment, itis far below the number of photoreceptors in the eye (app?ox. 10
receptors). If we further consider that some fibers respond only to motion
and other transmit contrast rather than the photometric information of the
receptors, it becomes obvious that this fascinating layer of neural tissue
carries out some form of processing and data reduction. Indeed, the optical
nerve fibers are axons derived from fourth or fifth order neurons in the



visual pathway [32], i.e. there are four or five layers of neurons processing
receptors signals before the information is sent through the optical nerve.

The eye processes optical information even before the light is transduced
into the neural signals; in addition to the lens focuses and the iris for rudi-

mentary intensity adaptation, the photosensitive elements of the retina are
spatially organized in a non—uniform way . The high spatial resolution of the

fovea allows detailed sensing in the central region, while keeping a vague
representation of the periphery of the image. The drawback of this strategy
is the need for eye movement, which sequentially shifts the fovea to the
“interesting” parts of the image.

In addition to these anatomical mechanisms for information compression,

functional mechanisms exist in the higher processing centers of the brain.
An example is attention — the ability to select a part of the retinal image to

which the application of higher level processes can be restricted. Unlike eye
movement, the attention shifts do not require any motor action, but occur
internally, on a fixed retinal image. For this reason, attention shifts are faster
than eye movements and appear to rapidly determine a number of inter-
esting locations of the image. Then, the top—down pathways may initiate the
eye movements for foveating onto one of these locations.

From this discussion it becomes evident that biological vision tightly
couples sensing with processing and provides the top—down feedback for
sensory adaptation and eye movement.

2 Computational Sensor Paradigm

Computational sensors [37] mimic biological systems: they incorporate
computation at the level of sensing to improve performance and achieve
new capabilities which were not otherwise possible. Computational sensors
are usually VLSI circuits which may (1) include on—chip processing
elements tightly coupled with on—chip sensors, (2) exploit unique optical
design or geometrical arrangement of elements, or (3) use the physics of the
underlying material for computation.

The computational sensor paradigm has potential to both reduce latency and
facilitate top—down sensory adaptation, two main deficiencies of the
computer vision at the moment. Namely, by integrating sensing and
processing on a VLSI chip both transfer and computational bottlenecks can
be alleviated: on—chip routing provides high capacity transfer, while an
on-chip processor may implement massively—parallel fine—grain computa-



tion providing high processing capacity which readily scales up with the
image size. In addition, the tight coupling between processor and sensor
provides opportunity for a fast processor—sensor feedback for top—down
adaptation.

3 Global vs. Local Operations

In the context of this thesis the global operations are important for two
reasons. First, in perception it seems that each important decision is a kind
of global, or overall, conclusion about a perceived world. These conclusions
are often what a machine needs for coping with a task at hand. The global
operations thus can be considered to produce the ultimate goals of the vision
processing needed for the coherent interaction between a machine and the
environment. Second, global operations prodadew quantities for the
description of the environment. These quantities can be quickly transferred
and/or processed to initiate an appropriate action for a machine. In addition,
the results of the global operations can be used within the computational
sensor in top—down sensory adaptation thus directing a further sensing and
processing for more reliable performance.

Implementing global operations in parallel systems has been the subject of
extensive research in both computer engineering and computer science. The
main difficulty with implementing global operations comes from the neces-
sity to bring together, or aggregate, all or most of the data in the input data
set. This global exchange of data among a large number of processors/sites
quickly saturates communication connections and adversely affects
computing efficiency in parallel systems — parallel digital computers and
computational sensors alike. It is not surprising that there are only a few
computational sensors which implement global operations, all with modest
capability and/or low resolution [18] [69] [70].

On the other hand, there are many computational sensory which implement
local operations [7] [30] [38] [47] [49] [71] [77]. Those operations use only
operands within a small spatial neighborhood of data and thus land them-
selves to the graceful implementation in VLSI. Local operations produce
preprocessed images; therefore, a large quantity of data still must be read
out and further inspected before a decision for an appropriate action is made
— usually a time consuming process. Consequently, a great majority of
computational sensors built thus far are limited in their ability to quickly
respond to changes in the environment.



4  The Main Result

The primary aim of this thesis is to design computational sensors which
reduce the latency in a vision system, and provide top—down feedback for
more reliable performance. Such computational sensors must quickly
provide reliable information necessary for coping with a task at hand. To
attain this goal, this work embarks upon the problem or implementing

global operations in computational sensors.

There are fundamental differences in how biological and artificial systems
aggregate input signals. In digital systems, for example, gates with fan—in
greater than 4 are rarely employed. The fan—in of an average neuron is 1,000
to 3,000, or even 10,000 [56]. Each input requires that a signal is routed to
it. The more input signals, the more wiring is required, in both biological
and artificial systems. Wires do not process information; therefore, econo-
mizing on wire should be important priority for both nerves and chips. Yet,
the biological systems opted for large fan-ins. Some researchers [56]
hypothesize that each neuron must have synaptic inputs represahting
features that might ever be used, even though only a subset of them will
contribute to any particular decision. Thus, it seems that the neurons are
optimized for making global decisions about a large number of inputs, but
using only a few of those inputs at a time.

In order to overcome obvious technological limitation for quickly commu-
nicating and processing large amounts of data, the proposed solutions draw
upon the experiences of evolution and suggests the following implementa-
tion. The data are supplied optically by focusing an image (henceforth
referred to as a retinal image) onto the array of photodetectors. A processor
integrated within the chip, mimics neurons and makes a debiagad only

on a few input data at a tim&he problem is how to efficiently chose which

few input data to route to the global processor at each given time. This work
proposes two mechanisms: g€Bnsory attentignand (2)intensity—to—time
processing paradigm

4.1 Sensory Attention

The sensory attentiofollows the model ofisual attentionn brains. This
analogy is attractive for two reasons. First, the main argument that has been
used to explain the need for selective visual attention in brains is that there
exist some kind of processing and communication limitation in the visual
system. So it does in machines. Attention “funnels” only relevant informa-
tion and protect the limited communication and processing resources from



the information overload. Second, it has been shown that the visual attention
improves performance, and is needed for maintaining coherent behavior
while interacting with the environment (i.e. attention—for—action) [3]. Loca-
tion of such attention must be maintained in the environmental coordinates;
thus ensuring coherent behavior under ocular and head motion.

For implementation of attention several problems must be solved: (1) how
to select interesting location within the retinal image, (2) how to shift the
attention to another location, and (3) how to transfer data from focus of
attention to the central processor for further inspection.

The winner—take—all (WTA) has been suggested for implementing location
selection [43] [42]. The winner—take—all (WTA) mechanism determines the
identity and magnitude of its strongest input [23]. We used a very compact
VLSI realization of the WTA circuit originally proposed by Lazzaro [46]
and Andreou [5]. The WTA uses a saliency map to guide the attention to the
most conspicuous part of the retinal image. The saliency map can be derived
from image features including the intensity, color, spatial and temporal
derivatives, motion, and orientation. At the present state of technology we
deliver the saliency map optically by focusing an image onto the array of
photodetectors feeding the WTA network. This embodiment of the sensory
attention we caltracking computational senstecause when the saliency
map is a natural image, the trivial saliency map, the salient features are
bright spots in the image and the sensor selects and tracks those locations.

We implemented the attention shifts by operating the tracking computa-
tional sensor in two modes: select mode and tracking mode (see Figure 1).
In the select mode the sensor detects the global intensity peak within a
programmable active region, a subregion of the retina. (This peak is called
a featurein the context of the tracking sensbrmhe sensor continuously
reports the position and intensity of the feature. By being able to program
an arbitrary active region we ensure that the attention is directed towards
parts of the image that are important for the task at hand. In the tracking
mode the sensor dynamically defines its own active region, thus causing the
sensor to ignore all retinal inputs except the currently tracked feature and its
immediate neighborhood. This way our implementation ensures two things:

Lin neurophysiology the pattern of activity which activates a visual neuron is
called arigger feature a somewhat controversial notion. The area of visual field
in which this pattern elicits the neural responses is calle@teptive fieldf the
neuron. Thus, in the context of the tracking sensor the sensor itself is a neuron
whose trigger feature is the peak intensity within its receptive field (i.e. the active
region.)
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Figure 1: Modes of operation for the sensory attention computational
sensor: (a) select mode, and (b) tracking mode.

(1) the location of attention is maintained in the environmental coordinates,
(2) the sensor eliminates interference from parts of retinal image that are
irrelevant for a particular task at hand. In the tracking mode, the sensor
remains locked on the selected feature.

The WTA circuit reports the intensity of its winning input on a globally

accessible wire. Therefore, by programming an active region consisting
only of one cell (i.e. 1 by 1 active region), that cell becomes the winner and
its intensity is reported. By scanning the trivial 1 by 1 active region around
the attended location, the local data are transferred for higher processing.

The significance of our implementation of the sensory attention are summa-
rized as follows:

* The global data — the position and intensity of the feature — are
easily and quickly routed from the chip via several output pins.

* In the tracking mode these global data are also used internally for the
self—-defined active region. This represents an example of
sensor/processor feedback presently missing in artificial vision
systems. The tracking computational sensor demonstrates the
significance of this feedback, as it is essential in preventing
erroneous information from interfering with the currently attended
salient feature relevant to a task at hand.



* In the select mode, the sensor can restrict its operation to an arbitrary
size region of interest. In combination with a clever image
formation, this renders the sensor useful in a range of practical
applications.

 Inherent in our implementation is the ability of the sensor to provide
random access to the image data if needed. The image data can be
read from a random location within the retinal image including the
vicinity of the feature being tracked.

* The size of a cell in a conventional @MOS technology is 2by
624, which is about equivalent to the area taken by a 4x4 pixel region
in an industrial CCD camera. This is an appreciable spatial
resolution, especially given the versatility of functions performed by
the sensor.

» The dynamics of attention shifts have been found experimentally to
range from 250 to 1,000 degrees/s. The attention shifts in humans
occurs at a maximum of 125 degrees/s [57].

4.2 Intensity—to—Time Processing Paradigm

The other mechanism investigated is the newly proposed intensity—to—time
processing paradigm — an efficient solution for massively—parallel global
computation over large groups of fine—grained data [12]. Inspired by the
human vision, the intensity—to—time processing paradigm is based on the
notion that stronger inputs elicit responses before weaker ones. Assuming
that the inputs have different intensities, the responses are ordered in time
and a (global) processor makes decisions based only on a few inputs at a
time. The more time allowed, the more responses are received, thus the
global processor incrementally builds a global decision first based on
several, and eventually on all the inputs. The key is that some preliminary
decisions about the retinal image can be made as soon as the first responses
are received. Thus, this paradigm has important place in low—latency vision
processing.

The intensity—to—time processing paradigm was used to implement a
sorting computational sensef an analog VLSI sensor which is able to sort

all pixels of an input image by their intensity, while the image is being
sensed. In this realization the global processor essentially “counts” inputs
(i.e. pixels) as they respond. The first input to respond receives the highest
index, the next input one index lower, and so on. By the time all the inputs
responded, the sensor has builtimage of indicesThe image of indices



represents the histogram equalized version of the retinal image. The two
well know properties of such images are (1) the available dynamic range (of
the readout circuitry) is equally and most optimally utilized, and (2) the
image contrast is maximally enhanced. In many computer vision applica-
tions the histogram equalization is the first image preprocessing operation
performed on camera images, primarily for signal normalization and
contrast enhancement.
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Figure 2: Scene 1 imaged by the sorting computational sensor. Top graph:
cumulative histogram computed by the chip. Bottom graph: histogram of
indices. CCD image is given to illustrate poor illumination conditions.

During the process of “counting” the global processor generates a waveform

which is essentially the cumulative histogram of the retinal image. This
waveform is one important global property of the retinal image which is
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reported with low latency on one of the output pins before image is ever read
out. Figure 2 shows one result of imaging with the sorting computational
sensor. Figure 3 illustrates advantages of the imaging with sorting sensor
over conventional linear cameras.

The significance of the sorting computational sensor are summarized as
follows:

» The global information — a cumulative histogram of the sensed
scene — is reported on an output pin with low—latency.

 This global information is used internally within the computational
sensor to generate the image of indices. This is an example of the
top—down processor—sensor feedback.

* The image of indices has uniform histogram; therefore, (1) the
dynamic range of the output circuitry is most optimally utilized from
information theoretic point of view, and (2) the contrast is
maximally enhanced.

» Histogram equalization is often the first processing step in image
processing. The sorting sensor preforms this operation in the analog
domain at the sensory level. Therefore, the sensory signal suffers
less noise corruption caused by the signal transfer and quantization.

* The image of indices never saturates. This is a better scheme for
preventing saturation than the logarithmic photo detection proposed
by other researchers [10] [56].

* The cell size of the sensor in MOS technology is {6y 9Q.. A
sensor in 1,2CMOS technology is currently being fabricated with
the cell size of 38by 38, which is about the size of a 3 by 3 pixel
region in an industrial CCD camera. This is an appreciable spatial
resolution for a sensor which implements a global operation on a
massive amount of input data.

5 Future

It is generally believed that the future of computing depends on the exploi-
tation of large—scale parallel processing. Although specialized parallel
computers have been successfully used in many different application areas,
there remain significant obstacles to the widespread use of parallel
computers in task—oriented machine vision. The most significant obstacles
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Figure 3: Sorting sensor processing: a) data from the sensors; b)
segmentation (viewing the shadowed region); c) segmentation (viewing
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Sorting Computational Sensor Processing

include the large size, power consumption and cost. The computational
sensor proposed by this thesis are implemented in commodity VLSI tech-
nology. There is a strong indication that this technology will remain domi-
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nant technology for many years. Furthermore, the cost of the technology
will continue to go down, while its capabilities will continue to improve.

Tree—dimensional multi—chip packaging and through wafer interconnects
are gaining increasingly more interest in VLSI community and will prob-
ably be widely available within few years. Then, one may imagine most of
the low—level machine vision processing being implemented within a
tree—dimensional stack of computational sensor chips. Many of these chips
may implement various local operations as the information traverses
through the stack of chips. Computational sensors performing global oper-
ations, however, will be essential at the higher levels of the stack. They will
allow the results to be quickly routed off the stack for further high—level
reasoning.

When this concept becomes possible, the low—latency, robust performance,
low power and portability will make many new applications for machine
vision possible. The area which will probably be the most dramatically
impacted is a human—machine interaction. Humans will start seeing increas-
ingly more vision based system®undandon themselves: in their homes,
cars, offices, hospitals, entertainment, computers, etc. Therefore, the future
of computational sensor seems promising. The low—latency computational
sensors performing global operations on massive amount of data will find
important place in that future.
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