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1 Some definitions

Recall that a martingale is a sequence of r.v.s Z0, Z1, Z2, . . . (denoted by (Zi)) if each Zi satisfies
E[|Zi|] <∞, and

E[Zi | Z0, ..., Zi−1] = Zi−1.

Somewhat more generally, given a sequence (Xi) of random variables, a martingale with respect to
(Xi) is another sequence of r.v.s Z0, Z1, Z2, . . . (denoted by (Zi)) if each Zi satisfies

• E[|Zi|] <∞,

• there exists functions gi such that Zi = gi(X1, X2, . . . , Xi), and

• E[Zi | X1, . . . , Xi−1] = Zi−1.

One can define things even more generally, but for the purposes of this course, let’s just proceed
with this. If you’d like more details, check out, say, books by Grimmett and Stirzaker, or Durett,
or many others.)

1.1 The Azuma-Hoeffding Inequality

Theorem 1 (Azuma-Hoeffding) If (Zi) is a martingale such that for each i, |Zi − Zi−1| < ci.
Then

Pr[|Zn − Z0| ≥ λ] ≤ 2 exp

{
− λ2

2
∑

i c
2
i

}
.

(Apparently Bernstein had essentially figured this one out as well, in addition to the Chernoff-
Hoeffding bounds, back in 1937.) The proof of this bound can be found in most texts, we’ll skip it
here. BTW, if you just want the upper or lower tail, replace 2eblah by eblah on the right hand side.

2 The Doob Martingale

Most often, the case we will be concerned with is where our entire space is defined by a sequence of
random variables X1, X2, . . . , Xn, where each Xi takes values in the set Ω. Moreover, we will be in-
terested in some bounded function f : Ωn → R, and will want to understand how f(X1, X2, . . . , Xn)
behaves, when (Xi) is drawn from the underlying distribution. (Very often these Xi’s will be drawn
from a “product distribution”—i.e., they will be independent of each other, but they need not be.)
Specifically, we ask:

How concentrated is f around its mean E[f ] := EX1,X2,...,Xn [f(X1, X2, . . . , Xn)]?

To this end, define for every i ∈ {0, 1, . . . , n}, the random variable

Zi := E[f(X) | X1, X2, . . . , Xi].
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(At this point, it is useful to remember the definition of a random variable as a function from the
sample space to the reals: so this r.v. Zi is also such a function, obtained by taking averages of f
over parts of the sample space.)

How does the random variable Z0 behave? It’s just the constant E[f ]: the expected value of the
function f given random settings for X1 through Xn. What about Z1? It is a function that depends
only on its first variable, namely Z1(x1) = EX2,...,Xn [f(x1, X2, . . . , Xn)]—instead of averaging f over
the entire sample space, we partition Ω according to value of the first variable, and average over
each part in the partition. And Z2 is a function of x1, x2, averages over the other variables. And
so on to Zn, which is the same as the function f . So, as we go from 0 to n, the random variables
Zi go from the constant function E[f ] to the function f .

Picture here

Of course, we’re defining this for a reason: (Zi) is a martingale with respect to (Xi).

Lemma 2 For a bounded function f , the sequence (Zi)
n
i=0 is a martingale with respect to (Xi).

(It’s called the Doob martingale for f .)

Proof: The first two properties of (Zi) being a martingale with respect to (Xi) follow from f
being bounded, and the definition of Zi itself. For the last property,

E[Zi | X1, . . . Xi−1] = E[E[f | X1, X2, . . . , Xi] | X1, . . . Xi−1]

= E[f | X1, . . . Xi−1] = Zi−1.

The first equaility is the definition of Zi, the second from the fact that E[U | V ] = E[E[U | V,W ] |
V ] for random variables U, V,W , and the last from the definition of Zi−1. �

Assuming that f was bounded was not necessary, one can work with weaker assumptions—see the
texts for more details.

Before we continue on this thread, let us show some Doob martingales which arise in CS/Math-y
applications.

1. Throw m balls into n bins, and let f be some function of the load: the number of empty bins,
the max load, the second-highly loaded bin, or some similar function. Let Ω = [n], and Xi be
the index of the bin into which ball i lands. For Zi = E[f | X1, . . . , Xi], (Zi) is a martingale
with respect to (Xi).

2. Consider the random graph Gn,p: n vertices, each of the
(
n
2

)
edges chosen independently with

probability p. Let χ be the chromatic number of the graph, the minimum number of colors
to properly color the graph. There are two natural Doob martingales associated with this,
depending on how we choose the variables Xi.

In the first one, let Xi be the ith edge, and which gives us a martingle sequence of length
(
n
2

)
.

This is called the edge-exposure martingale. For the second one, let Xi be the collection of
edges going from the vertex i to vertices 1, 2, . . . , i− 1: the new martingale has length n and
is called the vertex exposure martingale.
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3. Consider a run of quicksort on a particular input: let Q be the number of comparisons. Let
X1 be the first pivot, X2 the second, etc. Then Zi = E[Q | X1, . . . , Xi] is a Doob martingale
with respect to (Xi).

BTW, are these Xi’s independent of each other? Naively, they might depend on the size of the
current set, which makes it dependent on the past. One way you can make these independent
is by letting these Xi’s be, say, random independent permutations on all n elements, and
when you want to choose the ith pivot, pick the first element from the current set according
to the permutation Xi. (Or, you could let Xi be a random independent real in [0, 1] and use
that to pick a random element from the current set, etc.)

4. Suppose we have r red and b blue balls in a bin. We draw n balls without replacement from this
bin: what is the number of red balls drawn? Let Xi be the indicator for whether the ith ball
is red, and let f = X1+X2+ . . .+Xn is the number of red balls. Then Zi = E[f | X1, . . . , Xi]
is a martingale with respect to (Xi).

However, in this example, the Xi’s are not independent. Nonetheless, the sequence is a Doob
martingale. (As in the quicksort example, one can define it with respect to a different set of
variables which are independent of each other.)

So yeah, if we want to study the concentration of f around E[f ], we can now apply Azuma-
Hoeffding to the Doob martingale, which gives us the concentration of Zn (i.e., f) around Z0 (i.e.,
E[f ]). Good, good.

Next step: to apply Azuma-Hoeffding to the Doob martingale (Zi), we need to bound |Zi − Zi−1|
for all i. Which just says that if we can go from f to Ef in a “small” number of steps (n), and each
time we’re not smoothing out “too agressively” (|Zi−Zi−1| ≤ ci), then f is concentrated about its
mean.

2.1 Indepedence and Lipschitz-ness

One case when it’s easy to bound the |Zi−Zi−1|’s is when the Xi’s are independent of each other,
and also f is not too sensitive in any coordinate—namely, changing any coordinate does not change
the value of f by much. Let’s see this in detail.

Definition 3 Given values (ci)
n
i=1, the function f is (ci)-Lipschitz if for all j and xj ∈ Ω, for all

i ∈ [n] and for all x′i ∈ Ω, it holds that

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

If ci = c for all i, then we just say f is c-Lipschitz.

Lemma 4 If f is (ci)-Lipschitz and X1, X2, . . . , Xn are independent, then the Doob martingale of
f with respect to (Xi) satisfies

|Zi − Zi−1| ≤ ci.

Proof: Let us use X(i:j) to denote the sequence Xi, . . . , Xj , etc. Recall that

Zi = E[f | X(1:i)] =
∑

ai+1,...,an

f(X(1:i), a(i+1:n)) Pr[X(i+1:n) = a(i+1:n) | X(1:i)]

=
∑

ai+1,...,an

f(X(1:i), a(i+1:n)) Pr[X(i+1:n) = a(i+1:n)]
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where the last equality is from independence. Similarly for Zi−1. Hence

|Zi − Zi−1| =
∑

ai+1,...,an

∣∣∣∣f(X(1:i), a(i+1:n))−
∑
a′i

Pr[Xi = a′i]f(X(1:i−1), a
′
i, a(i+1:n))

∣∣∣∣ · Pr[X(i+1:n) = a(i+1:n)]

≤
∑

ai+1,...,an

ci · Pr[X(i+1:n) = a(i+1:n)] = ci.

where the inequality is from the fact that changing the ith coordinate from ai to a′i cannot change
the function value by more than ci, and that

∑
a′i

Pr[Xi = a′i] = 1. �

Now applying Azuma-Hoeffding, we immediately get:

Corollary 5 (McDiarmid’s Inequality) If fi is ci-Lipschitz for each i, and X1, X2, . . . , Xn are
independent, then

Pr[f − E[f ] ≥ λ] ≤ exp

(
− λ2

2
∑

i c
2
i

)
,

Pr[f − E[f ] < λ] ≤ exp

(
− λ2

2
∑

i c
2
i

)
.

(Disclosure: I am cheating. McDiarmid’s inequality has better constants, the constant 2 in the
denominator moves to the numerator.) And armed with this inequality, we can give concentration
results for some applications we mentioned above.

1. For the m balls and n bins example, say f is the number of empty bins: hence Ef =
n(1 − 1/n)m ≈ n e−m/n. Also, changing the location of the ith ball changes f by at most 1.
So f is 1-Lipschitz, and hence

Pr[|f − Ef | ≥ λ] ≤ 2 exp

(
− λ2

2m

)
.

Hence, whp, f ≈ n e−m/n ±O(
√
m log n).

2. For the case where χ is the chromatic number of a random graph Gn,p, and we define the
edge-exposure martingale Zi = E[χ | E1, E2, . . . , Ei], clearly χ is 1-Lipschitz. Hence

Pr[|χ− Eχ| ≥ λ] ≤ 2 exp

(
− λ2

2
(
n
2

))
This is not very interesting, since the right hand side is < 1 only when λ ≈ n—but the
chromatic number itself lies in [1, n], so we get almost no concentration at all.

Instead, we could use a vertex-exposure martingale, where at the ith step we expose the
vertex i and its edges going to vertices 1, 2, . . . , i − 1. Even with respect to these variables,
the function χ is 1-Lipschitz, and hence

Pr[|χ− Eχ| ≥ λ] ≤ 2 exp

(
−λ

2

2n

)
And hence the chromatic number of the random graph Gn,p is concentrated to within ≈

√
n

around its mean.

4



3 Concentration for Random Geometric TSP

McDiarmid’s inequality is convenient to use, but Lipschitz-ness often does not get us as far as we’d
like (even with independence). Sometimes you need to bound |Zi − Zi−1| directly to get the full
power of Azuma-Hoeffding. Here’s one example:

Let X1, X2, . . . , Xn be n points picked independently and uniformly at random from the
unit square [0, 1]2. Let τ : ([0, 1]2)n → R be the length of the shortest traveling salesman
tour on n points. How closely is τ concentrated around its mean E[τ(X1, X2, . . . , Xn)]?

In the HW, you will show that Eτ = Θ(n1/2); in fact, one can pin down Eτ up to the leading
constant. (See the work of Rhee and others.)

3.1 Using McDiarmid: a weak first bound

Note that τ is 2
√

2-Lipschitz. By Corollary 5 we get that

Pr[|τ − Eτ | ≥ λ] ≤ 2 exp(− λ2

16n
).

If we want the deviation probability to be 1/poly(n), we would have to set λ = Ω(
√
n log n). Not

so great, since this is pretty large compared to the expectation itself—we’d like a tighter bound.

3.2 So let’s be more careful: an improved bound

And in fact, we’ll get a better bound using the very same Doob martingale (Zi) associated with τ :

Zi = E[τ(X1, X2, . . . , Xn) | X1, X2, . . . , Xi].

But instead of just using the O(1)-Lipschitzness of τ , let us bound |Zi − Zi−1| better.

Lemma 6

|Zi − Zi−1| ≤ min

{
2
√

2,
O(1)√
n− i

}
.

Before we prove this lemma, let us complete the concentration bound for TSP using this. Setting
ci = O(1/

√
n− i) gives us

∑
i c

2
i = O(log n), and hence Azuma-Hoeffding gives:

Pr[|τ − Eτ | ≥ λ] ≤ 2 exp

(
− λ2

2
∑

i c
2
i

)
≤ 2 exp

(
− λ2

O(log n)

)
.

So
Pr[|τ − Eτ | ≤ O(log n)] ≥ 1− 1/poly(n).

Much better!
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3.3 Some useful lemmas

To prove Lemma 6, we’ll need a simple geometric lemma:

Lemma 7 Let x ∈ [0, 1]2. Pick k random points A from [0, 1]2, the expected distance of point x to
its closest point in A is O(1/

√
k).

Proof: Define the random variable W = d(x,A). Hence, W ≥ r exactly when B(x, r) ∩ A = ∅.
For r ∈ [0,

√
2], the area of B(x, r) ∩ [0, 1]2 is at least c0r

2 for some constant c0.

Define r0 =
√
c0/k. For some r = λr0 ∈ [0,

√
2], the chance that k points all miss this ball, and

hence Pr[W ≥ r = λr0] is at most

(1− c0r2)k = (1− λ2/k)k ≤ e−λ2 .

Of course, for r >
√

2, Pr[W ≥ r] = 0.

And hence

E[W ] =

∫
r≥0

Pr[W ≥ r]dr =
∑
λ∈Z≥0

∫
r∈[λr0,(λ+1)r0]

Pr[W ≥ r]dr ≤
∑
λ∈Z≥0

(λ+ 1)r0 · e−λ
2 ≤ O(r0).

�

Secondly, here is another lemma about how the TSP behaves:

Lemma 8 For any set of n− 1 points, A = {x1, x2, . . . , xi−1, xi+1, . . . , xn}, we get

|τ(A+ xi)− τ(A+ x′i)| ≤ 2(d(xi, A) + d(x′i, A)).

Proof: Follows from the fact that τ(A+ x) ∈ [TSP (A), TSP (A) + 2d(x,A)], for any x. �

3.4 Proving Lemma 6

OK, now to the proof of Lemma 6. Recall that we want to bound |Zi − Zi−1|; since τ is 2
√

2-
Lipschitz, we get |Zi − Zi−1| ≤ 2

√
2 immediately. For the second bound of O(1/

√
k − i), note

that

Zi−1 = E[τ(X1, X2, . . . , Xi−1, Xi, . . . , Xn) | X1, X2, . . . , Xi−1]

= E[τ(X1, X2, . . . , Xi−1, X̂i, . . . , Xn) | X1, X2, . . . , Xi−1]

= E[τ(X1, X2, . . . , Xi−1, X̂i, . . . , Xn) | X1, X2, . . . , Xi]

where X̂i is a independent copy of the random variable Xi. Hence

|Zi − Zi−1| = E[τ(X1, . . . , Xi−1, Xi, . . . , Xn)− τ(X1, . . . , Xi−1, X̂i, . . . , Xn) | X1, X2, . . . , Xi].

Then, if we define the set S = X1, X2, . . . , Xi−1 and T = Xi+1, . . . , Xn, then we get

|Zi − Zi−1| = E[TSP (S ∪ T ∪ {Xi})− TSP (S ∪ T ∪ {X̂i}) | X1, X2, . . . , Xi]

≤ E[2(d(Xi, S ∪ T ) + d(X̂i, S ∪ T )) | X1, X2, . . . , Xi]

≤ E
X̂i,T

[2(d(Xi, T ) + d(X̂i, T )) | Xi].
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where the first inequality uses Lemma 8 and the second uses the fact that the minimum distance
to a set only increses when the set gets smaller. But now we can invoke Lemma 7 to bound each
of the terms by O(1)/

√
|T | = O(1)/

√
n− i. This completes the proof of Lemma 6.

3.5 Some more about Geometric TSP

For constant dimension d > 2, one can consider the same problems in [0, 1]d: the expected TSP
length is now Θ(n1−1/d), and using similar arguments, you can show that devations of Ω(tn1/2−1/d)
have probability ≤ e−t2 .

The result we just proved was by Rhee and Talagrand, but it was not the last result about TSP
concentration. Rhee and Talagrand subsequently improved this bound to the TSP has subgaussian
tails!

Pr[|τ − Eτ | ≥ λ] ≤ ce−λ2/O(1).

We’ll show a proof of this using Talagrand’s inequality, in a later lecture.

If you’re interested in this line of research, here is a survey article by Michael Steele on concentration
properties of optimization problems in Euclidean space, and another one by Alan Frieze and Joe
Yukich on many aspects of probabilistic TSP.

4 Citations

As mentioned in a previous post, McDiarmid and Hayward use martingales to give extremely strong
concentration results for QuickSort . The book by Dubhashi and Panconesi (preliminary version
here) sketches this result, and also contains many other examples and extensions of the use of
martingales.

Other resources for concentration using martingales: this survey by Colin McDiarmid, or this article
by Fan Chung and Linyuan Lu.

Apart from giving us powerful concentration results, martingales and “stopping times” combine to
give very surprising and powerful results: see this survey by Yuval Peres at SODA 2010, or these
course notes by Yuval and Eyal Lubetzky.
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