15-859M: Randomized Algorithms Anupam Gupta
Lec 17: Dimension Reduction March 18, 2011

Today we’ll talk about dimensionality reduction, and some related topics in data streaming.

1 Dimension Reduction

Suppose we are given a set of n points {x1,z2,...,2,} in RP. How small can we make D and still
maintain the Euclidean distances between the points? Clearly, we can always make D = n — 1,
since any set of n points lies on a n — 1-dimensional subspace. And this is (existentially) tight: e.g.,
the case when xo — x1,x3 — x1,...,x, — x1 are all orthogonal vectors.

But what if we were OK with the distances being approximately preserved? In HW#3, you
saw that while there could only be D orthogonal unit vectors in R”, there could be as many as
exp(ce?D) unit vectors which are e-orthogonal—i.e., whose mutual inner products all lie in [—¢, €].
Near-orthogonality allows us to pack exponentially more vectors!

Put another way, note that

— — —.

|a —Bl5 = (@~ b,d - b) = (@,a@) + (b,b) — 2(@,b) = |5+ bl — 2(a,).

And hence the squared Euclidean distance between any pair of the points defined by these e-
orthogonal vectors falls in 2(1 £ ¢). So, if we wanted n points exactly at unit (Euclidean) distance
from each other, we would need n— 1 dimensions. (Think of a triangle in 2-dims.) But if we wanted
to pack in n points which were at distance (1 £ ¢) from each other, we could pack them into

logn
o)

1.1 The Johnson Lindenstrauss lemma

dimensions.

The Johnson Lindenstrauss “flattening” lemma says that such a claim is true not just for equidistant
points, but for any set of n points in Euclidean space:

Lemma 1 Let ¢ € (0,1/2). Given any set of points X = {x1,22,...,2,} in RP, there evists a
map A : RP — RF with k = O(¢2logn) such that

[A(zi) — A(z)

1—e<
lz; — 2513

2
I <l+e.

Note that the target dimension k is independent of the original dimension D, and depends only on
the number of points n and the accuracy parameter .

This lemma is tight up to the constant term: it is easy to see that we need at least Q(% logn) using

a packing argument. Noga Alon showed a lower bound of 9(6211‘z)gg 1 /6).

http://www.math.tau.ac.il/~nogaa/PDFS/extremal1.pdf

1.2 The construction

The JL lemma is pretty surprising, but the construction of the map is perhaps even more surprising;:
it is a super-simple random construction. Let M be a k X D matrix, such that every entry of M
is filled with an i.i.d. draw from a standard normal N(0,1) distribution (a.k.a. the “Gaussian”

distribution). For x € RP define
1

Al(x) = —=Mazx.
(@) VEk
That’s it. You hit the vector z with a Gaussian matrix M, and scale it down by vk. That’s the
map A. Note that it is a linear map: A(z) + A(y) = A(z 4+ y). So suppose we could show the
following lemma;

Lemma 2 Let ¢ € (0,1/2). If A is constructed as above with k = ce=2logé~!, and v € RY is a
unit vector, then
Pr[||A(z)||3 € 1+¢] >1-6.

Then we'd get a proof of Lemma 1. Indeed, set § = 1/n? and hence & = O(¢~?logn). Now
for each z;,z; € X we get that the squared length of z; — x; is maintained to within 1 + ¢ with
probability at least 1 — 1/n%. By a union bound, all (g) pairs of distances in ()2() are maintained
with probability at least 1 — (g) n% > 1/2. This proves Lemma 1.

A few comments about this construction:

e The above proof shows not only the existence of a good map, we also get that a random
map as above works with constant probability! In other words, a Monte-Carlo randomized
algorithm for dimension reduction. (Since we can efficiently check that the distances are
preserved to within the prescribed bounds, we can convert this into a Las Vegas algorithm.)

e The algorithm (at least the Monte Carlo version) does not even look at the set of points X: it
works for any set X with high probability. Hence, we can pick this map A before the points
in X arrive.

e Given aset X C RP, one can get deterministic poly-time algorithms constructing a dimension
reduction map A : RP? — R¥ for k = O(¢72log|X]|): the first one was given in this paper
of Lars Engebretsen, Piotr Indyk and Ryan O’Donnell; another construction is due to D.
Sivakumar.

A SODA 2011 paper of T.S. Jayram and David Woodruff shows that this dependence of O(¢~2log § 1)
is the best possible. Note that if we use this approach using this lemma and the union bound to
prove JL, then O(e~2logn) is the best bound possible. (An earlier version of these notes incorrectly
claimed that the Jayram-Woodruff paper also showed an unconditional lower bound for JL, thanks
to Jelani for pointing out the mistake.)

1.3 The proof

Now, on to the proof of Lemma 2. Here’s the main idea. Imagine that the vector we’re considering is
just the elementary unit vector e; = (1,0,...,0). Then M e; is just a vector with independent and
identical Gaussian values, and we’re interested in its length—the sum of squares of these Gaussians.

http://www.cs.cmu.edu/~odonnell/papers/eio02.pdf
http://www.almaden.ibm.com/cs/people/dpwoodru/jw11.pdf

If these were bounded r.v.s, we’d be done—but they are not. However, their tails are very small,
so things should work out

But what’s a Gaussian N (0,1)?7 Well, it looks like this:

Which is not too different from this (bounded) random variable, if you squint a bit:

Which has constant mean. So, if we take a sum of a bunch of such random variables (actually of
their squares), it should behave pretty much like its mean (which is o k), because of a Chernoff-like
argument. And so the expected length is close to vk, which explains the division by v/k.

Now we just need to make all this precise, and remove the assumption that the vector was just
e1. That’s what the rest of the formal proof does: it has a few steps, but each of them is fairly
elementary.

1.4 The proof, this time for real

We’ll be using basic facts about Gaussians, let’s just recall them. The probability density function
for the Gaussian N (u,o?) is

(z—p)?

f@) = e 5

2no

We also use the following; the proof just needs some elbow grease.
Proposition 3 If Y} ~ N(u1,03) and Yo ~ N(uz,03), then

Y1+ Y, NN(,U&'F/Q,O’%‘FO’%).

Recall that we want to argue about the squared length of A(z) € R¥. To start off, observe that
each coordinate of the vector Mx behaves like

YN<G1,G2,...,GD>'$:Z$iGi

where the G;’s are i.i.d. N(0,1) r.v.s. But then the proposition tells us that Y ~ N(0,2? + z3 +
ot x%) And since z is a unit length vector, this is simply N(0,1). So, each of the k coordinates
of Mx behaves just like an independent Gaussian!

What is the squared length of A(x) = ﬁMx, then? It is

'Yz‘Q

T =

k
7 = Z
i=1

where each Y; ~ N(0, 1), independent of the others. And since E[Y}?] = Var(Y;) + E[Y;]? = 1, we
get E[Z] = 1.

Now to show that Z does not deviate too much from 1. And Z is the sum of a bunch of independent
and identical random variables. If only the Y;’s were all bounded, we could have used a Chernoff
bound and be done. But these are not bounded, so this is finally where we’ll need to do a little
work. (Note: we could take the easy way out, observe that the squares of Gaussians are chi-squared
r.v.s, the sum of k of them is chi-squared with k degrees of freedom, and the internets conveniently
has tail bounds for these things. But we digress.)

So let’s start down the ye olde Chernoff path, for the upper tail, say:

Pr{Z > 1+ 2] < Prfel®? > ¢M149] < plett2)jeik+9) = TT (B0 /et09) (1)

7

for every t > 0. And what is E[e™”] for Y ~ N(0,1)? Let’s calculate it:

dy = —— = . 2
\/27T/ye ° Y V2T Ze V1—=2t V1—2t)

for t < 1/2. So our current bound on the upper tail is that for all ¢t € (0,1/2) we have

k
Pr[Z > (142)] < <m> |

Let’s just focus on part of this expression:

<et\/ﬁ> = exp (—t - %log(l - 2t))>

= exp ((20)°/4+ (2t)°/6 + -+) <exp (F(1+2t +26° +--))
= exp(t?/(1 — 2t)).

Plugging this back, we get

k
1
> <|—
Pr[Z > (1+¢)] < (et(1+s) — 2t>
< exp(kt?/(1 — 2t) — kte) < e F<*/8,

if we set t = /4 and use the fact that 1 —2t > 1/2 for ¢ < 1/2. (Note: this setting of ¢ also satisfies
t € (0,1/2), which we needed from our previous calculations.)
Almost done: let’s take stock of the situation. We observed that || A(x)||3 was distributed like a
sum of squares of Gaussians, and using that we proved that

Pr[HA(x)H% >1+4+¢] < exp(—k€2/8) <4/2

for k = E% In % A similar calculation bounds the lower tail, and finishes the proof of Lemma 2.

Citations: The JL Lemma was first proved in this paper of Bill Johnson and Joram Lindenstrauss.
There have been several proofs after theirs, usually trying to tighten their results, or simplify the
algorithm /proof (see citations in some of the newer papers): the proof follows some combinations
of the proofs in this STOC 98 paper of Piotr Indyk and Rajeev Motwani, and this paper by Sanjoy
Dasgupta and myself.

http://en.wikipedia.org/wiki/Chi-square_distribution
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://portal.acm.org/citation.cfm?id=276876&dl=
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

2 The data stream model

The JL map we considered was a linear map, and that has many advantages. One of them is that we
can use it in a distributed context: if ¢ players each have a vector ¢; and each knows the JL matrix
A, then to compute A(}_, ¥i) each person can just compute Ay, send their answers out, and then
someone can sum up the answers to get > . A(%;) = A(D_,; ¥;). Since these vectors Ay; are smaller
than 7; (they lie in R* instead of R”), this can result in significant savings in communication. (We
need all players to know the matrix A, but if they have shared randomness they can generate this
matrix themselves.)

This same idea is useful in the context of data streaming: suppose you have a data stream of a
large number of elements 01,09, ..., whizzing past you, each element o; drawn from the universe
[D]. This stream defines a frequency vector # € R”, where z; is the number of times element i is
seen. People working on data streams want to calculate statistics of this vector Z—e.g., how many
non-zeroes does it have? What is the ¢; length of this? (Duh! it’s just the length of the data
stream.) What is Y, 27 = ||7]|3? Etc.

The Space Crunch. All this can be trivially done if we use D space to actually store the
vector ¥. Suppose we do not want to store the frequency vector explicitly, but are OK with
approximate answers. We can use JL or similar schemes to approximately calculate), x? Suppose
A is a random k x D Gaussian matrix, then by the guarantee of the JL lemma, the estimate
|AZ||3 € (1 & ¢€)||Z||3 with probability 1 — 6, if k = Q(1/e?log1/§). (Note: this is the error for a
single query—so we’re not guaranteeing the counts at all times are close, just at the time the query
is made.)

And the algorithm is simple: maintain a vector y € R¥, initially zero. When the element j € [D]
comes by, add in the j* column of A to y. Finally, answer with ||y||3. (If you have to answer ¢
queries, choose k appropriately larger.)

Of course, you've realized I am cheating. In order to save space we used JL. But the JL matrix
itself uses kD entries, which is a lot of space, much more than the D entries of the frequency vector
Z! Also, we now need to maintain a matrix of reals, whereas ¥ just has integers!

We can handle both issues. The former issue can directly be handled by using a pseudorandom
generator that “fools” low-space computation—we will not talk about this solution in this lecture.
Instead we’ll give a different (though weaker) solution which handles both issues: it will use less
space, and will maintain only integer values (if the input has integers).

3 Using random signs instead of Gaussians

While Gaussians have all kinds of nice properties, they are real-valued distributions and hence re-
quire attention to precision. How about populating A with draws from other, simpler distributions?
How about setting each M;; €r {—1,+1}, and letting A = ﬁM? (A random sign is also called
a Rademacher random variables, btw, the name Bernoulli being already taken for a random bit in

{0,1}.)

Now, we want to study the properties of

i=1 \j=1

To keep subscripts to a minimum, consider the inner expression
Y =0 X
J
where each X; € {—1,1}. Then
E[Y] = Bl Xja) (32 Xiwr)]

= E[Z X2$2 + Z]7£l X Xlxjxl]

:ZjE[X]?]xj+Z#l X XJjz = 32, 25

if the X;’s are pairwise independent, since X]2 = land F[X;X;] = F[X;|E[X;] = 0 by independence.
Plugging this into (3) and recalling that A;; € {—ﬁ, +ﬁ} , we get

k
=Y S = el
i=1 "

Just what we like! To show that Z is indeed close to its mean, we will use Chebyshev, and this
requires us to compute the variance of Z.

If the rows of A are independent, then Var(Z) is the sum of the variances from each row, which in
terms of the variable Y defined above is:

Var()
Var(Z Z 2 — Var(Y P

But Var(Y) = E[Y?] — E[Y]?, we know what E[Y]? is. For the other term,

EY?| = B[) XX X, Xoapzr,as)
Dsq,T,8
= Z E[Xpxp) +6 Y E[X2XZx222] + other terms
p<q

—Zx —i-GZa:

r<q

(The other terms disappear because of 4-wise independence.) And plugging this into the definition
of Var(Y), we get

Var(Y ZZL’ —I-GZiU (szzo —4Zx2x2<2E

p<q p r<q

Interesting, the variance Y is just twice the squared mean—that’s good, since the variance of Z
(which was the final answer, obtained by taking the average of k such variables) is 1/k as much,
since averaging reduces the variance. So VarZ < %E [Z]2. And finally, we can set k = -2

—75 and use
Chebyshev to get
Var(Z)

Pr[Z ¢ (1+e)E[Z]] < GEZ]? =

Great! So, if we take a k x D matrix A whose k = % rows were independent, each row having
{—1,+1} values drawn from a 4-wise independent sample space. We maintain a k-dimensional

vector y, and whenever an element j in [D] comes by in the stream, we just add in the j** column
of A toy. And when we want the answer, we reply with ﬁ |ly||—this will be correct with probability
at least 1 — 4.

Why 4-wise independence? Well, the calculation of Var(Z) only used the fact that any four entries
of each row behaved independently of each other. And it is possible to generate D values from
{—1,+1} which is 4-wise independent, using hash functions that require only O(log D) bits of space.
(We'll talk more about this later in the course.) So the total space usage is: O(klog D) bits to
store the hash functions, O(klog(LD)) = O(e¢~2log(L D)) to store vector y if the frequency of each
element is at most L, and that’s it.

Citations: This scheme is due to the Godel prize winning paper of Noga Alon, Yossi Matias, and
Mario Szegedy. There has been a lot of interesting work on moment estimation: see, e.g., this
STOC 2011 paper of Daniel Kane, Jelani Nelson, Ely Porat and David Woodruff on getting lower
bounds for £,-norms of the vector x, and the many references therein.

4 Subgaussian Behavior

In the previous section, we saw that if each row of the matrix A was drawn from a 4-wise independent
sample space (and hence generating any column of A could be done in O(klogn) space), setting
k = O(¢72571) would suffice to give answers within (14¢) with probability at least 1 —§. Note that
the number of rows went from O(e72logé 1) to O(¢72571); this increase typical of cases where
we only use the second moment (and limited independence) instead of all the moments (complete
independence).

So suppose we did have the luxury of full independence, could we match the JL bound using
Rademacher matrices? Or does moving to the {—1,1} case already lose something in the perfor-
mance? It turns out we can also prove Lemma 2 for a Rademacher matrix, losing only constants—
we’ll now prove this.

Let’s look over the proof in Section 1.4, and see what we need to do. We take an arbitrary unit
vector x, and define

Y ~(Ri,Ry,...,Rg) =) x;Ri and Z=

k
D ¥
i=1

=

for R; €r {—1,1}, and Y;’s being i.i.d and Y; ~ Y. If we could show that

o E[Z] = |z]3, and

o E[eV’] < \/ﬁ for some constant c,

then the rest of the proof of Section 1.4 does not use any other facts about Gaussians. And the
first fact E[Z] = ||z||3 follows by the calculations from the previous section, so all we need to do is
to bound the moment generating function for Y?!

We can do this by explicit calculations, but instead let’s give a useful abstraction:

Definition 4 A random wvariable V is said to be subgaussian with parameter ¢ and for all real s,
we have Ele®V] < e

http://www.tau.ac.il/~nogaa/PDFS/amsz4.pdf
http://arxiv.org/abs/1007.4191
http://arxiv.org/abs/1007.4191

(You can define subgaussian-ness alternatively as in these notes by Roman Vershynin, which also
shows the two definitions are equivalent for symmetric distributions.) A simple calculation shows
that for G ~ N(0,1) then E[e*] = e5*/2—good to know that the Gaussian is also subgaussian!

The following lemma gives a slick way to bound the mgf for the square of a subgaussian, now that
we’ve done the hard work for the Gaussians.

1

. . . V2
Lemma 5 IfV is subgaussian with parameter ¢, then E[e®”"] < i

for s > 0.

PROOF: Well, suppose G ~ N(0, 1) is an independent Gaussian, then

Ev[esV2] — EG V[e\/ﬂ\/ G]

)

by the calculation we just did for Gaussians. (Note that we’ve just introduced a Gaussian into the
mix, without any provocation! But it will all work out.) Let just rewrite that

Egy[eV®V €] = Eg[By[eV>OV]].

Using the c-subgaussian behavior of V' we bound this by

EG[ec(\/%lG|)2] _ Eg[GQCSGQ].

Finally, the calculation (2) gives this to be \/Iim. O

Good. Now if Y were subgaussian, we’d be done. We know that Y is a weighted sum of Rademacher
varaibles. A Rademacher random variable is indeed 1/2-subgaussian

S —38 2 4
E[ESR]:%:C05h8:1+%+%+.,'§652/2

And if Vj’s are independent and c-subgaussian, and ||z|j2 = 1, then V = . ;V; has

2

E[esV] _ E[ezl(sxz)v,] < I_Iec(sgci)2 _ 6652 >t eos”

To summarize: R;’s are 1/2-subgaussian, so Y = > . a;R; is too. And hence Ee] < \/1177%
for {—1,+1}-random variables as well. This, in turn, completes the proof that the Rademacher
matrix also has the JL property! Note that the JL matrix A now just requires us to pick kD =
O(De2logé~!) random bits (instead of kD random Gaussians); also, there are fewer precision
issues to worry about. One can consider other distributions to stick into the matrix A—all you

need to show is that Z has the right mean, and that the entries are subgaussian.

Citations: The scheme of using Rademacher matrices instead of Gaussian matrices for JL. was first
proposed in this paper by Dimitris Achlioptas. The idea of extending it to subgaussian distributions
appears in this paper of Indyk and Naor, and this paper of Matousek. The paper of Klartag and
Mendelson generalizes this even further.

BTW, one can define subgaussian distributions as ones that satisfy E[e®V] < ecs” only for ¢ > 0,
or as variables for which Pr[V > \] < e~ for A > 0 (the upper tail is subgaussian), and prove
JL bounds—see, e.g., the paper of Matousek—Dbut it does not matter for distributions symmetric
about 0 with bounded variance, since these definitions are then essentially the same.

http://www-stat.stanford.edu/~dneedell/lecs/lec5.pdf
http://users.soe.ucsc.edu/~optas/papers/jl.pdf
http://dx.doi.org/10.1145/1273340.1273347
http://www.cs.brown.edu/~matteo/augustseminar/papers/Matousek-VariantsJohnsonLindenstrauss.pdf
http://onlinelibrary.wiley.com/doi/10.1002/rsa.20218/abstract
http://www.math.tau.ac.il/~klartagb/papers/empirical.pdf
http://www-stat.stanford.edu/~dneedell/lecs/lec5.pdf

Fast J-L: Do we really need to plug in non-zero values into every entry of the matrix A7 What
if most of A is filled with zeroes? The first problem is that if x is a very sparse vector, then Az
might be zero with high probability? Achlioptas showed that having a random two-thirds of the
entries of A being zero still works fine: the paper of Nir Ailon and Bernard Chazelle showed that
if you first hit x with a suitable matrix P which caused Px to be “well-spread-out” whp, and
then ||[APz|| = ||z| would still hold for a much sparser A. Moreover, this P requires much less
randomless, and furthermore, the computations can be done faster too! There has been much work
on fast and sparse versions of JL: see, e.g., this SODA 11 paper of Ailon and Edo Liberty, and this
arxiv preprint by Daniel Kane and Jelani Nelson. Jelani has some notes on the Fast JL. Transform.

Compressed Sensing: Finally, the J-L lemma is closely related to compressed sensing: how to
reconstruct a sparse signal using very few measurements. See these notes by Jiri Matousek, or
these by Baraniuk and others for a proof of the beautiful connection. I will say more about this
connection in a later post.

http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
http://arxiv.org/abs/1012.1577
http://web.mit.edu/minilek/www/jl_notes.pdf
http://en.wikipedia.org/wiki/Compressed_sensing
http://kam.mff.cuni.cz/~matousek/bp.ps
http://www.springerlink.com/content/g454543237g76w52/

	Dimension Reduction
	The Johnson Lindenstrauss lemma
	The construction
	The proof
	The proof, this time for real

	The data stream model
	Using random signs instead of Gaussians
	Subgaussian Behavior

